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Featured Application: The proposed method has been applied and landed in the ICU at Taichung
Veterans General Hospital since 2021.

Abstract: Acute kidney injury (AKI) refers to rapid decline of kidney function and is manifested by
decreasing urine output or abnormal blood test (elevated serum creatinine). Electronic health records
(EHRs) is fundamental for clinicians and machine learning algorithms to predict the clinical outcome
of patients in the Intensive Care Unit (ICU). Early prediction of AKI could automatically warn the
clinicians to review the possible risk factors and act in advance to prevent it. However, the enormous
amount of patient data usually consists of a relatively incomplete data set and is very challenging for
supervised machine learning process. In this paper, we propose an entropy-based feature engineering
framework for vital signs based on their frequency of records. In particular, we address the missing
at random (MAR) and missing not at random (MNAR) types of missing data according to different
clinical scenarios. Regarding its applicability, we applied it to establish a prediction model for future
AKI in ICU patients using 4278 ICU admissions from a tertiary hospital. Our result shows that
the proposed entropy-based features are feasible to be used in the AKI prediction model and its
performance improves as the data availability increases. In addition, we study the performance of
AKI prediction model by comparing different time gaps and feature windows with the proposed
vital sign entropy features. This work could be used as a guidance for feature windows selection and
missing data processing during the development of a prediction model in ICU.

Keywords: acute kidney injury (AKI); machine learning; entropy

1. Introduction

Acute kidney injury (AKI) is a medical term to describe rapid decline of kidney
function within seven days. The most broadly accepted definition of AKI is proposed
by Kidney Disease Improving Global Outcomes (KDIGO) [1] using serum creatinine,
a waste product of muscle considered to be an endogenous filtration marker to assess renal
function, and urine output to diagnose and define the severity of AKI. The prevalence
of AKI is estimated to be around 55–60% in intensive care units (ICU), and is associated
with an increased risk of prolonged hospital stay, renal replacement therapy, mortality,
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and high medical cost [2]. Early prediction of AKI could help clinicians to provide timely
intervention and probably avoid the grave prognosis of end-stage renal disease.

With the growth of computing power, artificial intelligence has been applied ex-
tensively in various fields from fingerprint recognition to arrhythmia prediction [3–5].
The clear and objective definition of AKI provide an ideal labelling outcome for machine
learning. Tomašev et al. [6] developed a deep learning approach for continuous prediction
of future AKI using more than 700,000 patients Electronic Health Records (EHRs) from a
multi-site dataset of US Department of Veterans Affairs. Based on their prediction model,
clinicians could be warned 48 h in advance before AKI occurrence. However, the prediction
algorithm created by Tomašev et al. consists of more than 100 features and may not be
easily applied to other hospitals where many features might have high proportion of
missing data.

Entropy, also known as Shannon’s Entropy or self-information of an event, denotes the
uncertainty and contributed information about the state of the system or data [7]. Entropy
can be interpreted as a measure of the probability distribution for the amount of missing
information [8]. The occurrence of the random event has higher information contribution
than the common event observed. Entropy has been applied in numerous research fields,
including medical, biometrics, and other real-world applications. Li et al. [9] applied
entropy analysis to Electroencephalography (EEG) data to examine its performance on
epilepsy detection. Chicote et al. [10] used fuzzy entropy and sample entropy as predictors
for Out-of-hospital cardiac arrest (OHCA). Their study showed that entropy is a reliable
predictor and outperformed other predictors. Chen et al. [11] concluded that multi-scale
entropy could potentially be an early predictor of stroke-in-evolution in ICU-admitted
non-atrial fibrillation stroke patients.

In this study, we use Random Forest (RF) machine learning algorithm to build the AKI
prediction model [12]. RF has become one of the major machine learning methods, due to
its robustness and non-linear ensemble nature and has been used in ICU early warning
system [13,14]. RF algorithm can use cross-entropy and entropy-as-loss-functions to find
the best split in a classification tree. However, directly applying it without considering the
potential impact of missing data may result in poor model performance or bias. In order
to conquer the challenges of missing data in EHRs, we take the advantages of entropy
in developing early prediction model for AKI, and focus our research question on which
data in which time windows should be included to build AKI prediction model. We
propose a novel entropy-based feature engineering framework for vital signs and navigate
the research question through finding an appropriate feature window for clinical feature
inclusion and time gap for subsequent AKI prediction.

The rest of this paper is organized as follows: Section 2 describes the methodology, re-
search material, and the proposed entropy-based feature engineering framework. Section 3
presents the machine learning experimental results using the proposed entropy-based fea-
ture engineering framework, time gap variations, and feature window variations. Section 4
provides a discussion and details the limitations of the proposed framework. Section 5
concludes this study.

2. Materials and Methods

In this section, we explain the data source, problem definition, and the proposed
entropy-based feature engineering framework.

2.1. Study Population

Taichung Veterans General Hospital (TVGH) is a tertiary teaching hospital with
112 adult ICU beds in central part of Taiwan. 24,518 adult ICU admissions between
July 2015 and December 2019 in the TVGH EHRs database were extracted for analysis.
The inclusion criteria is age over 20 years old adults. Exclusion criteria are (1) End stage
renal disease with the International Classification of Diseases Tenth Revision (ICD-10)
code assignment of N18.6. (2) Had been treated with renal replacement therapy before the
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index ICU admission. (3) Received renal replacement therapy within 24 h after index ICU
admission. (4) Stayed less than 24 h in ICU. (5) Had an invalid or missing urine output
(UO) record. After selection, 15,702 adult ICU admissions were included for final analysis.

AKI was labelled according to Section 2.2, where 9589 AKI patients and 6067 non-AKI
patients were identified, respectively. To conduct research up to 72 h before AKI occurrence,
we set additional filtering criteria for both AKI patients and non-AKI patients to ensure
EHRs are longer than 72 h of time frame. The advantage of such filtering is that it gave
us more data and longer period to study patient conditions. Additionally, by choosing a
minimal 72-h time frame in ICU for both AKI and non-AKI group, we alleviate the possible
bias in non-AKI group selection. Celi et al. [15] performed AKI mortality prediction on
MIMIC III data with the Simplified Acute Physiology Score (SAPS), also focused on patients
who survived in ICU for more than 72 h using multi-variable regression models.

We obtained a final set of 4278 patients from both groups after filtering with greater
than or equal to 72 h admission time, containing 1631 AKI patients and 2647 non-AKI
patients. Figure 1 shows the data cohort workflow.

24518
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(1) Treated with kidney dialysis treatment before admittance 

to ICU (945)

(2) Kidney dialysis treatment within 24 hours after ICU 

admission (1089)
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Figure 1. Data cohort workflow.

2.2. AKI Definition

AKI was defined, identified, and labeled according to the internationally accepted
‘Kidney Disease: Improving Global Outcomes’ (KDIGO) criteria [16], using both serum
creatinine (SCr) and UO under three conditions: (1) SCr increased by 0.3 mg/dl within
48 h; (2) SCr increased more than 1.5 times baseline within 7 days; and (3) UO was less
than 0.5 mL/kg/h over 6 h.

2.3. Problem Formulation

For this study, we formulated the primary objective to be the early prediction of AKI
as a binary classification task. Patients who developed AKI according to the KDIGO criteria
were labeled as the positive class, while patients who did not develop AKI were labeled as
the negative class. Samples were patient EHR records, with a series of vital sign values
with time stamps. Each patient had a unique patient ID, i, and unique admission ID, j,
for every ICU admission.

Formally, y = f (F) was our target function. Our goal in early AKI prediction was
to learn a function f (F) that maps a set of features F to predict the binary outcome of
y ∈ {−1, 1}, where y is equal to 1 if the patient has a positive AKI label and y with non-
AKI labels is indicated by −1. Patient i was admitted to the ICU with j as their unique
admission ID, while t denotes the timestamps. Time gap is the time between AKI onset
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and how many hours in advance before the onset do we want to predict the onset event
without available data during the gap but using the data from feature window instead.
In our study, we denote time gap as TTP = [0, 48] h before the onset. Feature window
TFW = [24, 48] is the number of hours before AKI onset, and we collect data with in this
time frame. The collected data during this TFW time is being used to predict if the patient
will have AKI onset.

Our main objective was to study the relationship between AKI onset prediction with
different time gaps and feature windows using the vital sign feature engineering framework
we developed. Specifically, we considered the following two time ranges:

1. Time gap TTP variation: The time gap from AKI onset to 48 h TTP = [0, 48] before
onset, using a feature window TFW = 24 of 24 h. In another word, we conducted a
research where the time gap TTP rolling from 0 h before onset to 48 h before onset.
Coupled with.

2. Feature window TFW variation: The feature window size from 24 h to 48 h before
onset, with a time gap of 24 h.

Figure 2 illustrates the AKI prediction task, with a sequential EHRs problem set-up,
using a feature window of 24 h versus 48 h with a time gap of 24 h. Non-AKI patients with
a feature window of 24 h were randomly selected [17]. Table 1 shows the symbols used in
this study.

Non-AKI

ICU 
admission

AKI 
onset

Feature 
window !!"

Time 
gap !#$

Setting 
time !%#

ICU 
admission 

filter

!#$
AKI

!%# !!"

!%# !!"

Figure 2. Representation of the EHRs and AKI prediction task. AKI onset prediction with feature
window variation of 24 h and 48 h with a time gap of 24 h is illustrated. Non-AKI patients with a
feature window of 24 h were randomly selected.

2.4. Input Feature

Input features were broken down into two parts: Vital signs and administration informa-
tion. Let F = (I, J, T, V) be a set of features defined by a set of n patients I = {i1, ..., in}, a set
of m admission IDs J = {j1, ..., jm}, a set of time stamps T, and a set of k vital signs Vk,t ∈ V
at time t.

Vital Signs were recorded every 2 h, including systolic blood pressure (SBP), diastolic
blood pressure (DBP), pulse pressure, oximetry, respiratory rate, pulse rate, and body
temperature. Thus, we had 7 vital sign input features in total. Each feature included
3 generated features, as detailed in Section 2.5.2, and so k was 21 in our study.
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Table 1. Notation.

Notations Definition

y = f (F) Target function
F = (I, J, T, V, L) Set of features
I Set of patients I = {i1, ..., in}
J Set of admission ID J = {j1, ..., jm}
T Set of time stamps
TTP Time gap where TTP = [0, 48] h before AKI onset
TST Setting time
TFW Feature window where TFW = [24, 48] h before AKI onset
V Set of vital signs Vk,t ∈ V
n Total number of patients
m Total number of admission IDs
k Total number of vital signs
t Time stamp
Hq(V) Entropy for Vital sign V at the qth time
H Target entropy
h Total number of possible states
D0 AKI onset
D1 24 h before AKI onset
D2 48 h before AKI onset
D3 72 h before AKI onset
Vgeneral Mean and variance of vital signs
Ventropy Entropy of vital signs
Vmerge The combination of both Vgeneral and Ventropy
Vmean Mean of vital signs
Vvariance Variance of vital signs
f w Feature window length
q q is an iterative counter denoting the qth time, where q ∈ [1, 150]
N Number of computation times

2.5. Entropy-Based Feature Engineering Framework

Model performance strongly correlates with data quality, where missing data may
result in poor performance. Hence, we proposed a novel entropy-based feature engineering
framework which is suitable for vital signs, based on their frequency of occurrence consid-
ering clinical availability. This framework was constructed through the following steps:

1. Step 1: We evaluated the setting time TST , which is the time interval between the
patient’s first admission time and their first data entry. This step is important, as the
setting time dramatically affects the portion of missing data. In another word, we
only consider data collected after setting time TST .

2. Step 2: The Shannon entropy was used to evaluate all vital signs V. This measures
the probability distribution that characterizes the amount of missing information and
data quality.

3. Step 3: We conducted missing value imputation on V. Both Steps 1 and 2 are critical
for the data quality, as it is not measured on a frequent and consistent basis; yet, vital
signs are crucial for AKI evaluation and indication. An overall workflow is shown in
Figure 3.
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Figure 3. Overall framework.

2.5.1. Setting Time

The setting time, TST , is defined as the time interval between a patient i’s EHRs
registered admission time with admission ID j and their first vital sign data entry. This
evaluation is critical, with a direct contribution to the amount of missing data and, thus,
affecting the model performance. The setting time analysis results are given in Section 3.2.
In this step, we are emphasizing the Missing not at random (MNAR) type of missing data
that was being introduced by the practical clinical administration setup.

2.5.2. Vital Sign Entropy Feature Generation

Consider a discrete vital sign variable V for vital sign feature k, which occurs with
probability P(Vk,1), ..., P(Vk,h), where h is the total number of possible states. According
to the Shannon entropy, defined in [7], the entropy H of the discrete variable V at the qth

time(q ∈ [1, 150]) can be written as follows:

Hq(V) = −
h

∑
q=0

P(Vq)logP(Vq), (1)

where f w is the feature window length. Then, h is:

h =
| f w|

4
. (2)

We propose our entropy-based vital sign feature, H, as follows:

H =
1
N

N

∑
q=0

Hq(V), where N = 150. (3)

In our setting, we set h equal to the feature window divided by 4, such that h = [6, 12].
As our feature window started at 24 h, h started at 6 and was incremented to 12 as the feature
window became longer. Let N be the number of computation times. We obtained the
numbers of 4 and N from multiple trials. Our proposed entropy feature, from Equation (3),
takes h data points from the vital signs V to calculate q times of entropy, Hq, which are then
accumulated and normalized N times to obtain our final entropy, H. The benefit of this is
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that we obtain an entropy that objectively represents the overall data. The entropy can be
regarded as another measure of the variation given feature windows.

The calculation of entropy on all vital signs V provides a quantified information
evaluation of the average uncertainty regarding the outcomes of the vital sign features,
as well as the vital sign feature qualities. It could also be interpreted as an evaluation of the
information carried by the vital signs V.

For the vital signs stated in Section 2.4, the Shannon entropy was calculated. We also
calculated the mean and variance for each vital sign V. Table 2 summarizes the feature
generation for vital signs V. Let Vgeneral denote the mean and variance of vital signs V
and Ventropy denote the entropy of vital signs of V; then, Vmerge is the combination of both
Vgeneral and Ventropy.

Table 2. Feature Generation.

Variable Type Features

Vital signs

Vital sign
SBP, DBP, Pulse Pressure, Oximetry,

Respiratory Rate, Pulse Rate, Body TemperatureMean

Variance

2.5.3. Missing Value Imputation

Table 3 shows the average portion of missing data in our data set. While the entropy
measures data quality based on probability, the amount of missing data results in missing
data in the entropy features. In this step, we focus on the Missing at random (MAR) type of
missing data as the biomedical data of patients may be documented on different frequency.
As h is the frequency required to compute a single Hq(V), if a patient has less data points
for that given feature time, we will obtain a miss in the entropy feature. Thus, also we
considered conducting missing value imputation on entropy features. Please note that
we did not compute entropy-based features on imputed vital sign data, but only on the
original data. This is how we made sure that we measured the data quality of the original
data, not the data after imputation.

Table 3. Missing data analysis in vital signs.

Missing Proportion Mean(%)

SBP DBP Pulse Pressure Oximetry Respiratory Rate Pulse Rate Temperature

Entropy 0.23(0.07) 0.23(0.07) 0.24(0.07) 11.38(0.58) 0.83(0.11) 0.11(0.04) 7.76(0.31)
Mean 0 0 0 0 0 0 0

Variance 0 0 0 0 0 0 0
Merge 0.08(0.12) 0.08(0.12) 0.08(0.12) 3.79(5.41) 0.28(0.4) 0.04(0.06) 2.59(3.69)

For vital signs features, the median was used for the entropy Ventropy and variance.
We defined a normal range for each vital signs feature, through the advice of clinicians.
The missing value imputation method for the mean and other vital signs raw data were
random imputations from the defined normal range, as shown in Table 4.
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Table 4. Missing Value Imputation.

Variable
Imputation

Method
Variable

Vital
Signs

Median Shannon entropy, Variance

Random imputation
from normal range

Mean
SBP, DBP, Pulse pressure,

Oximetry, Respiratory rate,
Pulse rate, Body temperature

3. Results

This section presents the results and analysis of the cohort, setting time, time gap
variation, and feature window variation with the proposed entropy-based framework.

3.1. Cohort Analysis

The final cohort consisted of 4278 patients, of which 1631 had AKI onset during their
ICU stay and labeled as AKI patients, while 2647 patients did not have AKI occurrence and
were labeled as non-AKI patients. The training, validation, and testing data rates were set
to 80%, 10%, and 10%, respectively. The training and validation cohort included 1492 AKI
patients and 2382 non-AKI patients, while the testing cohort included 139 AKI patients and
625 non-AKI patients.

Table 5 shows a detailed comparison of the AKI and non-AKI patients cohort analysis,
in terms of their demographics. It showed a statistical significant differences (p < 0.01) on
time span in ICU in days, age and BMI between AKI and non-AKI group. AKI group tend
to stay longer in the ICU, older in age, and had lower BMI value.

An aggregate analysis of vital sign and vasopressor medication between AKI and
non-AKI cohort are shown in Table 6. In the comparison, the AKI group had a significant
difference (p < 0.01) in vital signs, compared to the non-AKI group, except for pulse
pressure on the training and validation cohort. In the testing cohort, only respiratory rate
and pulse rate showed significant difference (p < 0.01). There were significant difference
(p < 0.01) in the vasopressor medications of vasopressin, Norepinephrine, and Epinephrine
between the AKI and non-AKI patients in training and validation sets. There were only
significant difference (p < 0.01) in Norepinephrine and Epinephrine on the testing set.

In ventilatory support, statistic differences (p < 0.01) were shown in Table 7 in
the fraction of inspired oxygen (FiO2), positive end-expiratory pressure and continuous
positive airway pressure (PEEP/CPAP), mean arterial pressure (MAP), total respiratory
rate (RR) between the AKI and non-AKI patients in training and validation sets. Mean
airway pressure (Paw), exhaled VT and exhalations volume per time unit(MV) did not
show statistic significant differences.
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Table 5. Cohort Analysis of Patient Population and Demographics.

Variable Mean Training and Validation p-Value Testing p-Value

(STD) AKI Non-AKI AKI Non-AKI

Patient
population,

N

4278 1492 2382 – 139 265 –

Time span
in ICU(days)

11.29
(12.5)

17.55
(17.42)

7.4
(5.95)

p < 0.01 ** 16.02
(10.61)

8.43
(7.85)

p < 0.01 **

Demographic
Age 60.61

(16.47)
63.78
(16.5)

58.68
(16.17)

p < 0.01 ** 63.52
(16.93)

58.54
(15.88)

p < 0.01 **

BMI 23.55
(4.95)

23.04
(4.89)

23.92
(4.9)

p < 0.01 ** 23.2
(4.1)

23.37
(5.81)

p < 0.01 **

Male 2806
(65.59%)

975
(65.35%)

1574
(66.08%)

0.64 91
(65.47%)

166
(62.64%)

0.58

Female 1472
(34.41%)

517
(34.65%)

808
(33.92%)

0.64 48
(34.53%)

99
(37.36%)

0.58

*: p < 0.05 ; **: p < 0.01.

Table 6. Cohort Analysis of Vital Signs and Medications.

Variable Training and Validation Testing

Mean (STD) All AKI Non-AKI p-Value AKI Non-AKI p-Value

Vital signs,
N

4278 1492 2382 — 139 265 —

SBP(mmHg) 131.4
(23.68)

129.69
(25.04)

132.41
(22.68)

p < 0.01 ** 130.75
(26.76)

132.23
(22.48)

0.56

DBP(mmHg) 78
(16.77)

76.51
(17.43)

78.85
(16.26)

p < 0.01 ** 76.15
(18.59)

79.59
(15.79)

0.05

Pulse pressure 53.35
(19.42)

53.18
(20.63)

53.49
(18.55)

0.62 54.6
(23.38)

52.42
(17.72)

0.29

Oximetry(%) 98.21
(2.87)

97.93
(3.45)

98.39
(2.37)

p < 0.01 ** 98.09
(3.51)

98.3
(2.92)

0.53

Respiratory rate 18.86
(3.92)

19.42
(4.36)

18.44
(3.44)

p < 0.01 ** 20.54
(5.74)

18.6
(3.49)

p < 0.01 **

Pulse rate(/min) 90.17
(19.98)

94.48
(21.12)

87.45
(18.68)

p < 0.01 ** 95.22
(21.37)

87.68
(19.24)

p < 0.01 **

Temperature(Celsius) 36.63
(0.93)

94.48
(21.12)

36.58
(0.87)

p < 0.01 ** 36.76
(1.11)

36.57
(0.82)

0.05

Medication,
Vasopressors
Vasopressin 24

(0.56%)
13

(0.87%)
7

(0.29%)
p < 0.05 * 1

(0.72%)
3

(1.13%)
0.69

Norepinephrine 826
(19.31%)

398
(26.68%)

348
(14.61%)

p < 0.01 ** 38
(27.34%)

42
(15.85%)

p < 0.01 **

Dopamine 451
(10.54%)

156
(10.46%)

253
(10.62%)

0.87 14
(10.07%)

28
(10.57%)

0.88

Epinephrine 278
(6.5%)

145
(9.72%)

102
(4.28%)

p < 0.01 ** 16
(11.51%)

15
(5.66%)

p < 0.05 *

Dobutamine 59
(1.38%)

23
(1.54%)

31
(1.3%)

0.54 2
(1.44%)

3
(1.13%)

0.79

*: p < 0.05; **: p < 0.01.

Table 7. Cohort Analysis of Ventilatory Support.

Variable Training and Validation Testing

Mean (STD) All AKI Non-AKI p-Value AKI Non-AKI p-Value

Ventilatory
Support

4287 1492 2382 – 139 265 –

FIO2
70.95

(25.87)
75.4

(26.07)
67.7

(25.27)
p < 0.01 ** 78.62

(25.33)
65.89

(24.73)
p < 0.01 **

PEEPCPAP 4.87
(1.69)

5.06
(1.78)

4.71
(1.59)

p < 0.01 ** 5.09
(1.72)

4.86
(1.71)

0.24

PAW 23.13
(6.73)

23.21
(6.72)

22.89
(6.63)

0.61 23.76
(8.1)

24.38
(6.71)

0.8

MAPS 11.62
(2.55)

11.93
(2.65)

11.34
(2.52)

p < 0.05 * 10.97
(1.47)

11.47
(2.06)

0.47

TOTRR 18.89
(5.36)

19.76
(5.8)

18.1
(4.81)

p < 0.01 ** 19.01
(5.31)

17.71
(4.74)

0.44

VTEXH 0.52
(0.11)

0.52
(0.11)

0.53
(0.11)

0.28 0.51
(0.11)

0.49
(0.13)

0.63

MVEXH 9.57
(2.8)

9.79
(3.03)

9.38
(2.61)

0.13 9.72
(2.7)

9.08
(2.16)

0.44

*: p < 0.05 ; **: p < 0.01.
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3.2. Setting Time and Missing Data Analysis Results

The setting time TST is the minimum time interval between a patient’s admission time
and their first vital sign data entry. Table 8 shows the mean setting times of Pulse pressure
(SBP, DBP), Oximetry, Respiratory rate, Pulse rate, and Temperature. As the average setting
time in most vital signs was around 3 h TST = 3, we set 3 h as our setting time in this
research. Figure 4 visualizes the averaged setting time between patient’s first vital sign data
entry and ICU admission. In other words, if the time gap of the prediction task was less
than 3 h, a lot of missing data may occur, thus affecting the model performance. In another
word, we only consider data collected after TST = 3 h of the patient’s admission time.

Table 8. Mean setting time for vital signs.

Vital Signs Mean Setting Time (h)

Pulse pressure (SBP, DBP) 2.93
Oximetry 8.39

Respiratory rate 3.00
Pulse rate 2.99

Temperature 3.05

Figure 4. Visualization plot for setting time between different vital signs.

3.3. Classification and Evaluation Criteria

Random Forest (RF) machine learning algorithm [12] was employed to compare results
between Ventropy, Vmerge, and Vgeneral , where the time gap of AKI onset to 48 h before AKI
onset and a feature window of 24 h was used. After finding the critical point in the time
gap, we used it in the feature window variation task, studying feature windows of 24 h to
48 h with a time gap of 24 h.

The RF model can predict whether a patient will have AKI onset or not during ICU
admission, by providing a probability. The probability is determined by the ratio of the
decision trees that give positive results in the total number of trees. In our RF model, we
set the number of multiple decision trees as 300 and the number of splits to 21. Ten-fold
validation was used.

The performance was evaluated using the accuracy, area under the ROC curve (AU-
ROC), and net reclassification improvement (NRI) metrics. The accuracy measures the
percentage of correctly classified samples of the total samples under a given threshold.
The AUROC evaluates the overall model performance. The NRI aims to provide an ob-
jective method to quantify improvements in categories in models [18]. It measures how
well a new model correctly reclassifies subjects that were not correctly classified in the old
model. In our case, the new model was the model with increment in time t, while the old
model for comparison was the model with prior time (i.e., t− 1). F value from F test was
conducted in order to compare the variance between two groups.
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3.4. Classification Performance with Time Gap Variation

In this section, we reveal the time gap variation TTP results. We studied the time
gap from AKI onset to 48 h TTP = [0, 48] before onset using a feature window size of
24 h TFW = 24. This is critical for identifying the most important point of time between
slight AKI signs and emerging AKI oscillation. We compared the accuracy, AUROC,
and NRI performance of Ventropy, Vmean, Vvariance, and Vmerge. The Model performance
results are shown in Figure 5. It was shown in AUROC that the Vmerge, Vmean and Vvariance,
performed steadily with different time gap variation. Ventropy performed better when time
gap is longer.

Figure 6 shows the F value from F test of AUROC along with the time gap. The F
value on AUROC showed that the peak in F value was at 30 h; namely 30 h was the point
that contributed the most information and was the turning point from slight AKI signs
to emerging AKI oscillation. Therefore, clinicians may consider the patient has higher
risk of having AKI onset. The overall model performance increased drastically, when
starting at this point in time. The trend was most obvious in NRI for both Ventropy and
Vmerge. As the NRI seeks to quantify whether a new marker provides clinically relevant
improvements in model prediction, this result indicates that when passing the critical
point of 30 h, the shorter the time gap and the more information available, the better the
models performed.

Figure 5. Visualization plot for time gap variance on AUROC, Accuracy and NRI performance.
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Figure 6. Visualization plot for time gap variance F value from F test on AUROC.

As 30 h was the critical point of time between slight AKI signs and rapid AKI oscilla-
tion, as shown in in Tables 9 and 10 , we conducted a comparison between using a time gap
of less than 30 h (after critical point, rapid AKI oscillation) and a time gap of more than
30 h (before critical point, slight AKI signs). Statistically significant differences (p < 0.01)
were observed in and Ventropy in AUROC; Ventropy and Vmerge inaccuracy, NRI and precision.
Ventropy and Vmean in Recall

Table 9. Comparison between using a time gap of less than 30 h (rapid AKI oscillation) and a time
gap greater than 30 h (slight AKI signs) on AUROC, Accuracy and NRI.

Feature
Types AUROC Mean (STD) Accuracy(%) Mean (STD) NRI(%) Mean (STD)

Time
Gap

Before
Critical
Point

After
Critical
point

p Value Before
Critical
Point

After
Critical
Point

p Value Before
Critical
Point

After
Critical
Point

p Value

Entropy 69.09
(0.82)

67.36
(0.99)

p < 0.01
**

65.66
(0.80)

64.02
(1.08)

p < 0.01
**

−0.9
(1.86)

−4.19
(2.27)

p < 0.01
**

Mean 70.81
(0.31)

70.35
(0.53)

0.07 66.01
(0.42)

65.48
(0.55)

0.06 −0.22
(1.09)

−1.29
(1.10)

0.09

Variance 67.68
(0.49)

67.67
(0.56)

0.96 64.13
(0.31)

64.18
(0.60)

0.79 0.19
(0.85)

0.17
(1.23)

0.95

Merge 75.87
(0.30)

75.58
(0.34)

0.09 70.3
(0.31)

69.89
(0.46)

p < 0.05
*

1.3
(0.30)

0.2
(0.95)

p < 0.05
*

*: p < 0.05; **: p < 0.01.

Table 10. Comparison between using a time gap of less than 30 h (rapid AKI oscillation) and a time
gap greater than 30 h (slight AKI signs) on Recall, and Precision.

Feature Types AUROC Mean (STD) Accuracy(%) Mean (STD)

Time Gap Before
Critical
Point

After
Critical
Point

p Value Before
Critical
Point

After
Critical
Point

p Value

Shannon
entropy

55.74
(0.89)

53.88
(1.44)

p < 0.01 ** 60.57
(1.04)

58.42
(1.44)

p < 0.01 **

Mean 60.82
(1.37)

59.49
(0.99)

p < 0.05 * 59.98
(0.46)

59.51
(0.69)

0.19

Variance 55.72
(1.24)

55.1
(0.94)

0.25 58.31
(0.35)

58.45
(0.82)

0.65

Merge 66.76
(0.67)

66.33
(0.99)

0.4 64.7
(0.44)

64.18
(0.58)

p < 0.05 *

*: p < 0.05; **: p < 0.01.
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3.5. Classification Performance with Feature Window Variation

For feature window variation, we varied the feature window size from 24 h to 48 h
before onset TFW = [24, 48], with a time gap of 24 h TTP = 24. The feature window
variation provided insights, in terms of clinical practice, about how much data is required
for the best prediction performance and how different features react differently to different
time windows. The model performance in the feature variation task is shown in Figure 7.
A comparison of 24 h and 48 h feature windows is shown in Tables 11 and 12.

The performance of Vmerge was the highest among all the other features, such as Vmean,
Vvariance, and Ventropy. Both the AUROC accuracy and NRI of Vmerge consistently improved
with increasing feature data availability. The longer the feature window, the more data
was available for the model to learn from. Model performance with Ventropy outperformed
Vmean when the feature window size was bigger than 28 h. The overall model performance
of Ventropy improved drastically with more data availability, as shown in Figure 7.

In terms of accuracy, we see a merging trend in performance of the proposed Ventropy
feature. We can reasonably conclude that with fewer features available, our proposed
entropy-based feature Ventropy performed better. While there the accuracy was steady in
Vmean, and there is no evidence that more data in Vvariance would make the prediction better.

Figure 7. Visualization plot for feature window variation performance, with the feature window size
varying from 24 h to 48 h before onset, with a time gap of 24 h.
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In terms of NRI, Ventropy was the highest among other features after 32 h. This implied
that the increase in feature window had a high impact on Ventropy model performance, such
that the Vvariance performance was more sensitive to the length of feature window and data
availability. The model performance of Ventropy was sensitive to the feature window size of
24 h to 36 and 38 to 48 h of feature window size. Vmean was not sensitive to feature window
variance. Similar behavior was found in Vvariance, the amount of available data was critical
to Vvariance between 24 to 30 h of feature window size In comparison, despite the fact that
Ventropy performed well, in terms of accuracy, we drew the same conclusion as for AUROC;
that is, Ventropy improved drastically with more data and a longer feature window. The NIR
showed that Ventropy is steadily sensitive to data availability.

In Tables 11 and 12 we showed an improvement comparison between feature window
size of 24 h TFW = 24 and 48 h TFW = 48. The Ventropy feature had the highest performance
improvement in AUROC, NRI, Recall and Precision. At the same time, more data may not
improve the performance of Vmean. Compared to Vvariance, more data available improves
Vmerge’s performance across all metrics.

Table 11. Comparison of 24 h and 48 h feature windows on AUROC, Accuracy, NRI.

Feature
Types AUROC (%) Accuracy (%) NRI (%)

Feature
Window 24 h 48 h Improvement 24 h 48 h Improvement 24 h 48 h Improvement

Shannon
entropy 70.01 76.8 6.79 65.82 69.33 3.5 – 8.32 8.32

Mean 72.48 71.31 −1.16 67.91 67.42 −0.48 – −0.88 −0.88
Variance 67.08 69.51 2.42 64.7 65.96 1.26 – 3 3

Merge 77.64 81.24 3.59 71.62 73.67 2.05 – 4.4 4.4

Table 12. Comparison of 24 h and 48 h feature windows on Precision and Recall.

Feature
Types Recall(%) F1-Score NRI (%)

Feature
Window 24 h 48 h Improvement 24 h 48 h Improvement 24 h 48 h Improvement

Shannon
entropy 54.55 64.59 10.03 55.37 59.32 3.94 54.96 61.84 6.88

Mean 60.56 59.28 −1.27 57.56 57.48 −0.08 59.02 58.37 −0.65
Variance 52.2 54.97 2.76 53.97 55.9 1.92 53.07 55.43 2.35

Merge 67.43 70.88 3.45 61.48 64.37 2.52 64.51 67.47 2.95

4. Discussion and Limitation

In this study, we proposed a novel entropy-based feature engineering framework for
vital signs, based on their frequency of records and clinical availability. Both quantitative
analysis of the features and data quality are taken into analysis. In addition, we conducted
feature window and time gap experiment in order to determine the best time window to
maximize the accuracy of AKI prediction in ICU.

The etiology of AKI is usually multi-factorial. Dehydration, infection, renal toxic
medications, and contrast medium injection during computed tomography scanning are
common risk factors for AKI [19]. Clinicians are usually aware of AKI only when patients’
urine output decrease or elevated serum creatinine occur. In 2014, the FDA approved a
commercial urine stress biomarker, Nephrocheck®, to be used for ICU patients for early
prediction of AKI with 12-h time gap windows in advance [20]. However, the commercial
kit is very expensive and has not been approved by other countries other than the United
States. On the other hand, we sought to integrate an AKI prediction algorithm into elec-
tronic health information system in our hospital to provide a real time AKI risk probability
for ICU patients without spending additional cost and nursing labors. To achieve this goal,
we mathematically define the EHR data availability according to different time gaps and
feature windows to apply state-of-the-art machine learning techniques.
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Compared to recent deep learning-based AKI prediction studies [6,21,22], we not only
conducted AKI prediction, but also proposed an overall framework that covers feature
pre-processing, missing value imputation, and proposed a novel entropy-based vital sign
feature engineering. Moreover, we conducted a fine-grained analysis considering both
time gap variation and feature window variation. In feature window examination, we
tested the feature window length from 24 h to 48 h before AKI onset, with a fixed time gap
of 24 h. Our results demonstrated that early AKI can be predicted, based on our proposed
vital sign entropy-based features, with a feature window of 24 h and a time gap of 24 h.
The best-performing model was obtained when using all available features with the longest
feature window. The result implies that both the frequency of clinical records and data
quality are important for AKI prediction model.

Our study has several limitations. First, our cohort is derived from a single hospital,
and the prediction algorithm has not been externally validated with other cohorts which
may limit its generalization. Second, the best feature window length and time gap length
may vary depending on the availability of the clinical records. However, our work could
still provide a practical data mining process for developing a prediction model in ICU.

5. Conclusions

We introduced an end-to-end practical framework from missing data handling, entropy-
based feature engineering, to different time gap and feature window length analysis in
an ICU data set for AKI prediction. In the missing data handling, our proposed frame-
work is able to address both the missing at random (MAR) and missing not at random
(MNAR) types of missing data in clinical practice. As RF algorithms are widely used in
various settings, our proposed method provides the practical missing data handling that
will improve model performance. We studied the relationships among different time gap
variations and feature window variations with the proposed vital sign entropy feature for
AKI prediction. This work could provide a guidance for feature windows selection and
missing data processing during the development of a prediction model in ICU.
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