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Abstract: An in-flight unmanned aerial vehicle (UAV) free-space optical (FSO) communication
channel model is proposed by considering the beam deviation of the UAV under different motion
states and the phase distortion caused by atmospheric turbulences. The influence of the different
motion states and turbulences on the communication quality is evaluated through phase screen and
Monte Carlo methods. When the average bit error rate (BER) is 10−5, the signal-to-noise ratio (SNR)
should be increased from 13 dB to 20 dB when the tilt angle of the UAV increases from 0 to 5 mrad.
An SNR of up to 20 dB is required when the variance of the wind σ2

α is 2 mrad. The performance of
the in-flight UAV FSO link can be effectively improved through spatial diversity receiving technology.
The BER of lower than 10−5 can be obtained just with an SNR of 13 dB if the spatial diversity array
with four receivers is used.

Keywords: in-flight; unmanned aerial vehicles; free-space optical communication; tilt angle; wind
resistance; spatial diversity

1. Introduction

Free-space optical (FSO) communication technology has been widely used in com-
mercial and military fields due to its advantages such as large transmission capacity, rich
spectrum resource, good confidentiality, and good directivity [1–3]. Moreover, with the
use of unmanned aerial vehicles (UAVs) gradually shifting from the military field to the
commercial and civil fields, high-speed data transmission is often needed in some special
working environments, such as terrain survey and disaster detection. For the above rea-
sons, FSO communication technology is naturally introduced into the field of UAV, so as to
establish high-speed optical communication networks in ground-to-ground and air-to-air
scenarios.

The FSO communication link between UAVs is fundamental to improve the coverage
range and networking flexibility of UAVs. In recent years, UAVs and high-altitude plat-
forms are often used as relays to support wireless long-range links between two terrestrial
stations [4,5], and the channel modeling of UAV FSO communication has also been fully
discussed [6–8]. In consideration of turbulence intensity, field angle, spatial position, point-
ing deviation, and transmitting power, a closed-form statistical channel model, which is a
mathematical statistical channel model using a finite number of standard operations of the
UAV communication has been proposed, and the above parameters have been optimized
to improve the communication quality [9,10]. At the same time, a removable lens array
has been used to change the beam divergence mechanism of the transmitter to enhance the
stability of the link [7].

However, previous studies were only limited to the communication between hovering
UAVs without considering the influence of flying and wind resistance. In hovering states,
the UAV FSO communication will only be affected by the jitter and angle deviation [9–11].
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Taking the star formation UAV group as instance, the central UAV is in the UAV hovering
state, and the rest of the UAVs fly on the same level against the central UAV [12]. During
the flight mission, the central UAV sends information to the other UAVs through FSO
communications while the tilt of UAV bodies will cause the light beam to be non-orthogonal
to the lens at the receiving end. The wind resistance is also one of the main causes of
UAV’s jitters. Therefore, an FSO communication link model between in-flight UAVs that
includes all the jitter, deviation, receiving error, and wind resistance effects is essential to
be established.

The spatial diversity technology can greatly increase the redundancy of the system by
receiving the incoherent signals at different locations and improve the stability of the link.
A receiver array with multiple isometric receivers, which combines multiple groups of
mutually independent fading signals at the receiving end is utilized in this technology, and
a strong anti-interference effect on the beam offset and light intensity fluctuation exists [13].
Equal gain combining (EGC) is a common linear combination algorithm of combining
schemes of diversity technology, which can set the weight coefficient of the signals received
in each road as 1, and merge them into one road signal to achieve signal gain [13–15]. In
this way, the sensitivity of the FSO link can be effectively improved.

In this paper, a new FSO communication channel model for the in-flight receiving UAV
is established. In consideration of the atmospheric turbulence and the tilt and jitter caused
by the UAV flight, the bit error rate (BER) and the outage probability are simulated versus
the signal-to-noise ratio (SNR), and the effect of spatial diversity technology on commu-
nication quality improvement is studied. Moreover, the improvement of communication
quality by spatial diversity technology is analyzed.

2. Theoretical Model of the In-Flight UAV FSO Communication Link

When the UAV at the receiving end is flying horizontally, the arrival angle between the
centerline of the beam and the receiving plane is not only related to the pointing deviation
caused by the jitter of the receiving end, but also needs to consider the tilt angle of the
receiving plane.

In a wireless optical communication link, the received signal at the receiving end can
be expressed as [11]:

y = hx + n (1)

where x is the signal emitted at the transmitting end and n is the additive white Gaussian
noise (AWGN). h is the channel coefficient that can be given by the following equation:

h = hthahg (2)

In Equation (2), ht is the attenuation and turbulence coefficient of the atmospheric
channel; ha represents the link interrupt coefficient, which indicates whether the spot is
detected on the detection plane; and hg is the geometric and pointing error coefficient,
which represents the position deviation between the spot center and the lens center at the
receiving end.

As for the attenuation of the optical signal by the influence of atmospheric turbulence,
the distribution of ht can be described by the Gamma-Gamma model [16]:

f (ht) =
2(αβ)

(α+β)
2

Γ(α)Γ(β)
ht

[
(α+β)

2 ]−1Kα−β

(
2
√

αβht

)
(3)

where Kn(·) is the n-th order modified Bessel function of the second kind, Γ(·) is the
Gamma function, α and β represent the effective number of the large-scale and small-scale
eddies, respectively:
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exp
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R(
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−1
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where the Rytov variance is expressed as:

σ2
R = 1.23k

7
6 C2

nL
11
6 (6)

In Equation (3), k is the wave number, C2
n is the atmospheric refractive index structural

parameter, and L is the propagation distance. In this work, the phase screen method is
used to simulate the atmospheric turbulence in the Gamma-Gamma model [17–19].

When a multi-rotor UAV is flying in a straight and horizontal flight, a small tilt will
exist between the fuselage and the y axis, as shown in Figure 1. The size of the tilt angle is
related to the speed of the UAV, which affects the link performance through the coefficient
ha. As shown in Figure 2a, assuming the UAV at the receiving end is flying horizontally,
the included angle between the central axis and the y axis is denoted as ϕ. Since the plane
of the lens at the receiving end is parallel to the central axis of the UAV, the angle between
the plane of the lens and the y axis is also ϕ. The angle between the centerline of the beam
and the perpendicular direction of the lens plane is defined as the arrival angle θa, and the
pointing deviation caused by the jitter inherent in the receiving and transmitting end is
defined as θ.
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Figure 1. Diagram of the in-flight unmanned aerial vehicle (UAV) free-space optical (FSO) communication.

Here, the UAV is assumed to fly at the same altitude, and it is reasonable to choose a
case without loss of generality to describe the relationship between θa and ϕ. As shown in
Figure 2b, the direction of the light beam is parallel to the y-z plane, and the angle between
the beam axis and the z axis is θ. According to the diffraction theory, the communication
link will be interrupted when the main lobe of the Airy disk is outside of the detection
region of the detector. In the state of horizontal flight, θa can be expressed as θa = θ − ϕ.
Therefore, the link will be interrupted when θa is larger than the receiver’s field angle θFOV .
The probability density function (PDF) of θa is given by [10]:

f (θa) =
|θ − ϕ|

σ2
r0
+ σ2

t0

exp

− (θ − ϕ)2

2
(

σ2
r0
+ σ2

t0

)
 (7)
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where σ2
to and σ2

ro are the variances of the angle deviation of the transmitter and the receiver
respectively. θ can be expressed as:

θ =

√
(θtx + θrx)

2 +
(
θty + θry

)2 (8)

where θtx and θrx represent the angle deviations of the transmitting end and the receiv-
ing end in the x direction respectively, θty and θry represent the angle deviations of the
transmitting end and the receiving end in the y direction, respectively.
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Figure 2. Schematic diagram of the receiving plane at the receiving end UAV. (a) 3D schematic
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According to the above discussion, ha has two possible values. The communication
will be interrupted when θa is greater than θFOV , i.e., ha= 0; the communication interruption
will not be induced when θa is less than or equal to θFOV , i.e., ha = 1. The value condition
of ha is given by the following equation:

ha =

{
0 θ > θFOV − ϕ or θa < −(θFOV + ϕ)

1 θ ≤ θFOV − ϕ and θa ≥ −(θFOV + ϕ)
(9)

Therefore, the probability density function (PDF) of ha is given by:

f (ha) =

[
1
2 exp(− (θFOV−ϕ)2

2
(

σ2
r0+σ2

t0

) ) + 1
2 exp(− (θFOV+ϕ)2

2
(

σ2
r0+σ2

t0

) )
]

δ(ha)

+

{
1−

[
1
2 exp(− (θFOV−ϕ)2

2
(

σ2
r0+σ2

t0

) ) + 1
2 exp(− (θFOV+ϕ)2

2
(

σ2
r0+σ2

t0

) )
]}

δ(ha − 1)
(10)

where δ(·) is the Dirac function.
In the hovering UAV optical communication, the position deviation of the transceiver

UAV, and the angle deviation of the transmitter UAV are the main factors that cause the
deviation of the center of the spot and the center of the lens. The geometric and pointing
error coefficient hg is defined as the proportion of the light intensity of the coincidental part
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of the spot and the lens to the total light intensity. Here we assume that the transmitting
UAV is hovering while the receiving UAV is yawing at the same altitude. In this case,
the UAV at the receiving end will be affected by the random lateral wind resistance in
the horizontal direction, which will cause the fuselage to wobble around the y axis, thus
causing the lens plane to be no longer orthogonal to the centerline of the beam. As shown
in Figure 3, the projection of the lens on the x-y plane becomes an ellipse instead of a circle.
At this point, the intensity of the part where the lens and spot coincide is different from
that in the hovering state.
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At a certain moment, suppose that the jitter induced by lateral wind resistance causes
the lens plane to rotate by an angle α around the y axis. The ellipse formed by the projection
of the lens on the x-y plane can be expressed as:

ξ2x2 + y2 = a2 (11)

where ξ = 1/ cos α. The long axis of the ellipse is a, and the light intensity of the Gaussian
beam section can be written as:

I(r; Z) =
2

πw2
z

exp

(
−2|r|2

w2
z

)
(12)

where r is the radial vector with r distance from the center of the light spot and wz is the
beam waist at distance Z. The position deviation between the spot center and the lens rd is
expressed as:

rd = rdr + rdt + Zθ̂t (13)

where rdr = xr + yr is the position deviation of the receiving end, rdt = xt + yt is the
position deviation of the transmitting end, Z is the transmission distance, and θ̂ = θtx + θty
is the angle deviation of the transmitting end. Therefore, the geometric and pointing error
coefficients can be expressed as:

hg =
s

A
2

πw2
z
exp
[
−2 (r+rd)

2

w2
z

]
dS

=
∫ a
−a

∫√ a2−y2

ξ2

−
√

a2−y2

ξ2

2
πw2

z
exp
[
−2

(x+xr+xt+Zθtx)
2+(y+yr+yt+Zθty)

2

w2
z

]
dydx

(14)

Equation (12) can be approximated as [20]:
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hg '
1
ξ2 A0exp

(
−2rd

2

w2
zeq

)
(15)

where A0 = [erf(υ)]2 is the ratio of the energy received by the lens to the total energy
when rd = 0, and the equivalent beam waist can be expressed as:

w2
zeq = w2

z

√
πer f (υ)

2υexp(−υ2)
(16)

where υ =
√

πa/
√

2wz and er f (·) is the error function. According to the kinetic char-
acteristic of the UAV, rdr , rdt , θt, and α all obey Gaussian distributions with zero mean

value. They can be expressed as rdr ∼ N
(

0, σ2
rp

)
, rdt ∼ N

(
0, σ2

tp

)
, θt ∼ N

(
0, σ2

to
)
, and

α ∼ N
(
0, σ2

α

)
respectively, where σ2

tp and σ2
rp are the variances of the position deviation of

the UAV at the transmitting and receiving end, σ2
to is the variance of the pointing angle

deviation of the UAV at the transmitting end and σ2
α is the variance of the jitter angle of the

UAV at the receiving end caused by the horizontal lateral wind resistance. Accordingly, rd
conditioned on θtx and θty has a Rician distribution, which can be expressed as:

f (rd|θt ) =
rd

σ2
to

exp
(
− rd

2 + θt
2Z2

2σ2
to

)
I0

(
θtZrd

σ2
to

)
(17)

where I0(·) is the modified Bessel function of the first kind with order zero. The PDF of θt
can be written as:

f (θt) =
θt

σ2
to

exp
(
− θt

2

2σ2
to

)
(18)

According to Equations (13) and (15), the PDF of hg that conditioned on θt can be
expressed as:

f
(
hg|θt

)
=

w2
zeq

4ξ2 A0σ2
to

exp
(
− θ2

t Z2

2σ2
to

)(
hg

A0

) w2
zeq

4σ2
to
−1

×I0

 θtZ
σ2

to

√
−

w2
zeq

2
ln
(

hg

A0

)(0 ≤ hg ≤ A0
)

(19)

According to Equations (3), (8), and (17), the PDF of h conditioned on θt can be
expressed as:

f (h|θt ) =

1−

1
2

exp(− (θFOV − ϕ)2

2
(

σ2
r0
+ σ2

t0

) ) + 1
2

exp(− (θFOV + ϕ)2

2
(

σ2
r0
+ σ2

t0

) )
×

∫ ∞

0

1
ht

fhg |θt

(
hg
)

fht(ht)dht (20)

Then the PDF of h can be given as:

f (h) =
∫ ∞

0
fh|θt(h) fθt(θt)dθt (21)

The outage probability of the UAV-FSO communication can be expressed as:

Pout =
∫ hth

0
f (h) dh (22)

where hth is the threshold of the channel coefficient h. When the instantaneous channel
coefficient is lower than hth, the link outage can be considered.

Considering the modulation format of quadrature phase shift keying (QPSK), the
average BER can be given by the following equation:
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Pe =
1
2

∫ ∞

0
er f c

(√
γh
2

)
fh(h)dh (23)

where er f c(·) is the complementary error function, γ is the SNR at the transmitter.
According to the above discussion, all of ht, ha, and hg can affect the signal intensity of the
receiver, and further affect the SNR of the receiver, and ultimately the BER and the outage
probability will be affected. In this paper, the influence of h on the average BER and the
outage probability is simulated by numerical Monte Carlo method.

3. Performance Analysis of the In-Flight UAV FSO Communication Link

The light carrier satisfies the Gaussian distribution. According to the previous contri-
butions and the characteristics of the real UAV FSO communications, initial parameters
are set as follows: the wavelength is 1550 nm, the beam waist is 5 mm, the radius of the
receiving aperture is 0.1 m, the transmission distance is 2 km, and the turbulent outer scale
L0 and inner scales l0 are 100 m and 0 m, respectively. Modified Von Karman model is used
to simulate the power spectral density function, in which the atmospheric refractive index
structure parameter C2

n is 5 × 10−15 m−2/3 and the transmission rate of the QSPK signal is
20 Gb/s. The simulation of system devices has been carried out using the AWGN model,
and the simulation of the error caused by the modulation process has been carried out
using the load random phase noise on the signal. The influence of atmospheric turbulence
on the signal is loaded on the optical carrier by the phase screen method.

3.1. Transmission Analysis of the FSO Communication for UAV in Straight Flight

In this section, the simulation of the FSO communication process when the receiving-
end UAV is in the state of straight flight is carried out. The influence of the fuselage
tilt angle of the UAV in horizontal and straight flights on the communication quality is
analyzed, considering the angle pointing deviation and position deviation caused by the
UAV jitter. In the simulation, setting θFOV = 40 mrad, σ2

rp = σ2
tp =1 cm, σ2

ro = σ2
to =1 mrad,

and select the tilt angles of the fuselage as 0, 5 mrad, 10 mrad, and 20 mrad, respectively.
Figure 4 shows the distribution of the optical communication channel coefficient under

different fuselage tilt angles when the UAV flies in a straight line on the same horizontal
plane. As the tilt angle of the fuselage increases, the value of the channel coefficient h
gradually becomes smaller. Therefore, the FSO communication quality between UAVs has
also deteriorated.
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As shown in Figure 5, when the UAV flies in a straight line on the same horizontal
plane, the fuselage tilt will greatly influence the communication quality. As shown in
Figure 5a, the outage probability of the UAV optical communication link increases as the
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tilt angle increases. When ϕ = 0, that is the states of UAV are similar to that with hovering,
the outage probability is close to 10−4 when the SNR is 20 dB. However, increasing the
tilt angle of the UAV to 20 mrad, the outage probability becomes greater than 10−2 under
the same SNR. In order to make the outage probability reach 10−3, the SNR should be
increased from 16 dB to more than 20 dB when the tilt angle of the UAVs increases from 0
to 10 mrad.
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As shown in Figure 5b, the BER will increase as the tilt angle of the UAV increases.
For example, when the SNR equals 20 dB, the BER will increase from 2 × 10−6 to 10−2

when the tilt angle of the UAV increases from 0 to 20 mrad. To make the average BER
reach 10−5, the SNR should be raised from 13 dB to 20 dB when the tilt angle of the UAVs
increases from 0 to 5 mrad. When the tilt angle is limited (less than 10 mrad), the UAV can
achieve reliable communication just by increasing the SNR. However, when the tilt angle
continues to increase, the communication quality will be seriously disturbed. When the tilt
angle is greater than 10 mrad, the average BER is still higher than 10−4 even if the SNR
reaches 20 dB. When the tilt angle is too large, only a small part of the light can reach the
detection area after passing through the lens, and the caused communication interruption
and symbol loss seriously limit the upper limit of the performance of the receiving system.
Therefore, even if the SNR increases, the BER does not decrease significantly. As a result,
the optical communication link between UAVs cannot be established at this time.

3.2. Transmission Analysis of the FSO Communication for UAV during Yaw Flight

The optical communication process of the receiving-end UAV in the state of yawing
flight is simulated by setting θFOV = 40 mrad, σ2

rp = σ2
tp = 1 cm, σ2

ro = σ2
to = 1 mrad.

However, the fuselage still has an angle to the y axis while the UAV is yawing. Therefore,
this simulation sets the tilt angle ϕ as 5 mrad, and the variance of the random angle
deflection around the y axis σ2

α = 0 mrad, 1 mrad, 2 mrad, and 5 mrad, respectively.
Figure 6 shows the distribution of the FSO communication channel coefficient under

different fuselage tilt angles when the UAV flies in yaw motion on the same horizontal plane.
As the wind resistance increases, the swing range of the UAV around the y axis becomes
larger. The value of the UAV FSO communication channel coefficient h gradually becomes
smaller, which means that the quality of the optical communication is getting worse.

As can be seen from Figure 7, the influence of UAVs’ jitter caused by the wind
resistance on its communication quality is less than that of the tilt angle of the fuselage. In
Figure 7a, with the increase of the random wind resistance, the outage probability of the
UAVs’ optical communication slightly increases. Under the condition that the SNR is equal
to 20 dB, the outage probability of the link increases to 10−3 when σ2

α increases from 0 to 5
mrad. With the requirement of the outage probability reaching 10−3, the SNR should be
increased from 17 dB to more than 20 dB when σ2

α increases from 0 to 5 mrad.
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In Figure 7b, the BER will also increase when σ2
α increases. At the SNR of 20 dB, the

BER will increase from 3 × 10−6 to 2 × 10−4 when σ2
α increases from 0 to 5 mrad. The effect

of the horizontal random wind resistance on the UAV FSO communication is smaller than
the influence of the tilt angle. With the requirement of the average BER reaching 10−5, the
SNR should be 15 dB, 17 dB, and 20 dB when σ2

α is 0 mrad, 1 mrad, and 2 mrad, respectively.
However, when σ2

α is 5 mrad, the average BER is still higher than 10−4 even if the SNR
reaches 20 dB. In this case, it is considered that the communication quality between UAVs is
slightly lower than the critical point of effective communication. Although communication
can be established, the link is relatively unstable.

4. In-Flight UAV FSO Communication Improvement Based on Spatial Diversity

The spatial diversity technology can effectively reduce the influence of the phase
distortion and light intensity fluctuation, so as to achieve the signal gain [13]. In the
UAV FSO link, the spatial diversity with single-in and multiple-out (SIMO) is suitable to
be adopted, as shown in Figure 8, in which each optical antenna in the receiving array
independently receives the optical signals. After coupling to the fiber, the signal will be
compensated and reconstructed by their corresponding receiver, and the equal gain merge
(EGC) algorithm will be used to merge each signal [21].
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The linear combining process for the diversity technology can be expressed as:

y =
M

∑
i=1

w̃i(t)xi(t) (24)

where xi(t) is the signal of each path, which can be expressed as:

xi(t) = ai(t) + ni(t) (25)

where ai(t) denotes the signal, and ni(t) is the noise. w̃i(t) represents the weight coefficient
of each signal in the process of merging, which can be expressed as:

w̃i(t) = wi(t)exp[jθi(t)] (26)

where the real part wi(t) represents the proportion of signals in each path, and the imagi-
nary part ejθi(t) represents the phase alignment of signals in each path to achieve coherent
combining effect. Equal-gain combining (EGC) algorithm simplifies all the weighting
coefficients to 1 and only performs phase alignment. It can both effectively improve the
SNR of the combined signal and avoid the contingency of results.

In this simulation, two and four receivers are considered respectively for comparison.
The parameters are shown as follows: the field angle θFOV = 40 mrad, the variance of
transceiver end position deviation σ2

rp = σ2
tp = 1 cm, the variances of the angular deviation

σ2
ro = σ2

to = 1 mrad, the fuselage of the tilt angle ϕ = 5 mrad, and the random angle
deflection variance around the y axis σ2

α = 1 mrad. The number of receivers in the receiving
array is 1, 2, and 4, respectively. Figure 9 shows the BER performance against the SNR,
which represents the quality of the FSO communication link.
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As shown in Figure 9, the average BER is significantly reduced compared to that
without the diversity receiving technology, and the transmission performance of the UAV
FSO system is effectively improved. Without the diversity receiving technology, the average
BER of the received signal is still higher than 10−4 under the SNR higher than 20 dB, and
the FSO communication link of the UAV is unstable. When the receiving array composed
of two receivers is used, the average BER is less than 10−4 when the SNR is higher than
15 dB. When the receiving array composed of four receivers is used, the average BER is less
than 10−4 when the SNR is higher than 10 dB. When the SNR is around 13 dB, the average
BER drops to 10−5. Therefore, it can be seen that the application of diversity receiving
technology can effectively improve the quality of communication and enhance the stability
of the link.

5. Conclusions

An in-flight UAV FSO communication channel model has been established. In addition
to the atmospheric turbulence and UAV’s jitter caused by its motor vibration, the tilt angle
and the horizontal lateral wind resistance caused by UAV’s different motion states have
also been considered. Besides, the results of FSO communication processes under different
flight states (hover state, flight state, and static state) have been compared. Analysis results
show that when the BER is required to reach 10−5, the SNR should be increased from 13 dB
to 20 dB when the tilt angle of the UAVs increases from 0 to 5 mrad. With the requirement
of the average BER reaching 10−5, the SNR should be 15 dB, 17 dB, and 20 dB when the
variance of the wind σ2

α is 0, 1, and 2 mrad, respectively. It is verified that the spatial
diversity receiving technology can effectively improve the communication quality between
UAVs. If the spatial diversity array with four receivers is used, the BER of lower than 10−5

can be obtained just with a SNR of 13 dB.
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