
applied  
sciences

Article

Research on Long Short-Term Decision-Making System for
Excavator Market Demand Forecasting Based on Improved
Support Vector Machine

Bin Zhang 1,†, Teng Yang 1,†, Haocen Hong 1,* , Guozan Cheng 1, Huayong Yang 1, Tongman Wang 2

and Donghui Cao 2,*

����������
�������

Citation: Zhang, B.; Yang, T.; Hong,

H.; Cheng, G.; Yang, H.; Wang, T.;

Cao, D. Research on Long Short-Term

Decision-Making System for

Excavator Market Demand

Forecasting Based on Improved

Support Vector Machine. Appl. Sci.

2021, 11, 6367. https://doi.org/

10.3390/app11146367

Academic Editor:

Emanuele Carpanzano

Received: 15 June 2021

Accepted: 7 July 2021

Published: 9 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University,
Hangzhou 310001, China; zbzju@163.com (B.Z.); yangteng@zju.edu.cn (T.Y.); guozan@zju.edu.cn (G.C.);
yhy@zju.edu.cn (H.Y.)

2 Research Institute for Heavy Machinery, Sany Heavy Machinery Ltd., Suzhou 215300, China;
wangtm@sany.com.cn

* Correspondence: honghaocen@zju.edu.cn (H.H.); caodh@sany.com.cn (D.C.)
† These authors contributed equally to this work.

Abstract: Future demand forecasting of the excavators is of great significance to guide the supply
and marketing plan. For a long time, market forecasting of the construction machinery is regarded as
short-term forecasting, which lacks the analysis of macro-marketing law and cannot reflect the true
law of market development. In this paper, a decision-making system based on both long-term and
short-term features was proposed. The interval classification and recursive feature elimination were
used to select the main factors that affect the demand of excavators. Then a support vector regression
model based on decomposition synthesis (DS-SVR) was developed to forecast the long-term features,
and a model combined with a seasonal autoregressive integrated moving average model (SARIMA)
was developed to forecast the short-term features. Finally, the differential evolution algorithm (DE)
was applied to optimize model parameters. The performance of the forecasting model was tested
using the marketing data of a typical enterprise. The results showed that the total error rate of the
forecasting model for the one-year long-term forecasting is 26.61%, and the classification error of
forecasting of the three-month short-term forecasting are 13.65%, 18.83%, and 19.62%, respectively,
which are superior to the SVR forecasting model and the SARIMA forecasting model.

Keywords: excavator market forecasting; long short-term forecasting; decision-making system;
data mining; support vector regression; seasonal autoregressive integrated moving average

1. Introduction

Recently, China has surpassed America as the world’s largest market of construction
machinery [1]. The manufacturing capacity of special construction machinery, especially ex-
cavators, has increased rapidly. For the construction machinery market, excavators account
more than 45% of sales. It is expected that the global market will achieve more than 500,000
units in 2021, which can bring more than 49 billion dollars [2].

From the national level, the construction machinery industry is an important pillar
industry of China’s economy. The upward stimulus and downward risk of the construction
machinery industry indicate several changes in the national economic situation, which has
great enlightenment to national economic development. Besides, the rapid changes of
construction machinery market demand feature directly cause problems of overcapacity or
insufficient capacity and the waste of production materials, which leads to the financial
and operational risks of enterprises by the increase of production and long-term holding
costs. In this case, the forecasting work of the excavator market feature has great signifi-
cance to future market decision-making and sustainable development. On the one hand,
predicting market long-term development trends and identifying their influencing factors
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will help the relevant state departments to regulate the macro-economy. On the other hand,
market operation information has an important impact on the machinery manufacturing
industry and its upstream and downstream industries. The forecast of demand for the
construction machinery industry can provide important information for the allocation of
production resources and inventory management in various industries at various stages,
such as the parts production department and the engineering construction department.
Long-term forecasts help them understand the changing direction of the market as well as
making arrangements for the scheduling of production materials in advance, including the
material supply chain, workshop, labor, and technology research and development. It also
helps to track and manage the plan. Short-term forecasts with sufficient production cycles
can provide support for the implementation of specific production plans. This requires
us to construct a decision-making system from the theoretical level and consider various
influencing factors.

The core of building a decision-making system is data analysis. As mainstream data
analysis methods, the gray model [3] and the time series model [4] have been widely used
in demand forecasts. The market characteristic of the construction machine is obviously
seasonal [5]. In this case, seasonal influence based on the sum or product is an alternative
choice [6,7]. Using previous observations to find endogenous variables for prediction
ignores the influence of exogenous factors, which are only suitable for the analysis of
stable linear systems. Meanwhile, the market sale of construction machinery is a typical
nonlinear time series problem. The artificial intelligent method based on machine learning
makes up for this limitation by its ability to model nonlinear time series and multivariate
analysis, which is considered to be another effective way to solve the problem. Aiming at
spare parts demand forecast in construction machinery, Aktepe et al. found that artificial
intelligence methods are more successful than linear and nonlinear regression models
through compared linear regression, nonlinear regression, neural network and support vec-
tor machine [8]. Considering the risks existing outside the system, Xia built a ForeXGBoost
model based on the decision tree to predict monthly sales of China’s vehicles [9]. Jiang
developed a multilayer perceptron model using the BP neural network model to predict
the air pollution index [10]. Abbasimehr et al. applied the LSTM method to capture the
nonlinear patterns in the time series data and applied it to customer demand forecasting in
the business field [11]. Considering the high-level noise of the time series data, Heydari
et al. designed a fuzzy group method of data handling neural network method to predict
the power generation of wind turbines [12].

Moreover, the uncertainties of parameters and over-fitting problems of the neural
network model caused by insufficient data volume would directly decrease forecasting
performance [13,14]. In this case, the support vector machine model (SVM) was applied in
the forecasting model [15,16]. Yang and Zhang studied the influence of kernel functions
and penalty factors on SVM forecasting models [17,18]. Moreover, the nature of high
dimensional candidate features was analyzed to improve the sensitivity and stability of the
SVM forecasting model [19].

In addition, to overcome defects of the characteristic confusion phenomenon, the key
characteristics were isolated into different subsystems to enhance performance through
the combination of different methods. Li used the gray model (GM(1,1)) to predict energy
consumption in Shandong Province and compounded autoregressive integrated moving
average method (ARIMA) to correct the residual error [20]. In de Oliveira et al.’s study,
they applied ARIMA and the exponential smoothing composite method to predict long-
term power consumption in various countries [21]. Kaneda et al. proposed a combination
method of SVR and ensemble learning [22]. Sumi et al. applied a combined model using
the least squares regression, multiple adaptive regression, and RBF multilayer perceptron
to build a forecasting model by ranking [23]. Cheng et al. proposed a combined algorithm
that is based on the chaos theory and the SVM to analyze the characteristics of time series in
phase space and predict traffic flow [24]. Henríquez et al. proposed an improved ICA neural
network model to analyze independent components [25]. Ma et al. devised an integrated
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model based on Wavelet Transform (WT) and Artificial Neural Network (ANN) for day-
ahead prediction of electric power consumption in microgrids [26]. Heydari et al. designed
a method based on long short-term memory(LSTM) model optimized by multi-verse
optimization(MVO) algorithm to predict manufacturing pollution emissions and applied
the mutual information method to analyze related factors [27]. Wang et al. proposed
an adaptive network-based fuzzy inference system (ANFIS) to forecast the demand of
automobile sales [28].

However, the factors that act on the construction machinery market are complex.
There is a research gap in developing a suitable demand forecasting method that can reflect
the characteristics of the construction machinery industry. On the other hand, most of the
proposed prediction research was conducted separately in the short-term and long-term.
The actual decision-making process, which develops a combination of both long-term and
short-term features, will make a better interpretation of the market forecasting, which is of
great significance to the construction machinery industry. This paper proposed a composite
decision-making model using both the long-term (based on the annual data) and the short-
term (based on the monthly data) to analyze the market demand of excavators. The results
proved superior to other methods and were applied to production guidance. The main
innovations and contributions of this paper are as follows:

In order to explore the internal relationship between data, we proposing to use the
recursive feature elimination method to reduce the dimensionality of high-dimensional
features by comparing filtering-based methods and packaging methods and using it to
define and rank the relevant factors that affect the demand for different types of construc-
tion machinery.

(1) The dimension reduction was carried out based on the combination of interval de-
coupling and recursive feature elimination. Additionally, define and rank the relevant
factors that affect the demand for different types of construction machinery.

(2) A new forecasting framework of demand combining long term and short term is
proposed based on the characteristics of production planning.

(3) The determination method of the short-term production planning cycle is analyzed
quantitatively by time series analysis.

(4) For long-term prediction, an interval dividing SVR-based method is designed to
divide the nonlinear effect of high-dimensional factors on the target.

(5) For short-term prediction, a hybrid method is designed with machine learning and time
series analysis, which has both the advantages of related variable analysis and seasonal
trend description. And prove this conclusion by analyzing the model coefficients.

(6) The performance of the composite method is verified compared with other tradi-
tional methods.

In “Methodology”, we give the modeling method of the decision framework. A feature
collection is elucidated, and the correlation of features was analyzed by data mining
technique. Because the traditional time series analysis method is no longer suitable for a
long period, we propose a decomposition synthesis support vector regression machine
model. On the monthly model part, this study proposes a modified decision model that
combines long-term SVR and short-term SARIMA forecasting due to the multivariate
nonlinear regression ability of SVR in small-scale data sets and the seasonal compensation
character of SARIMA. In “Results and Discussion”, we use monthly market capacity data
from the Chinese excavator industry, which accounts for 45% of the global market, to verify
the decision system. And conclusions are given in “Conclusion”.

2. Materials and Methods

In this section, the decision model framework is first proposed. In addition, the main
parts are explained subsequently, including data collection and preprocessing, feature anal-
ysis, and the proposed long-term and short-term prediction algorithms.
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2.1. The Framework of Long Short-Term Market Decision-Making System

The construction machinery industry has obvious characteristics of the large fluc-
tuations in its demand relationship and the difficulty in product storage. Too much
allocation of production capacity will lead to the backlog management of large equipment;
otherwise, it will lead to a decline in market share and output value, which cause great
limitations to the production of enterprises. Another problem is research shows that the
Chinese excavator market is obvious seasonal [29], which makes the market demand
fluctuate significantly in some months.

Therefore, we proposed the decision-making system in the mining machinery mar-
ket should be based on the monthly production plan and the annual production plan.
A monthly and annual composite decision model is established through mathematical
modeling as well as developing a compound algorithm to optimize the seasonal per-
formance. The long-term part predicts the market one year before the market actually
generates demand in the system, which is conducive to determining the direction of pro-
duction resource scheduling. Generally speaking, the production cycle of construction
machinery is about 2–3 months, and more short-term sales plans can be made through
supplier acquisition to make corresponding decisions. It can be seen that the short-term
forecast of the market is at least 3 months before the actual market demand is generated,
providing support for the implementation of specific production plans. The accurate
prediction step size will be discussed in the next chapter.

In this case, the whole process of the market decision model is summarized in Figure 1.Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 21 
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Figure 1. Long-term and short-term market decision-making model based on ARIMA and SVR compound parameter
adjustment algorithm.

DS-SVR is proposed for the long-term prediction part, and feature selection is based
on the decomposition results. Then, the model parameters are optimized by the DE method.
The decomposition of data theoretically limits the effect of various factors on the market
within each sub-range, which will have an impact on the resolution of features, and at the
same time, can avoid overfitting errors that may occur in the actual training process.

In the short-term forecasting part, considering the characteristics of seasonal demand,
an improved model based on SVR and seasonal ARIMA is proposed in view of the limita-
tions of SVR and SARIMA models. The DE method is used to comprehensively optimize
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the model parameters, including the model weight, epsilon–SVR parameters C and g,
and SARIMA model parameters p, q, P, Q, d, and D.

In order to verify the effect of the proposed model, the proposed model is compared
with the SVR model and SARIMA model at the end.

2.1.1. Data Acquisition and Processing

The monthly sales volume and other key factors of excavator marketing are talked
about in this study. The extracted factors are counted through the open-source data
published by the National Bureau of Statistics in a 14-year period from 2006 to 2019.
Some others are from the large mechanical equipment manufacturer. This study contains
109 factor indicators in total.

The key factors are shown as Table 1:

Table 1. The key factor indicators of excavator market.

Type Content

Output of major energy and industrial
products

Monthly production of raw coal, crude oil, natural gas
and other energy and industrial products such as iron
ore, phosphate ore, and crude salt from 2006 to 2019.

Investment in fixed assets
Investment in fixed assets such as agriculture, forestry,
animal husbandry and fishery, mining, manufacturing,

and transportation from 2006 to 2019.

Real estate data
The investment in real estate development from 2006

to 2019, including funds, real estate construction,
completed area, and related residential sales area.

Transportation Cargo transportation volume, turnover volume,
and port throughput from 2006 to 2019.

Financial industry
From 2006 to 2019, the manufacturing purchasing

manager index, national fiscal revenue and
expenditure, bank deposit interest rate, etc.

Excavator sales
Monthly sales of excavators in a large mechanical
equipment manufacturing enterprise from 2006

to 2019.

Because of the particularity of the Chinese market, data at the beginning of the year is
missing due to the Spring Festival. In this case, the original data are interpolated according
to the data trend. Furthermore, the min-max normalization method is applied to normalize
the data for the case of large data dimension and large difference in magnitude and dimen-
sion. Thus, accelerate data convergence and quantify analysis indicators. The formula is
as follows:

Xi =

xi − min
1≤j≤n

{xj}

max
1≤j≤n

{xj} − min
1≤j≤n

{xj}
(1)

It is necessary to renormalize and dynamically update while the values of max and
min change due to the addition of new data.

2.1.2. Feature Analysis Trick

Considering that there are many factors that may affect the sales volume of the
construction machinery market, the traditional prediction methods in the industry take no
consideration of further data decomposition, which makes factors coupling among different
types of excavators and cannot judge the influence of different factors well. This study
proposes to decompose excavators to different intervals according to types and obtain
statistical results of small, medium, and large types, respectively. Since different types are
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different in user orientation, usage and output, regression analysis, and prediction after
such decomposition will work more reliable in theory.

For each interval, use dimension selection to avoid dimension disaster in the frame-
work. Dimensions with excavator sales volume and other features with strong correlation
should be considered. Usually, we use a method based on a filter is used to analyze and find
the correlation or divergence between factors and data. The index of the feature is scored,
and the score threshold is set to select the appropriate feature [19]. However, selecting
features alone may result in filtering some variables, which may be useful if we use them
with other variables. On the other hand, regardless of the correlation, we cannot guarantee
the filtering of redundant features [30]. To overcome these shortcomings, we use the re-
cursive feature elimination (RFE) algorithm for feature extraction. The feature ranking is
given by the weight coefficient in the SVM modeling process, and the features with lower
ranking are deleted. Then, the SVM modeling and feature weight ranking are repeated for
the retained features until the last feature. The feature screening methods are as follows: (1)
According to the observation data, the feature dimensions with poor quality can be directly
eliminated, such as features with more missing values, meaningless features, features with
unchanged feature values, etc. (2) RFE is used to reduce the dimension of data.

The extraction method is shown in Figure 2. Additionally, the main factors selected
are listed in Table 2 for the large type of excavator.
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Table 2. Factors after screening (large type).

Serial Number Data Type Source

1 Demand of medium-sized excavators Company
2 Six-month exchange rate for bank loans Bank of China
3 Total demand of excavators Company
4 Demand of large excavators Company

5 Current value of retail value of gold, silver
and jewelry commodities

National Bureau of
Statistics

6 Bank deposit interest rate demand Bank of China

2.1.3. Long-Term Forecast Model Based on SVR Method

Support vector regression is proposed to solve the data fitting problem by Vapnik [31],
which is based on the support vector machine algorithm. Using the theory of structural
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risk minimization, it strives to minimize the upper limit of generalization error composed
of the sum of training error and confidence.

Then, establish a long-term prediction algorithm with epsilon–SVR as the core of our
research. The regression problem can be described as follows:

y = f (X) + b (2)

here, x is the input vector, and f (X) is a nonlinear mapping to a high dimensional feature
space. All sample vectors are regressed in this high-dimensional feature space to construct
the optimal planning hyperplane by minimizing the distance from all sampled points to
the hyperplane and tolerating certain channel errors to meet the best fit for training data,
shown as Equation (3).

min
w,b,ξi ,ξ̂i

1
2‖w‖

2 + C
m
∑

i=1

(
ξi + ξ̂i

)

s.t.


f (xi)− yi ≤ ε + ξi
yi − f (xi) ≤ ε + ξ̂i

ξi ≥ 0, ξ̂i ≥ 0
i = 1, 2..., m

(3)

where ε is the error. ξi and ξ̂i are the relaxation factors. C is cost coefficient, and w is the sup-
port vector, which should also be minimized as the form of the L2 norm [32]. The penalty
parameter, “C,” controls the empirical risk degree of the SVR model. The epsilon controls
the width of the insensitive area. Finally, m is the number of features.

Moreover, to overcome the nonlinear regression problem, the Gaussian function is
chosen as the kernel, which is proven to have better performance to replace the inner
product [33–35].

k
(

xi, xj
)
= exp

{
−γ‖xj − xi‖2

}
(4)

The γ controls the width of Gaussian kernel function of SVR model.
The determination of the super-parameters is the key of the SVR model construc-

tion [13,14].
At present, parameter search methods, such as PSO, GA, and ICA, have been used in

the research of optimizing machine learning performance [36,37].
In this study, DE is utilized for optimization and avoid the judgment error caused by

human factors [38]. It has the characteristics of self-adaptation, global search, fast conver-
gence, which is considered as one of the best heuristic algorithms [39]. The hyperparameters
can greatly affect the performance of the algorithm [40]. Storn and Price suggest limiting
the values of NP, F, and CR to a search interval [41]. According to their experimental results,
the best value of the population(NP) is between 5 × D and 10 × D; D is the dimension
of the problem; F is the mutation scale factor, and the value is within (0.5, 1); CR is the
crossover probability, and the value is 0.9 or 1.

In this way, the epsilon–SVR model regards each decomposed interval training set as
its input and the DE algorithm is applied. With the value setting of initialization parameters
C, gamma, and step, initializing the chromosome population and training the decomposed
sales volume model, the adjusted parameters are generated by performing mutation,
crossover and selection operations. The optimization prediction model is obtained as
Equation (5), where t is the number of decomposed intervals.

yprelt =
t

∑
i=1

(SVR-DE)i (5)

2.1.4. Short-Term Forecast Model Based on Hybrid Model

ARIMA is a stationary time series prediction method [42], which is formed by com-
bining the autoregressive model and the moving average model [43]. The stationary time
series is taken from a random process that characteristics do not change with the passage
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of time. The occurrence of a single value in the sequence is uncertain, but the change of the
whole sequence shows certain regularity.

We regard the sequence formed by the change of the market demand with time as
a stationary time series, which can be tested with an Augmented Dickey–Fuller (ADF).
A logarithmic analysis is an effective method for demand data with a huge magnitude of
difference in our study.

For nonstationary time series with trend seasonality that exists in the equipment
industry, D-order seasonal difference processing is carried out to convert it into a stationary
sequence as is shown in Equation (6).

Yt = (1− B)d(1− Bs)DXt (6)

Here, B is transformation operator, which is BjXt = Xt−j, and S is period.
For model identification and order determination, the autocorrelation function ACF

and partial autocorrelation function PACF are used to identify the model. The commonly
used ranking model methods are the criterion function method Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC). AIC criteria are defined as:

AIC = −2 ln L(β) + 2ω (7)

here L(β) is maximum likelihood function. ω is the number of parameters of the model.
This study uses the AIC criterion for estimation and believes that the model with the
smallest AIC function is the optimal solution to determine the number of lag orders in
the model.

Then, the maximum likelihood estimation method is used to estimate the parameters
φ and θ in the selected model.

φ(z) = 1− φ1(z)− φ2(z2)− · · · − φp(zp) (8)

θ(z) = 1 + θ1(z) + θ2(z2) + · · ·+ θp(zq) (9)

Here, p and q are the lag order of AR and MA model, respectively.
For the model test, the Box-Pierce hypothesis test method [44] can be applied to the

test after the parameters are determined. Finally, a one-step prediction can be carried out
through the model establishment equation. As shown in Equation (10):

φ(B)ϕ(Bs)Yt = θ(B)ϑ(Bs)et (10)

here et is supposed to be a white noise process.
ARIMA modeling does not directly consider the changes of other related random

variables or other exogenous variables. It only needs endogenous variables, which data
sample demand is small. However, ARIMA can only capture the linear relationship
in essence, and it is generally suitable for establishing a low-order time series model.
We proposed a weighted epsilon–SVR model and SARIMA model to overcome the problem.
Then, use the DE algorithm to search for optimal parameters, which have been introduced
before. The process is shown in Figure 3.

Through mutation, crossover, and selection, we can search and generate adjustment
parameters of the modified model. The fitness function of the test set is similar to the
long-term part. Then, evaluate the market capacity fitted by the training set data until
the stop condition of the maximum iteration number is met. In this way, the short-term
optimized forecast model of typed excavators is expressed as Equation (11), with µ1 µ2 as
the coefficients of each model, respectively.

ypresti = µ1 × ε−SVRi + µ2 × SARIMAi (11)
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2.1.5. Model Forecasting

The models established above are applied to long-term prediction and short-term
prediction, respectively. Then, the parameter search is performed based on the DE algo-
rithm. The optimization object of the DS–SVR model is the hyperparameters c and g of
each sub-interval. In addition, the optimization objects of the hybrid SVR–SARIMA model
are synthesis coefficients, epsilon–SVR parameters, and SARIMA model parameters.

Using the forecast set determined in Section 2.1.1 as the input of the two models can
obtain both short-term and long-term forecasting results.

2.2. Prediction Accuracy Evaluation

In order to evaluate the prediction accuracy of the model, the data are divided into
training sets and prediction sets. The data from 2006 to 2018 are used for model training
and test, and the data from 2019 are used for the model forecast to evaluate the model effect.

The prediction effect was evaluated by the root mean square error (RMSE) and mean
absolute error (MAE). RMSE refers to the expected value of the square root of the difference
between the estimated value of the parameter and the observed value of the parameter,
which can be used to evaluate the change degree of the data. MAE is the average value of
the absolute error, which can better reflect the actual situation of the predicted value error.
The smaller the RMSE and MAE value, the better the accuracy of the prediction model in
describing the experimental data. The calculation formula is as follows:

RMSE =

√
1
m

m

∑
i=1

( fi(X)− yi)
2 (12)

MAE =
1
m

m

∑
i=1
| fi(X)− yi| (13)

where m is the number of forecasting operation, fi(X) is the value of the ith forecast, and yi
is the value of ith observation. At the same time, we use MAPE and ER to indicate the
percentage of different errors in the total amount, where MAPE is the mean absolute
percentage error, and ER is the ratio of RMSE to average demand.
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3. Results and Discussion

We apply the method developed in the previous section to the demand forecast
of the Chinese engineering market. The type of input data is designed according to
the characteristics of construction machinery industry. Afterwards, the main indicators
affecting the the construction machinery market have been ranked, and the appropriate
step size for short-term forecast have been further discussed. Finally, we evaluate the
long-term and short-term forecast results separately.

3.1. Determination of Factor Analysis Methods

In our study, through the comparison of filter-based and wrapper-based feature
extraction methods, the RFE method is used to analyze the factors that affect market
demands of three kinds of excavators. The main indexes are listed in Table 3.

Table 3. Feature ranking of different types of excavators’ market capacity.

Significance Ordering Large Medium Small

1 Previous Demand of Medium
Excavator

Previous Demand of Medium
Excavator

Previous Demand of Small
Excavator

2 Six-month Interest Rate on
Bank Loans

Cash in Circulation Supply
End Value (M0)

Current Value of Total
Investment in Real Estate

Development Plan

3 Previous Total Demand of
Excavators

Previous Demand of Small
Excavators

Current Value of Natural Gas
Production

4 Previous Demand of Large
Excavators Loan for Six Months

Current Value of Investment
in Fixed Assets of Ferrous

Metal Mining and Dressing
Industry

5 Current Value of Luxury
Retail

Current Value of Investment
in Fixed Assets of Public
Facilities Management

Industry

Current Value of Investment
in Fixed Assets of

Construction Industry

6 Bank Deposit Interest Rate
(Demand)

Current Value of Real Estate
Land Acquisition Costs /

. . . / . . . /

According to results, the factor labels for each kind of excavator are listed in Table 4.

Table 4. Feature ranking of different types of excavator’s market capacity.

Types Factor Labels

Large (8) (96) (102) (108) (109) (110)
Medium (9) (10) (16) (24) (32) (38) (40) (84) (88) (91) (94) (101) (106) (107) (109) (110)

Small (4) (41) (49) (53) (106)

From the decomposition results, it can be seen that the influencing factors for different
kinds of excavators are different, and there are great differences among the medium-sized
excavators. According to market demand factors, large excavators are mainly used in
mining, which has a relatively single application scenario. Similarly, as for the small
excavators, which applications include municipal construction, residential construction, etc.
The limitation of the applications makes factor labels of both large-sized and small-sized
less than the medium ones.

On the other hand, for medium-sized excavators, the wide range of applications
makes its influencing factors of demand complicated and diverse, and it is difficult to
describe it with fewer factors.
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According to the results of the indicators, the market demand is closely related to the
real estate industry, water conservancy projects, environmental management, public man-
agement, transportation, and the cash supply and loan factors in circulation in the financial
industry. At the same time, it is interesting to note that the market demand of all types of
excavators is strongly related to their previous sales and the sales of the excavators with
slightly smaller tonnage.

3.2. Parameter Tunning Analysis through Differential Evolution Algorithm

In this study, DE was used to search and adjust the parameters of the long-term model
and the short-term hybrid model. Table 5 shows the final values of these parameters. Table 5
shows the final values of these parameters.

Table 5. Optimized parameters of the long-term prediction model and the short-term compound hybrid model.

Forecast Type c g p q d P Q D

Long-term forecast

Large 65.2999 0.08984 / / / / / /
Medium 3060.1000 0.00008011 / / / / / /

Small 391.1250 0.3359 / / / / / /
Total 42.08983 0.1319 / / / / / /

Short-term forecast

Composite large
scale 1841.6020 0.0001 0 3 3 1 1 1

Composite medium scale 2624.1117 0.0001 0 1 2 2 1 1
Composite small

scale 135.7223 1.07505 0 1 2 2 1 1

SARIMA
Large scale / / 0 3 3 1 1 1

SARIMA medium scale / / 0 1 2 2 1 1
SARIMA small

scale / / 0 1 2 2 1 1

3.3. Comparison of Forecast Results

In this part, we use the established model based on the data of the forecast set to
predict market demand and discuss the performance of the proposed long-term model and
short-term model, respectively.

3.3.1. Discussion on the Long-Term Forecasting Results

We discuss the method of long-term prediction part in the decision-making framework
with SVR model based on decomposition strategy that we proposed. Then compare the
results with the SVR and SARIMA on the forecast set. Their performance is shown in
Figures 4 and 5. Table 6 gives the demand analysis results of those models.
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Figure 5. A comparison of long-term prediction errors between the proposed DS-SVR
model and the SVR model.

Table 6. Forecast results of long-term forecast algorithm.

Long-Term Forecast Model RMSE of
Test Set

RMSE of
Forecast Set

MAE of
Forecast Set

MAPE of
Forecast Set

Average
Error Rate

SVR Model of Long-term 2672 8189 6345 38.29 50.61
DS-SVR Model 2606 4306 3246 19.36 26.61

SVR for type Decomposition (Large) 259 535 427 23.05 30.42
SVR for type Decomposition (Medium) 1107 1209 970 23.56 25.94

SVR for type Decomposition (Small) 1769 3223 2418 23.95 33.02

According to the results, the proposed long-term forecasting method is similar to the
traditional forecasting methods in the test set. However, the extrapolation error of the
proposed method in the prediction set is obviously smaller. Additionally, the monthly
error ratios of the two models show that the proposed DS-SVR model is lower, which can
be explained theoretically. The DS-SVR model limits the effects of various factors on the
market to each subinterval in the process of feature analysis, thus reducing over-fitting
errors that may occur in the actual training process. Moreover, the two methods are well
in line with the general trend of the construction machinery market in the long-term
forecasting process.

Then, the forecasting results are compared with the seasonal method of the ARIMA
model, and the final effects of long-term prediction are verified. The test is conducted with
the medium-sized case, which is more complicated than the other two types. Figures 6 and 7
show the experiment results.

It can be seen that both DS-SVR and SARIMA can follow the changing trends of the
market in long-term forecasting. However, the overall performance of the SARIMA model
on the prediction set is biased to one side, while the DS-SVR model is closer to the actual
situation. The prediction RMSE of the SARIMA model on the prediction set is 1515, and the
prediction RMSE of the DS-SVR model is 1209. For the long-term prediction, the DS-SVR
model results are significantly better than SARIMA. On the other hand, the SVR method
based on multi-source data analysis is theoretically more reliable, which is reflected in the
face of abrupt changes in upstream and downstream industries and the impact of national
financial policies.
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3.3.2. Discussion on Short-Term Forecasting Results

In this section, the periodic conditions for applying the algorithm to short-term
prediction are discussed based on the ARIMA model. Then the proposed improved model
is adopted and compared with SVR and ARIMA models.

Relevant studies show that the forecasting accuracy of SARIMA is affected by the
number of periods in the lag time series. Therefore, the relationship between the number
of periods in the forecasting time series and the forecasting accuracy is further explored in
the dataset. Figure 8 shows the relationship between different forecasting periods.
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According to the results, with the same input sample, the training error and the
prediction error have tendencies to increase with the increase of prediction periods, which is
also in line with the characteristics of the autoregressive model affected by the number of
lag periods and further illustrate that ARMA model is not suitable for providing long-term
decision support. In this case, it is necessary to find the best autocorrelation lag time
in use. The error of this research model in three months has basically met the demand,
and shorter forecast periods are worthless to the implementation of production lines.
Therefore, the optimal results are used to set the number of short-term prediction lag
periods and compare them with the SVR algorithm again. Figure 9 shows the comparison
curves. The results of quantitative analysis in RMSE show that the prediction error of SVR
is 1596, and the prediction error of SARIMA is 933. The results show that the SARIMA has
better short-term forecasting accuracy (Figure 10).
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To sum up, SVR results are significantly better than SARIMA for long-term prediction.
On the contrary, SARIMA has achieved better results in short-term prediction.

3.3.3. Modified Method for Short-Term Forecast

Although the seasonal ARIMA model has achieved good results in short-term fore-
casting, it has limitations. The multi-source data-driven forecasting method has better
application prospects. Therefore, a modified model and forecasting process is proposed for
further study of the short-term forecasting effect of the decision framework aiming at over-
coming the limitations. In particular, this study applies the previously drawn conclusions,
including the forecasting effects and enterprise production scheduling, to set the number of
forecasting periods to three periods and adopt a modified model of decomposition method
to achieve decoupling between multivariate factors. The results are shown in Figure 11.
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Comparing the SARIMA, the SVR, and the modified forecasting algorithm, Figure 11
shows that the short-term market capacity prediction on large, medium, and small exca-
vators basically conforms to the data change trend, and the SVR effect is slightly poor.
Residual analysis indicates that the prediction error follows Gaussian distribution, and the
average value will tend to zero under the condition of large samples. It verifies the reli-
ability of the model. In the market capacity forecasting of large and medium excavators,
the modified algorithm performs better, and the error distribution tends to zero. The qual-
itative analysis in Table 7 has reached the same conclusion. The RMSE and error rate
of the ARIMA, SVR, and modified model on the forecasting samples decrease in turn
according to the law of small to large. The MAE and MAPE also basically conform with
this trend. The modified model is superior to the ARIMA model and epsilon–SVR model
on the prediction ability of medium and large scale, while the ARIMA model has better
performance on the small-scale type.

Table 7. Prediction results of the SARIMA model and SVR–SARIMA modified model.

Type Short-Term Forecasting
Model

RMSE of
Test Set

RMSE of
Forecast Set

MAE of
Forecast Set

MAPE of
Forecast Set

Average Error
Rate

Large type
SARIMA model 387 315 292 18.80 17.92

SVR model 407 791 521 25.85 44.98
SARIMA-SVR modified model 229 240 99 8.65 13.65

Medium type
SARIMA model 730 933 646 11.37 20.02

SVR model 1140 1596 1159 23.36 34.24
SARIMA-SVR modified model 494 878 420 10.94 18.83

Small type
SARIMA model 1315 1615 1251 12.39 16.55

SVR model 2157 2750 2359 26.78 28.18
SARIMA-SVR modified model 935 1915 1189 10.79 19.62

However, simply using the SARIMA model cannot capture the nonlinear relationship
in market changes in principle. On one hand, it cannot resist the influence of market risks
and financial policies, which means it has certain limitations in reliability. In this case,
the SARIMA model on the random offset of the error mean in Figure 11 is larger than the
modified model. For further analysis, the limitation is because the SARIMA model cannot
capture the nonlinear causality of market changes well; thus, this part of the information
is “leaked” into the residual error. In contrast, the modified algorithm integrates data-
driven analysis technology and can recover this part of information through multiple data
regression. Therefore, it is considered to be a more scientific way to consider the long-term
SVR forecasting results comprehensively.
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At the same time, it can be seen from Table 8, for the short-term modified forecasting
algorithm, the coefficient of the SARIMA model is higher than the SVR model. It is the
optimized result by the DE algorithm. It can be seen that the model values more of the data
results in short-term prediction and also considers the influence of epsilon–SVR.

Table 8. Optimized coefficients of the modified model.

Type Coefficient of SVR Coefficient of SARIMA

Large type 0.45253305 0.52512739
Medium type 0.23695408 0.91169819

Small type 0.34591814 0.71184436

To sum up, the DS–SVR–DE model for long-term prediction has a stronger prediction
ability than the SARIMA model and SVR model. Its application in enterprises will play
a supporting role in the long-term market decision. In view of the fact that the short-
term forecasting modified algorithm is better than the SARIMA model and SVR model,
which can capture the nonlinear changes of the market, the modified model is adopted for
short-term forecasting to provide support for actual order production.

4. Conclusions

According to the characteristics of the construction machinery industry, the long-term
and short-term forecasting model is proposed in this paper, which is dedicated to solving
the production decision-making problem of enterprises under market behavior and also is
used to build enterprise production decision support systems.

First of all, a framework of a complete market decision-making system model is
proposed. Then, the market forecasting method based on the combination of long-term
and short-term is discussed, which includes a long-term forecasting part with a step length
of 1 year and a short-term forecasting part with a step length of 3 months.

Among the framework, the long-term forecasting of market capacity is studied based
on the DS-SVR prediction model. Monthly data from 2006 to 2019 are collected to support
the forecasting work. The forecasting method based on decomposition synthesis RBF is
proposed to select affecting factors and the differential evolution algorithm to optimize the
model. The long-term forecasting model is proposed to compare with the SVR model and
SARIMA model. The results show that the mean error rate of the proposed decomposition-
synthesis prediction method on the forecasting set is 26.61%, which has higher accuracy
than SVR or SARIMA.

On the other hand, the short-term forecasting method is studied. Based on the
original training set data, the SARIMA model is tested with different time series lag
periods. The results show that the forecasting accuracy of excavator sales decreases with
the increase of lag periods. In principle, the delay time is shorter, and the effect is better.
Therefore, a short-term forecasting model with a prediction step length of three periods
is established. Through the practical verification, the decomposition error rates of the
SARIMA model on the forecasting set are 17.92%, 20.02%, and 16.55%, and the SVR model
is 44.98%, 34.24%, and 28.18%. The results show that the SARIMA model has better
short-term prediction accuracy than the epsilon–SVR model.

Furthermore, the improved short-term prediction algorithm is proposed based on
the SARIMA and epsilon–SVR, and the differential evolution algorithm is applied to
optimization. Through practical verification, the decomposition error rates of the improved
short-term prediction algorithm are 13.65%, 18.83%, and 19.62%, respectively. The results
show that the prediction accuracy of the SVR–SARIMA composite model is better than
the SARIMA model. Moreover, we found that the short-term forecasting coefficients
distribution with the improved algorithm is more inclined to the SARIMA algorithm,
which showed there exists a strong autocorrelation and trend of construction machinery
market. Meanwhile, multivariate regression data are also taken into account to a large
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extent by the algorithm at the same time, which is considered to have a major impact on
the volatility and amplitude of the construction machinery market.

According to the results, the long-term and short-term forecasting methods can well
reflect monthly data changes from the trend, but the accuracy of the long-term and short-
term forecasts still needs to be improved in further studies. It is believed that the proposed
method has great value to be applied to the construction of enterprise production decision
support models. The research also has some limitations. Due to various factors affecting
the construction machinery industry, only parts of upstream and downstream industrial
factors are considered in this study. Some nonquantitative factors are failed to analyze
effectively. For further studies, the complexity of the model and the training period should
be further upgraded, and more relevant factors should be tested and quantified to improve
the performance of the model.
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