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Abstract: This article presents the sensing and safety algorithms for autonomous excavators operating
on construction sites. Safety is a key concern for autonomous construction to reduce collisions and
machinery damage. Taking this point into consideration, our study deals with LiDAR data processing
that allows for object detection, motion tracking/prediction, and track management, as well as safety
evaluation in terms of potential collision risk. In the safety algorithm developed in this study, potential
collision risks can be evaluated based on information from excavator working areas, predicted states
of detected objects, and calculated safety indices. Experiments were performed using a modified
mini hydraulic excavator with Velodyne VLP-16 LiDAR. Experimental validations prove that the
developed algorithms are capable of tracking objects, predicting their future states, and assessing the
degree of collision risks with respect to distance and time. Hence, the proposed algorithms can be
applied to diverse autonomous machines for safety enhancement.

Keywords: autonomous excavation; construction safety; IMM-UK-JPDA; excavator working area;
LiDAR; motion prediction; object tracking; safety evaluation

1. Introduction

Excavation is a major task that is performed in the construction sector. It is the
process of earthmoving, such as creating building foundations, land grading, pile driving,
highway maintenance, etc. Therefore, excavators are considered essential equipment for
any construction. With the increasing number of fatal accidents on construction sites,
researchers have conducted numerous studies to raise the issue of safety concerns. The
construction sites for excavation are dynamic as they include interactions between different
objects such as machines and workers, which can increase the chance of potential collisions
due to poor visibility, blind spots, and operator carelessness. Thus, there has been a need
for more efficient and advanced safety management to tackle such high-risk accidents.

To fully achieve autonomous operations, advanced safety systems are required to
protect the workers and construction infrastructure by gathering information from machine
dynamics (proprioceptive) and the external environment (exteroceptive) [1]. Various safety
management systems have been proposed for construction equipment to detect dangerous
proximities, alert operators and workers about these, and identify blind spots by using
sensing data obtained from RF (radio frequency) ID techniques, GPS (global positioning
system), cameras, and laser scanners [2].

During the past decade, RFID (radio frequency identification) has been the most
widely used sensor for safety management, followed by wireless, camera-based, and UWB
(ultra-wide-band) sensors [3]. The RTLS (real-time location system) developed by Lee
et al. [4], was intended to enhance worker safety using RFID tags. The implementation
of this method requires tags to be linked with the target objects and the leaving-out of
objects without tags. However, the study lacks in providing a strategy to prevent collisions.
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Another RFID-based method was proposed by [5] that utilizes RFID tags for identifying
and tracking material locations on construction sites. This approach allows for automatic
reading of tags by a supervisor. However, the reader requires a specific range of optimal
speed to move to achieve higher accuracy. Besides, it requires the installation of multiple
labels and receivers, limiting its practicality.

A computer vision-based methodology was proposed by Seo et al. [6] for construction
safety and health monitoring. However, the study lacks in determining unsafe conditions
and acts for construction sites. At the same time, magnetic-field proximity detection and
alarming techniques were proposed by Teizer [7]. Since their experiments were carried out
under limited test conditions (i.e., a flat and unobstructed outdoor surface only with one
type of vehicle (loader)), further testing is required to apply the developed safety system in
the construction sector.

Neito et al. [8] developed a safety system for preventing collisions between work-
ers and machines based on an integration of wireless networks, GPS, and 3D graphics.
However, the GPS can lose its accuracy in small and indoor places. Ref. [9] developed the
motion capture and recognition framework for safety management, which helps in achiev-
ing behavior-based monitoring for unsafe actions. In this study, the framework can collect
site videos and motion templates, extract a 3D skeleton from the videos, and detect unsafe
actions using skeleton and motion templates. 3D sensing devices such as stereo-vision
and depth cameras have been widely utilized to provide distance information from the
given 3D spatial information. However, these sensing devices have a limited detection
range and sensitivity to lighting, and thus they are not ideally suited for construction
safety management.

Kim et al. [10] considered the swing velocity and braking time of swing motion to
propose collision avoidance algorithms. A wearable device using augmented reality was
proposed by [11] to identify the hazard’s orientation and distance to workers. Since the
alarms are based on the worker’s vision, hazards out of the view may not be detected.

An object detection algorithm using a VLP-16 LiDAR was developed by Alireza
et al. [12], which used the voxel-based plane algorithm. The pedestrian detection approach
was presented by [13] through analyzing the temporal changes of grids in an occupancy
map. However, variations of the size of the detected object size in the map may influence the
performance of the tracking filter negatively. Although the study has the above limitation
and the considered application is not construction equipment, it provides a useful reference
in tracking pedestrians that can be equivalent to workers around construction machines.

Fuerstenberg [14] proposed a laser scanner-based method to detect and track pedestri-
ans. The limitation of this methodology is that its classification criteria do not cover all the
objects and may not be suitable for tracking vehicles or cyclists. The method of utilizing
video frames was proposed by [15] to detect workers and mobile machines, including
construction equipment, and to predict their motions by applying a Kalman filter. The
limitation of this study is that the proposed tracking filter works with linear states only.
A multi-object tracking and management system was proposed in [16], which integrates
the unscented Kalman filter (UKF) with joint probabilistic data association (JPDA) and
the interacting multiple model filter (IMM). A safety system that can generate warnings
to avoid collisions in the excavator was presented by [17], using 2D laser scanners and
new safety indices. However, the use of 2D laser scanners restricts the vertical position of
the detected objects. Another restriction of this method is that this type of laser scanner
allows 270 degree-FOV (field-of-view) and hence, two scanners are needed to meet the full
coverage of 360 degrees. The fusion of two laser scanners makes the system expensive and
complicated due to the integration of their data.

The majority of prior studies in the area of safety management focused on proximity-
detection and utilization of current states of the detected objects that may not be comprehen-
sive in capturing potential safety risks. For example, the proximity between construction
equipment and workers may not be used to indicate potential unsafe conditions if a manip-
ulator or vehicle remains stationary (i.e., does not move) or moves rapidly despite sufficient
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safe margins. Therefore, quantitative and predictive metrics are highly necessary to assess
unsafe conditions and potential risks in fully automated excavators.

To tackle the above issue, this study proposes 3D Lidar-based safety algorithms for
autonomous excavators that can effectively detect, track, and predict object motion around
the excavator, and then evaluate the severity of collision risks using the defined risk metric.

Section 1 describes the introduction and literature review of state-of-the-art method-
ologies. Section 2 briefly explains a framework of the proposed methodologies that covers
object tracking and safety evaluation. Section 3 presents the sensory data processing and
safety index calculations. Section 4 provides experimental results and analysis, and the
paper is concluded in Section 5.

2. Framework of Object Tracking and Safety Evaluation

The primary goal of this research is to develop a safety module with 3D Lidar to eval-
uate the severity of potential risks for an autonomous excavator with respect to time and
distance by predicting the motions of the detected objects. Figure 1 presents the framework
of this study to achieve our objectives. The framework comprises four components that
include object detection and tracking (C1), calculation of excavation working area through
kinematic analysis (C2), calculation of potential collision severity with respect to time and
distance (C3), and safety evaluation (C4).
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Figure 1. Overview of the developed predicted safety algorithm.

The first component deals with the estimation and tracking of object positions and
velocities through adopting the IMM (interacting multiple model) coupled with a UKF
(unscented Kalman filter) and JPDA (joint probabilistic data association). This algorithm
facilitates object tracking in a robust manner and the track management can automatically
assign track IDs to each detected object [16]. The reason why the IMM-UKF-JPDA approach
was selected was to handle the various motion models of different moving objects along
with non-linear states. The second part of this work is to calculate the actual and predicted
working areas of a modified mini hydraulic excavator by applying a kinematic analysis.
Using the position states of the detected objects and working areas and applying the
defined safety indices, the time and distance to a collision are estimated as the next step.

Lastly, the collision risks at the current moment were categorized into safe, warning,
and emergency based on the computed safety index values. The aforementioned algorithms
were developed in the MATLAB environment. Detailed explanations on each step are
provided in the following section.

3. Data Processing and Kinematic Analysis

The extraction and processing of sensor data are described in this section, as shown in
Figure 2. The VLP-16 LiDAR [18] (VLP-16, Velodyne Lidar, San Jose, CA, US, 2020) was
selected as the sensor used for this research as it provides a horizontal detection range of
360 degrees and a vertical range of 30 degrees, respectively. It also generates approximately
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300,000 points per second, which allows for fast and high-resolution detection. In addition,
the point cloud of each Lidar includes the information of the x, y, and z coordinates that
can be used to identify the position of the detected objects. In the study, MATLAB (R2020a,
MathWorks, Natick, MA, US, 2020) software was used to store, process, and visualize the
point cloud data. The data processing for object tracking and track management was taken
through the steps discussed below.
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3.1. Extraction of Ground Point Cloud

The raw point cloud data represents many points containing ground and non-ground
points (Figure 3a). Since our focus is on the detection of moving objects around the
excavator, the point clouds representing a ground place (earth surface) firstly need to
be eliminated from the point cloud. This is because the moving objects belong to the
non-ground points and the ground plane can act as unwanted points during the object
detection. Therefore, the extraction of these unwanted points is an essential step, and it
can also help reduce the computation load by removing them from the large quantity of
unprocessed raw data of LiDAR measurements.

In this research, the point cloud data representing the ground plane were extracted
by adopting the MSAC (M-estimator sample and consensus) algorithm as a variant of
RANSAC (random sample consensus) [19]. This is a repetitive method to estimate a model
from a given dataset containing outliers. To extract the ground points, a plane model
was fitted to the raw points cloud by the MSAC algorithm. The RANSAC algorithm can
determine the number of outliers by selecting a subset of data and fitting a model to it.

The point clouds representing non-ground points are shown in Figure 3b. After
detecting the non-ground points, the next step was to cluster the non-ground points and
detect the obstacles (Figure 3c), which is discussed in the next section.

3.2. Obstacle Points

After the removal of non-ground points, the remaining point clouds were formed into
clusters. However, these forming clusters are still computationally high, as the LiDAR has
a long detection range, thus a region of interest (ROI) was restricted by the defined radius
to solve this problem. The point cloud points inside the ROI were considered obstacle
points [20]. Clustering was carried out with the obstacle points.

3.3. Clustering and Object Detection

The Euclidean distance required for the clustering process was set to 0.4 m (minimum)
~2 m (maximum) that correspond to the averages of a human (worker) chest width and
vehicle size, respectively. Then, the only objects detected within this range were considered
for clustering. In this way, the objects that are smaller than a human and bigger than a
vehicle were ignored. As the next step, a bounding box was assigned to fit into a single
cluster that indicates a detected object. The bounding box generates the center point of
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each detected object in terms of x, y, and z coordinates. This center point was used for a
tracking filter to estimate and predict the object states.
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3.4. Object Tracking and Management

To track multiple objects around the excavator, we integrated several filters to de-
sign our tracking filter composed of IMM (interacting-multiple-model), UKF (unscented
Kalman filter), and JPDA (joint probabilistic data association filter) techniques. The reason
for choosing the integrated filters was to handle multiple models representing different
motion behaviors (IMM), estimate their non-linear states (UKF), and provide a tracking
management system that allows for multitarget tracking in clutter at the stage of the data
association (JPDA). The IMM-UKF-JPDA approach is computationally effective for recur-
sive state estimation and the mode probabilities of targets. For the implementation of
this filter, we consider model set M =

{
Mj
}r

j=1 with r = 2 meaning that the M1, constant
velocity (CV), and M2, constant turn (CT) models are considered. These two models share
a common state vector x =

[
px, vx, py, vy, pz, vz, θ, ω, l, w, h

]T consisting of bounding box
center points in the x, y, and z directions

(
px, py, and pz

)
, their corresponding velocities
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(vx, vy, and vz), and the yaw angle (θ), turn rate (ω), and the length (l), width (w), and
height (h) of a bounding box. The discrete time–state equation for the CV model is given as:

xk+1 =



px,k + vx,kTsinθk
vx,k

py,k + vy,kTcosθk
vy,k
pz,k
vz,k
θk
0
lk
wk
hk



+ uk + W1,k. (1)

and the state for the CT model is:

xk+1 =



px,k +
vx,k
ωk

(cosθk − cos(ωkT + θk))

vx,k

py,k +
vy,k
ωk

(sin(ωkT + θk)− sinθk)

vy,k
pz,k
vz,k

θk + Tωk
ωk
lk
wk
hk



+ uk + W2,k. (2)

where T is the sampling time, uk is the control input of the excavator, and both models
include a white Gaussian noise W1,k, and W2,k having a mean at zero and the covariance
matrices Q1,k and Q2,k, respectively. Such models are common for maneuvering multi-
object tracking and are extensions of the models found in [21]. Among the two models, the
common measurement model is given as:

zk =



1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



xk + Vk. (3)

with the measurement noise Vk having the covariance matrix Rk.
The next step is to estimate the probability to identify the measurements according to

the CV and CT models. The progress of the system among the models is operated on the
Markovian model transition probability matrix.

Π =

 p11 · · · pr1
...

. . .
...

p1r · · · prr

 εRr×r. (4)



Appl. Sci. 2021, 11, 6366 7 of 21

where pi,j represents the probability of mode transition. Several studies have addressed
the integration of the above filter, but this paper follows the five-step process introduced
in [21,22]. These steps include (1) interaction, (2) state prediction and measurement valida-
tion, (3) data association and tracking management, (4) mode probability update, and (5)
combination. Each step can be explained in mathematical representations as follows.

3.4.1. Interaction

In the interaction step, the initial state and covariance of the model filter are proba-
bilistically mixed with the state and covariance of the previous time step.

x̂∗j,k−1 =
r

∑
i=1

µ(i|j),k−1 x̂j,k−1,P̂∗j,k−1 =
r

∑
i=1

µ(i|j),k−1 [Pj,k−1 +
(

x̂j,k−1 − x̂∗j,k−1

)(
x̂j,k−1 − x̂∗j,k−1

)T
]. (5)

The conditional mode probabilities denoted by µ(i|j),k−1 indicate that the system’s
transition from mode i (previous time step) to mode j (current time step), and can be
calculated as:

µ(i|j),k−1 =
Pijµi,k−1

∑r
i=1 µi,k−1

. (6)

The conditional mode probabilities are dependent on the priori mode probabilities of

the current frame denoted by µ−k =
(

µ−1,k, . . . , µ−r,k

)T
. As seen in Equation (6), the conditional

mode probabilities of the current frame can be expressed using the prediction previous
frame’s probabilities, and elements of the matrix from Equation (4).

3.4.2. State Prediction and Measurement Validation

The next step is to predict the current states using the stochastic non-linear model. To
deal with nonlinearities, UKF is implemented to predict the states and covariances.

Xk−1 = [x̂?k−1 γ
√

P?
k−1 ⊕ x̂?k−1 − γ

√
P?

k−1 ⊕ x̂?k−1],

X ?
i,k = f (Xi,k−1, uk−1), i = 0, . . . , 2n,

(7)

x̂−k =
2n
∑

i=0
wm

i X ?
i,k.

P−k =
2n
∑

i=0
wc

i

(
X ?

i,k − x̂−k
)(
X ?

i,k − x̂−k
)T

+ Qk−1,

Xk =[x̂−k γ
√

P−k ⊕ x̂−k −γ
√

P−k ⊕ x̂−k ],
Ki,k = h(Xi,k, uk), i = 0, . . . , 2n,

ẑ−k =
2n
∑

i=0
wm

i Ki,k

(8)

Sk =
2n

∑
i=0

wc
i
(
Ki,k − ẑ−k

)(
Ki,k − ẑ−k

)T
+ Rk. (9)

Sigma points, Xi with i = 0, . . . , 2n are selected with a square root decomposition of
the mixed initial covariance of each filter. Each sigma point has scalar weights wm

i and wc
i

that are associated, and can be calculated as:

wm
0 =

λ

n + 1
, wc

0 =
λ

n + 1
+
(

1− α2
U + βU

)
. (10)

wm
i = wc

i =
λ

2(n + λ)
, i = 1, . . . , 2n, λ = α2

U(n + κU)− n. (11)

γ =
√

n + λ. (12)

where αU , βU , λ, and γ are the scalar parameters. The sigma points are propagated with
the system function, f. As seen in Equation (7), the sigma points are propagated using the
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transition function f, and the weighted sigma points are used to calculate the predicted
state (x̂−k ) and covariance (P−k ). Similarly, the sigma points are projected by the observation
function h in Equation (8) and then the weighted sigma points are involved in generating
the predicted measurement (ẑ−k ) and predicted measurement covariance (Sk).

A measurement is regarded valid if it falls within the following elliptical validation
gate G(γG). The validation gate of an object q is the same for all the models in M.

G(γG) =

{
yk = zk :

(
zk − ẑ−iq , k

)T
S−1

iqk

(
zk − ẑ−iq , k

)
≤ γG

}
iq := argmaxi∈M det

(
Si

k
) (13)

where iq is the index of the model in M, γG is the gate threshold, and yk is the set of
validated measurements.

3.4.3. Tracking Management and Data Association

Data association is the step of labeling each detected object with a unique ID and
associating the tracking information obtained from a LiDAR sensor that includes the
estimation/prediction of the detected object’s position/velocity, with each label. The data
association in the tracking filter was dealt with through JPDA [23], which follows the
procedure of initialization, confirmation, correction, prediction, and deletion of tracks.
Among various data association algorithms, JPDA enables the calculation of all possible
target association probability of each observation (see Equations (14)–(17)).

The ‘tentative’ label was given to a newly detected track through the data association
process; it was labeled as ‘confirmed’ if a specific track was sufficiently detected to record;
the identical ID was assigned if the same track as the current one was detected. The logic
flow [24] of JPDA starts with the division of detections from multiple sensors into multiple
groups (however, a single LiDAR was used in this study). For each sensor, the distances
from detections to existing tracks and a validation matrix were calculated by turns. After
the calculation of the validation matrix, tracks and detections were separated into clusters.

The following steps outline how to update each cluster:

• S1: Generation of feasible joint events.
• S2: Calculation of the posteriori probability of each joint event.
• S3: Calculation of the marginal probability of each detection–track pair.
• S4: Reporting of weak detections that are within the validation gate of at least

one track.
• S5: Unassigned and weak detections get new tracks.
• S6: Tracks are deleted based on the defined number of scans without detection.
• S7: All tracks are predicted to the latest time value.

To formulate JPDA, we assume to have x1
t , . . . , xN

t and z1
t , . . . , zM

t as the states of N
objects and M measurements at time t, respectively. Here, the state vector xj

t means the
position and velocity for the jth detected object and the measurements are the cluttered and
noisy detected positions observed by a sensor.

The probability of the data association, pt

(
dj

i

)
which represents the measurement

index i ε[M]0 , {0, 1, . . . , M}, is defined as follows [24].

pt

(
dj

i

)
∝

{
(1− pD)β if i = 0

pD·N
(

zi
t; x̂j

t, ∑S

)
otherwise.

(14)

where pD denotes the detection probability, β represents the density of the false detection,
x̂j

t is the prediction state of the object, ∑S is the innovation covariance matrix of the Kalman

filter, and N is the normal distribution. pt

(
dj

i

)
is assumed to be a linear Gaussian model

and its 0 value means missed or dummy detection.
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The joint data association space, Θ, defined in Equation (15) comprises all possible
combinations of measurement-to-object assignments in order that each measurement is
assigned to at most one object (A1) and each object is uniquely assigned to a measure-
ment (A2).

Θ =

{
θ =

(
dj

i

)
i∈[M]0, j∈[N}

∣∣∣∣ dj
i ∈ {0, 1}

∧
N
∑

j=1
dj

i ≤ 1, ∀i ∈ [M] for A1

∧ ∑M
j=0 dj

i = 1, ∀j ∈ [N] for A2}.

(15)

where |Θ| =: nh is the total number of joint assignments and θ represents the binary vector
that is one possible solution to the data association problem. θ ∈ Θ ⊆ BN×(M+1).

Then, the marginalized JPDA probability, qt

(
dj

i

)
over Θ can be calculated as

qt

(
dj

i

)
= ∑

θ∈Θj
i

p(θ). (16)

where

p(θ) = ∏
∀r ∈ [M]0
∀k ∈ [N]

(
pt

(
dk

r

))dk
r
. (17)

As the last step, the normalized qt

(
dj

i

)
is used to update the state of the jth detected

object.

3.4.4. Mode Probability Update

The mode probabilities are updated in this step using the best-fitting measurements
and the uniform mixture model likelihoods λj,k.

µq,k =
µ−q,kλq,k

∑r
i=1 µ−i,kλi,k

. (18)

where λq,k
asm∼= N

(
z̃q,k; 0, Sq,k

)
3.4.5. Combination

In the last step, the updated states of each filter are used to generate the final states
and covariances using the model probabilities of tracks as follows.

x̂(q,k) = ∑
i

xi,q,k µi,q,k (19)

P(q,k) = ∑
i

[
Pi,q,k + (x̂q,k − xi,q,k)(x̂q,k − xi,q,k)

T
]

µi,q,k (20)

3.5. Calculation of the Excavator’s Working Area

Figure 4 illustrates the positions of the boom, arm, and bucket links. Using the
measurements with the stroke sensors and rotational encoder, the position of each link and
the rotation of the main body were identified. Stroke sensors and the encoder were mounted
on the links of the excavator and its bottom as mentioned in Section 5. Figure 5 presents
the measurement data from each sensor. Using the information of the measured stroke
and Equations (21)–(23), the angle of each link can be computed. Then, the application of
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a kinematic analysis with the angles of links enables the calculation of the predicted and
actual working areas (see Figure 6).

θb = π − βb − αb −∅b. (21)

θa = 2π − βa − αa −∅a. (22)

θbkt = 3π − µ− αk. (23)

where µ = α + β.
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Figure 6. Working area of the excavator: (a) horizontal displacement; (b) actual/maximum/predicted working areas.

In Figure 6, P1 denotes the arm joint, P2 represents the bucket joint, P3−2 is the
midpoint of the bucket, and P3−1 shows the bucket tip, d shows the distance between the
body center (origin of the defined coordinate system) and the boom link. The maximum
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working area can be achieved by the full extension of the links that can be denoted by x3−1
(in this case, bucket tip position from the origin).

∆θi =
( .

θworking part + 3σ
)

i∆t. (24)


∆x1
∆x2

∆x3−1
∆x3−2

 =


A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44


 ∆θboom

∆θarm
∆θbucket

. (25)

where,

A11 = −lboomsin(θboom).
A21 = −lboomsin(θboom)− larmsin(θboom + θarm).

A22 = −larmsin(θboom + θarm).
A21 = −lboomsin(θboom)− larmsin(θboom + θarm).

A31 = −lboomsin(θboom)− larmsin(θboom + θarm)− lbucketsin(θboom + θarm + θbucket).
A32 = −larmsin(θboom + θarm)− lbucketsin(θboom + θarm + θbucket).

A33 = −lbucketsin(θboom + θarm + θbucket).
A41 = −lboomsin(θboom)− larmsin(θboom + θarm)− lbucket,2sin(θboom + θarm + θbucket + θbucket,in).

A42 = −larmsin(θboom + θarm)− lbucket,2sin(θboom + θarm + θbucket + θbucket,in).
A43 = −lbucket,2sin(θboom + θarm + θbucket + θbucket,in).

A12 = A13 = A23 = 0.


x1
x2

x3−1
x3−2

 =


lboomcos(θboom) + d

lboomcos(θboom) + larmcos(θboom + θarm) + d
lboomcos(θboom) + larmcos(θboom + θarm) + lbucketcos(θboom + θarm + θbucket) + d

lboomcos(θboom) + larmcos(θboom + θarm) + lbucket,2cos(θboom + θarm + θbucket + θbucket,in) + d

 (26)

xpre,p,i = xp +
i

∑
j=1

∆xp,j. (27)

where xpre,p,i is the maximum value among the predicted longitudinal displacements,
xp is the current longitudinal displacement, p = 1, 2, 3-1, and 3-2 are the current main
points of the excavator, and i denotes the prediction step (1,2, . . . , N); ∆xp,j = AJacobian∆θi.
The predicted angle of each part was calculated using Equation (24), which follows the
Gaussian distribution, having a zero mean and a standard deviation of the noise in angular
velocity. The maximum possible value of noise is 3σ. ∆t is the discrete-time increment. i is
the prediction step.

By using Equations (24) and (25), the x (horizontal position) of the point p (P1~P3-2) is
calculated as shown in Equation (26). The predicted horizontal displacements, xpre,p,i can
be generated using Equation (27). The maximum radius for the predicted working area is
chosen from the maximum value among the predicted displacements.

Figure 6 illustrates the horizontal position of p (left subfigure) and the predicted and
maximum working areas (right subfigure). One notes that the maximum working area
is defined as the maximum working limit, and therefore it does not change since it can
be measured by extending the three links fully. The actual working area is determined by
calculating the maximum values among all x components.

4. Safety Indices and Predictive Safety Evaluation

As the required safety indices for the predictive safety evaluation, time to collision
(TTC) is defined as the time required for an object to collide with the excavator. The
warning index, x, is the normalized parameter to evaluate excavator safety in terms of
distance information. To calculate the safety indices, the angle to collision, clearance, and



Appl. Sci. 2021, 11, 6366 13 of 21

distance between an object and the excavator should be calculated first. The safety indices
are calculated based on the excavator’s current states and the object’s predicted states.

4.1. Time to Collision (TTC)

TTC is computed using the current swing acceleration and maximum swing velocity.
The following equations were used to calculate TTC.

||robs|| =
√

xobj
2 + yobj

2 . (28)

θATC = tan−1

(
yobj

xobj

)
− ϕsw. (29)

c = ||robs||θATC − Bc. (30)

If θATC < 0, TTC2nd ≤ tm,

TTC =
θATC

.
θsw,k −

.
θobj,k

. (31)

If θATC ≥ 0, tm ≤ TTC2nd,

TTC =
θATC + π
.

θsw,k −
.

θobj,k

. (32)

where robj in Figure 7 denotes the object’s distance to the coordinate origin, the ob-
ject’s estimated coordinates are denoted by xob and yobj, ϕsw is the swing angle of the
excavator, θATC shows the angle to a collision, Bc is the bucket clearance, tm denotes the
predicted time to reach maximum velocity,

.
θsw,k is the swing velocity,

.
θobj,k presents the

angular velocity of a detected object, TTC2nd is the second-order TTC that represents TTC
while considering the current swing acceleration.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21 
 

between an object and the excavator should be calculated first. The safety indices are cal-

culated based on the excavator’s current states and the object’s predicted states. 

4.1. Time to Collision (TTC) 

TTC is computed using the current swing acceleration and maximum swing velocity. 

The following equations were used to calculate TTC.  

||𝑟𝑜𝑏𝑠|| =  √𝑥𝑜𝑏𝑗
2 + 𝑦𝑜𝑏𝑗

2 . (28) 

𝜃𝐴𝑇𝐶 = 𝑡𝑎𝑛−1 (
𝑦𝑜𝑏𝑗

𝑥𝑜𝑏𝑗

) − 𝜑𝑠𝑤 .  (29) 

𝑐 = ||𝑟𝑜𝑏𝑠||𝜃𝐴𝑇𝐶 − 𝐵𝑐 . (30) 

If 𝜃𝐴𝑇𝐶 < 0, 𝑇𝑇𝐶2𝑛𝑑 ≤ 𝑡𝑚,  

𝑇𝑇𝐶 =  
𝜃𝐴𝑇𝐶

 𝜃𝑠𝑤,𝑘
̇ −𝜃𝑜𝑏𝑗,𝑘

̇ . (31) 

If 𝜃𝐴𝑇𝐶 ≥ 0, 𝑡𝑚 ≤ 𝑇𝑇𝐶2𝑛𝑑,  

𝑇𝑇𝐶 =  
𝜃𝐴𝑇𝐶+𝜋

𝜃𝑠𝑤,𝑘
̇ −𝜃𝑜𝑏𝑗,𝑘

̇ . (32) 

where 𝑟𝑜𝑏𝑗  in Figure 7 denotes the object’s distance to the coordinate origin, the object’s 

estimated coordinates are denoted by 𝑥𝑜𝑏 and 𝑦𝑜𝑏𝑗 , 𝜑𝑠𝑤 is the swing angle of the excava-

tor, 𝜃𝐴𝑇𝐶  shows the angle to a collision, 𝐵𝑐 is the bucket clearance, 𝑡𝑚 denotes the pre-

dicted time to reach maximum velocity, 𝜃𝑠𝑤,𝑘
̇  is the swing velocity, 𝜃𝑜𝑏𝑗,𝑘

̇  presents the 

angular velocity of a detected object, 𝑇𝑇𝐶2𝑛𝑑 is the second-order 𝑇𝑇𝐶 that represents 

TTC while considering the current swing acceleration. 

 

Figure 7. Illustration of 𝑟𝑜𝑏𝑗, 𝑐, and 𝜃𝐴𝑇𝐶 . 

  

Figure 7. Illustration of robj, c, and θATC.



Appl. Sci. 2021, 11, 6366 14 of 21

4.2. Warning Index (x)

The warning index, x to evaluate the excavator’s working safety is defined in terms of
distance [18] and computed as:

cbr =

∣∣∣∣∣∣robj

∣∣∣∣∣∣ .
θsw

2

2αdecel,max
. (33)

csm =
∣∣∣∣∣∣robj

∣∣∣∣∣∣sin−1

 robj,current + usensor + ucontrol + dmin∣∣∣∣∣∣robj

∣∣∣∣∣∣
. (34)

x =
c− csm

cbr
(35)

where cbr is the braking distance, αdecel,max represents the maximum rotational deceleration
of the main body, csm is the safety clearance, robj,current is the current object radius, usensor is
the sensor signal noise, ucontrol is the control uncertainty, dmin is the minimum clearance.
x is the warning index, c is the distance (clearance) between an object and the excavator.
A smaller value of x indicates a higher collision risk and the excavator is required to stop
its motion when x becomes one in the defined risk metric (i.e., safety level) as shown in
Figure 8.
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4.3. Safety Levels

For this study, three safety levels, i.e., safe, warning, and emergency braking were
considered, as shown in Figure 8. The safety level is a two-dimensional parameter that is
based on the calculated values of TTC and x. Primarily, the safety level is the time and
distance to a collision.

The excavator can continue working without any risk under the safe region. Alarm
signals are generated in the warning region for an operator to recognize a hazardous
situation. Finally, immediate braking needs to be applied at maximum deceleration to
avoid any collision in the emergency region.

5. Experimental Results

A LiDAR sensor (Velodyne VLP-16) in Figure 9a was used to detect objects around the
excavator during experimental tests. Data obtained from the LiDAR was post-processed
with MATLAB whose libraries allow us real-time processing.
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The algorithms were tested on the autonomous mini excavator at AVEC lab (Ontario
Tech University) shown in Figure 9b that was modified from an existing manual type
excavator (RMD 500, Yantai Rima Machinery, Yantai, SD, China, 2020) by implementing a
HW controller (dSPACE), valve blocks, and several types of sensors.

The developed test platform excavator was comprised of three subsystems, i.e., hy-
draulic, electronic, and mechanical systems. The hydraulic subsystem consisted of electro-
hydraulic proportional valves (EHPVs), directional control valves (DCVs), a hydraulic
reservoir, hydraulic actuators, and a hydraulic pump. The electronic subsystem was com-
posed of a power supply, relay box, pressure sensors, LVDT stroke sensors (Figure 9c), and
a rotary encoder (Figure 9d). The mechanical subsystem was made up of three links (boom,
arm, and bucket) and the main body.

5.1. Experimental Test Scenario

Experiments were carried out in the presence of multiple static objects, as well as
moving ones that were walking around the excavator to represent a collision scenario.

In Figure 10, one monitored static object T2, and two moving objects, T1 and T3, are
indicated. The objects present in the ROI carry their unique labels. If an object leaves the
ROI, its corresponding label is deleted, and a new label will be assigned upon returning to
the ROI. Therefore, some labels in Figure 10 are missing because the objects that had left the
ROI did not present in the ROI anymore. As the object enters the ROI and continues to move
closer to the excavator, object detection, tracking, and safety evaluation are performed.



Appl. Sci. 2021, 11, 6366 16 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21 
 

In Figure 10, one monitored static object T2, and two moving objects, T1 and T3, are 

indicated. The objects present in the ROI carry their unique labels. If an object leaves the 

ROI, its corresponding label is deleted, and a new label will be assigned upon returning 

to the ROI. Therefore, some labels in Figure 10 are missing because the objects that had 

left the ROI did not present in the ROI anymore. As the object enters the ROI and contin-

ues to move closer to the excavator, object detection, tracking, and safety evaluation are 

performed. 

 

Figure 10. Detected multiple objects during experiments. 

Note that some points in Figure 10 are not clustered at the current time frame due to 

the issue of processing time. Therefore, these points may be in a cluster formed after a few 

frames. 

5.2. Results 

Figure 10 shows the raw point cloud data for detected objects. Note that every object 

has its unique label that helps track management to associate data to each detected object 

(𝑇1, 𝑇2, and 𝑇3). This could also help in counting the number of objects around the exca-

vator. 

Figure 11 presents the operator’s view to see the excavator and moving objects 

(𝑇1, 𝑇2, and 𝑇3) around it. The box (orange color) and fan shape (purple color) in the 

figure represent the excavator and the operator’s visible sight, respectively. The bounding 

boxes denote the objects around the excavator. The track IDs in Figures 10 and 11 are 

identical to maintain unique labels for the objects. 

Figure 10. Detected multiple objects during experiments.

Note that some points in Figure 10 are not clustered at the current time frame due
to the issue of processing time. Therefore, these points may be in a cluster formed after a
few frames.

5.2. Results

Figure 10 shows the raw point cloud data for detected objects. Note that every
object has its unique label that helps track management to associate data to each detected
object (T1, T2, and T3). This could also help in counting the number of objects around
the excavator.

Figure 11 presents the operator’s view to see the excavator and moving objects (T1, T2,
and T3) around it. The box (orange color) and fan shape (purple color) in the figure
represent the excavator and the operator’s visible sight, respectively. The bounding boxes
denote the objects around the excavator. The track IDs in Figures 10 and 11 are identical to
maintain unique labels for the objects.
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The detailed tracking results are presented in Figure 12 that includes the information
of the x, y, and z coordinates of each object. These coordinates indicate the current and
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predicted (1 s ahead) positions of the detected objects. The tracking details were utilized for
object tracking and safety evaluation. In Figure 13, the maximum and the actual working
areas of the excavator are shown. It also shows the rotation angle of the excavator, the
heading angle of tracked moving objects, and their current and predicted states.
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The current area of work represented by the inner circle was obtained by conducting
the kinematic analysis, while the maximum working area was achieved through a full
extension of three links. The safety indices were calculated based on the actual working
area. Note that T2 is the static object, and thus its predicted and current positions did
not change.

Figure 14 shows the results of the safety evaluation results computed with the safety
indices presented in Figure 8. The current states of T1 and T3 with a circle mark are in
the warning and safe regions, respectively. However, the predicted state (1 s ahead) of T1
with the × mark indicates that it is entering the emergency region, and thus the chance
of collision has highly increased. Therefore, immediate braking should be taken in 1 s to
prevent a collision accident for T1 since TTC is less than 1 s. All the detected static objects
were far from the maximum working area in the test scenario (i.e., no potential hazard
exists in this case), and thus only moving objects are included for the safety evaluation, as
seen in Figure 14. Monitoring in Figure 13 and safety evaluation in Figure 14 can work
synchronously (see the attached video clip).
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Finally, the performance of the developed safety algorithms was evaluated in terms of
prediction accuracy using the same experimental data from the test scenario in Figures 13
and 14. For this evaluation, we compared the predicted positions of the moving objects
T1 and T3 at each time frame with the actual positions 1 s after prediction. Since the
minimum Euclidean distance for clustering (i.e., the minimum size of a bounding box to
detect moving objects) was set as 0.4 m (average of a worker’s chest size), this value was
determined as a threshold to judge the success or failure of the prediction. Specifically, the
prediction is recognized as ‘success’ if the error between the predicted and actual positions
at each time frame (0.1 s) per object is smaller than the threshold value.

Table 1 includes evaluation results to show a successful operation (prediction) rate for
each object achieved by the developed algorithms. During the considered test scenario,
the successful operation rate for T1 was 85.27% to indicate that the error is less than the
threshold in 220 time frames out of the total, 258. The average error across all the time
frames (258) was 0.29 m for T1. However, the successful operation rate for T3 was slightly
lower (83.59%) than the case of T1, and its prediction accuracy was more or less increased
with the decreased average error of 0.28 m. Therefore, it is noted that the proposed
algorithms provide satisfactory performance on position prediction in most of the given
time frames.
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Table 1. Evaluation of prediction accuracy of the developed safety algorithms.

T1 T3

No. of time frames with successful predictions 220 250
No. of total time frames 258 298

Successful operation (prediction) rate, % 85.27 83.89
Average error, m 0.29 0.28

6. Conclusions

This study proposed sensing algorithms for object tracking and predictive safety
evaluation for an autonomous excavator that effectively enables us to avoid potential
collision risks between the excavator and the workers around it. Firstly, the proposed
method extracted non-ground points from raw point cloud data with 3D LiDAR. The
non-ground points were then clustered, and each cluster was fit into a bounding box that
was considered as a detected object. The positions and velocities of the detected objects
were then estimated and predicted using the integrated tracking filter where the JPDA for
multi-target tracking was coupled with UKF and IMM to improve the performance of the
tracking management by dealing with the non-linear state estimation and different motion
behaviors (i.e., constant velocity and constant turn models), respectively.

The developed algorithm can also monitor the current working areas of the excavator
and predict them to conduct safety evaluations. The defined safety indices, TTC and x
were computed through the prediction of the motion of the detected objects and calculation
of the working areas of the excavator based on kinematic analysis. The severity of potential
collision risks was defined using the safety indices.

Validations of the developed algorithms were performed with a modified mini excava-
tor having a VLP-16 3D LiDAR, LVDT stroke sensors, and a rotational encoder. Test results
indicate that the proposed predictive safety algorithms can successfully conduct tracking of
objects, predict their motion, and provide safety evaluations to prevent a collision accident.

A novel feature of the developed safety strategy is the ability to predict the future
states of both multiple objects and an excavator within a prediction horizon (i.e., 1 s
in advance) during operations. Since previous studies of construction equipment have
focused on monitoring its present state, the predictive attribute of this study, conceptualized
through a risk metric with time and distance to potential collisions, is the most significant
advance, and it will be used to control autonomous excavation equipment that requires
more elaborate and precise safety strategies. As part of the evaluation of the developed
safety algorithms, this work provides a unique methodology for defining a threshold for
judging success or failure predictions and analyzing the success rates of operations with
respect to time frame. Therefore, the study proposes an advanced safety management
framework that can be applied to many industrial applications, such as construction
equipment in transition to full automation and/or autonomy, in which predictive safety is
a prerequisite component.

As the constant velocity and constant turn models were assumed for the prediction
of the moving objects in the tracking filter, the application of the variable velocity and
random motion models will assist in improving the performance of the safety algorithms in
predicting the nonlinear motions of the objects in future work. System dynamics [25,26] can
also be considered for an extension of the current work to enhance the predictive capability
of the developed algorithms by investigating the interrelations among the factors causing
safety incidents, such as worker-machine interaction.

Excavator safety can be improved by pairing the proposed safety algorithms with the
development of sophisticated sensing algorithms or platforms that can avoid the restricted
FOV and occlusions caused by obstacles in excavation spaces. Finally, a further advantage
of state prediction is that the actuators of an autonomous excavator can be controlled in an
adaptive manner depending on the degree of potential collision risk, thereby providing
maximum productivity and safety over simply stopping the excavator.
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