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Abstract: Focusing on coronary artery disease (CAD) patients, this research paper addresses the
problem of automatic diagnosis of ischemia or infarction using single-photon emission computed
tomography (SPECT) (Siemens Symbia S Series) myocardial perfusion imaging (MPI) scans and
investigates the capabilities of deep learning and convolutional neural networks. Considering the
wide applicability of deep learning in medical image classification, a robust CNN model whose archi-
tecture was previously determined in nuclear image analysis is introduced to recognize myocardial
perfusion images by extracting the insightful features of an image and use them to classify it correctly.
In addition, a deep learning classification approach using transfer learning is implemented to classify
cardiovascular images as normal or abnormal (ischemia or infarction) from SPECT MPI scans. The
present work is differentiated from other studies in nuclear cardiology as it utilizes SPECT MPI im-
ages. To address the two-class classification problem of CAD diagnosis, achieving adequate accuracy,
simple, fast and efficient CNN architectures were built based on a CNN exploration process. They
were then employed to identify the category of CAD diagnosis, presenting its generalization capabili-
ties. The results revealed that the applied methods are sufficiently accurate and able to differentiate
the infarction or ischemia from healthy patients (overall classification accuracy = 93.47% ± 2.81%,
AUC score = 0.936). To strengthen the findings of this study, the proposed deep learning approaches
were compared with other popular state-of-the-art CNN architectures for the specific dataset. The
prediction results show the efficacy of new deep learning architecture applied for CAD diagnosis
using SPECT MPI scans over the existing ones in nuclear medicine.

Keywords: coronary artery disease; SPECT MPI scans; deep learning; convolutional neural networks;
transfer learning; classification models

1. Introduction

Coronary artery disease (CAD) is one of the most frequent pathological conditions
and the primary cause of death worldwide [1]. Described by its inflammatory nature [2],
CAD is an atherosclerotic disease usually developed by the interaction of genetic and
environmental factors [3] and leads to cardiovascular events including stable angina,
unstable angina, myocardial infarction (MI), or sudden cardiac death [4]. Coronary heart
disease (CHD) has a significant impact on mortality and morbidity in Europe, whereas
its management requires a large proportion of national healthcare budgets. Thus, an
accurate CAD (ischemia, infarction, etc.) diagnosis is crucial on a socioeconomic level.
CAD diagnosis usually requires the implementation of suitable diagnostic imaging [5,6].
In this direction, non-invasive imaging techniques are the most preferred methods for
diagnosing CAD, prognostication, selection for revascularization and assessing acute
coronary syndromes [7]. Even though they have raised the direct expenditure regarding
investigation, they are likely to reduce overall costs, leading to greater cost-effectiveness [7].

To achieve a reliable and cost-effective CAD diagnosis, a variety of modern imaging
techniques such as single-photon emission computed tomography (SPECT) myocardial
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perfusion imaging (MPI), positron emission tomography (PET), and cardiovascular com-
puted tomography (CT) have been utilized in clinical practice [8–12]. According to the
EANM guidelines [13], radionuclide MPI with the contribution of SPECT imaging is a
remarkably efficient technique regarding the CAD diagnosis [14,15].

Myocardial perfusion scintigraphy (MPS) is a well-established, non-invasive imaging
technique proven effective in diagnosing angina and myocardial infarction. Specifically,
SPECT MPI depicts the information regarding the spreading of a radioactive compound
within the heart in three dimensions and is considered the most frequently performed
procedure in nuclear cardiology [16]. Among others, it is used for predicting future
CAD events and identifying coronary artery disease severity. Regarding the detection of
myocardial ischemia, MPS outperforms ECG in terms of accuracy [7,17]. Furthermore,
applying the MPS imaging method reduces the number of angiographies, offering proper
treatment planning [18].

In the discipline of cardiovascular imaging using nuclear cardiology techniques,
Slart et al. explored the notion regarding the deployment of artificial intelligence (AI)
based on modern machine learning, focusing on methods and computational models
currently used [19]. The goal is to enhance diagnostic performance through complex
image analysis and interpretation [20]. However, image interpretation is a demanding yet
time-consuming task which relies mainly on physicians’ experience [21]. On this basis,
interpretation can be standardized with the contribution of CAD tools providing enhanced
overall objectivity. The diagnostic accuracy is also improved, whereas the diagnostic
time and healthcare costs are significantly reduced. Since there is an extensive existing
and standardized imaging database in the realm of nuclear cardiac imaging, AI becomes
the right candidate to be utilized in this domain [22]. More specifically, AI is currently
spreading throughout three main areas related to cardiac SPECT/CT and PET/CT imaging.
These involve the processes of automation of image detection and segmentation, spotting
patients suffering from obstructive coronary artery disease (CAD), and risk assessment of
coronary syndromes [23]. Overall, computer-aided diagnosis can serve as a supportive
tool that can assist not only in the realization of unusual and difficult medical cases but to
train inexperienced clinical staff too [23].

Computer-aided diagnosis is well attained through the deployment of machine learn-
ing, including deep learning algorithms, which are characterized by an extraordinary
capability for medical image interpretation in the realm of medical image analysis [24–27].
Acknowledging that deep learning has shown remarkable efficacy in visual object detection
and classification, researchers are highly intrigued by the capabilities that deep learning
tools possess for improving the accuracy of CAD classification, helping nuclear physicians
in this direction [28–30].

1.1. Deep Learning in Image Analysis

In the domain of medical imaging, deep learning is mainly implemented by convolu-
tional neural networks (CNNs) [25,31–33], which are considered an efficient and dynamic
approach for extracting features concerning image classification and segmentation tasks.
Before CNN development, this process had to be accomplished using insufficient machine
learning models or by hand. However, after their entrance into medical imaging, CNNs
could use these features that had been learned directly from the data. Among the marked
characteristics of CNNs is their capability of analyzing and classifying images, making
them powerful deep learning models for image analysis [24,25,32,34]. CNN resembles a
standard artificial neural network (ANN) in its characteristics, utilizing backpropagation
and gradient descent for training. However, more pooling layers and layers of convolutions
are present concerning its structure.

Among the most common CNNs methods in medical image analysis, there are:
AlexNet (2012): Developed by Yann LeCun et al. [35], this network has a similar archi-

tecture to LeNet [36] but consists of more filters per layer, including stacked convolutional
layers. Its specifications include 11 × 11, 5 × 5, 3 × 3 convolutions, max pooling, dropout,
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data augmentation, rectified linear unit (ReLU) activations and stochastic gradient descent
(SGD) with momentum [37]. It attaches ReLU activations after each layer, either convolu-
tional or fully connected. The deep learning boom was attributed to AlexNet, when this
architecture won the 2012 ILSVRC competition by a considerable margin. Some features
worth mentioning are the computational split among many GPUs, dropout regularization,
data augmentation, and the ReLU activation function.

ZFNet (2013): This network constitutes a minor adaptation of AlexNet and won the
2013 ILSVRC competition [38].

VGGNet16 (2014): This network incorporates 16 convolutional layers and is popular
due to its consistent structure [39]. Being similar to AlexNet, this model presents only
3 × 3 convolutions but comprises many filters. Currently, VGGNet16 is the most preferred
choice in the community for feature extraction from images. At the same time, it gave great
popularity to the notion of creating deeper networks by using smaller filter kernels [40].

GoogleNet: It involves a standard piled convolutional layer and one or more fully
connected layers [41]. Inception modules were also introduced, applying different-sized
filters to the input and concatenated in the end. This way, the module can extract different
levels of features simultaneously. Another notion introduced by GoogleNet, which won
the 2014 ILSVRC competition, was that there is a global average pooling instead of fully
connected layers in the network’s ending, reducing the model parameters.

ResNet (2015): This type of CNN architecture introduced the “identity shortcut con-
nection” to handle the well-known “vanishing gradients” issue that characterizes deep
networks. This technique revealed that extremely deep networks could use standard SGD
along with residual modules for their training [42].

DenseNet (2017): Being another important CNN architecture, DenseNet outweighs
other networks as it sorted out the gradient vanishment problem by directly connecting all
its layers. Meanwhile, feature delivery is optimized; therefore, it can make more efficient
use of it. It is a widespread technique for disease diagnosis, and more recently, it efficiently
addressed the task of cardiac disease classification, as reported in [43].

1.2. Machine Learning and Deep Learning in SPECT Nuclear Cardiology Imaging

Currently, regarding SPECT MPI, which is one of the established methods for imaging
in nuclear cardiology, researchers face the challenge of developing an algorithm that can
automatically characterize the status of the patients with known or suspected coronary
artery disease. The accuracy of this algorithm needs to be extreme due to the importance of
people’s lives. Since deep learning algorithms have the capacity to improve the accuracy of
CAD screening, they have been broadly explored in the domain of nuclear cardiovascular
imaging analysis.

ML and DL methods have both been explored to assess the likelihood of obstructive
CAD. In the context of ML algorithms for CAD diagnosis, ANN, SVM and boosted ensem-
ble methods have been investigated. In a single-center study for the detection of obstructive
CAD, ML was utilized with SPECT myocardial perfusion imaging (MPI) combining clinical
data of 1181 patients and provided AUC values (0.94 ± 0.01), which were significantly
better than total perfusion deficit (0.88 ± 0.01) or visual readout [44].

ML was also explored in the multi-center REFINE SPECT (REgistry of Fast Myocardial
Perfusion Imaging with NExt generation SPECT) registry [45]. In this study, 1980 patients of
possible CAD went through a stress/rest 99mTc-sestamibi/tetrofosmin MPI. The ML algorithm
embedding 18 clinical, 9 stress test, and 28 imaging variables from 1980 patients produced an
AUC of 0.79 [0.77, 0.80], which is higher than that regarding (TPD) 0.71 [0.70, 0.73] or ischemic
TPD 0.72 [0.71, 0.74] in the prediction of early coronary revascularization.

In [46], ANN was applied for interpreting MPS with suspected myocardial ischemia
and infarction on 418 patients who underwent ECG-gated MPS at a single hospital. The
ANN-based method was compared against a conventional automated quantification soft-
ware package. The results showed that the model based on neural networks presents
interpretations more similar to experienced clinicians than the other method examined.
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Using clinical and other quantification data, the authors of [47] deployed the boosted
ensemble machine learning algorithm and the ANN, achieving classification accuracy of
up to 90%. SVMs have been exploited in [48] and have been trained considering a group of
957 patients with either correlating invasive coronary angiography or a low possibility of
CAD. The AUC value produced for SVM classifier combining quantitative perfusion (TPD
and ISCH) and functional data was as high as 86%.

Moreover, several recent research studies explore ML and DL methods for diagnosing
CAD in nuclear cardiology using polar maps instead of SPECT MPI scans. The studies
devoted to polar maps are set out as follows: in [49], Perfex and an ANN are used with
polar maps, while in [50–52], polar maps were utilized along with DL methods. In [49],
polar maps of stress and rest examinations of 243 patients who underwent SPECT and
coronary angiography within three months were used as input images to train ANN
models. The produced AUC results of receiver operating characteristics (ROC) analysis for
neural networks was 0.74, surpassing the corresponding AUC for other physicians.

Regarding the application of DL for CAD prediction, the authors in [50] employed
deep learning, which was trained using polar maps, for predicting obstructive disease from
myocardial perfusion imaging (MPI). The outcome is an improved automatic interpretation
of MPI comparing to the total perfusion deficit (TPD). As a result, a pseudo-probability of
CAD was deployed per vessel region and per individual patient. An AUC value of 0.80
was calculated concerning the detection of 70% stenosis or higher, still outperforming TPD.
The DL procedure automatically predicted CAD from 2-view (upright and supine) polar
maps data obtained from dedicated cardiac scanners in 1160 patients, improving current
perfusion analysis in the prediction of obstructive CAD [50].

The same team of authors presented another interesting application of DL in the
prediction of CAD. A three-fold feature extraction convolutional layer joined with three
fully connected layers was deployed to analyze SPECT myocardial perfusion clinical data
and polar maps from 1638 patients [51]. These scientific works have investigated the
integration of clinical and imaging data and show how to formulate new autonomous
systems for the automatic interpretation of SPECT and PET images. The authors in [52]
proposed a graph-based convolutional neural network (GCNN) which used Chebyshev
polynomials, achieving the highest accuracy (91%) compared with other neural-network-
based methods.

Recently, authors in [53] were the first to study CAD diagnosis using solely SPECT
MPI scans in deep learning. They developed two different classification models. The first
one is based on deep learning (DL), while the second is based on knowledge to classify MPI
scans into two types automatically, ischemia or healthy, exclusively employing the SPECT
MPI scans at the input level. Performing exploitation of the well-known DL methods in
medical image analysis (such as AlexNet, GoogleNet, ResNet, DenseNet, VGG16, VGG19),
the best DL model was determined to be VGG16 with support vector machine (SVM)
deep features shallow, concerning classification accuracy. The first model to be developed
exploits different pre-trained deep neural networks (DNNs) along with the traditional
classifier SVM with the deep and shallow features extracted from various pre-trained
DNNs for the classification task. The knowledge-based model, in its turn, is focused
on converting the knowledge extracted from experts in the domain into proper image
processing methods such as color thresholding, segmentation, feature extraction and some
heuristics to classify SPECT images. First, the images were divided into six segments (A, B,
C, D, E, F), and the features were extracted from each segment to measure the shapes. Next,
a classification rule set assigned by experts was applied. The parameters were empirically
identified and fine-tuned on the training and validation images. The produced overall
2-class classification accuracy was 93% for both methods.

As has emerged from the related literature regarding SPECT MPI, PET and PET-
CT [54], a system based on deep learning provides similar performance to a nuclear
physician in standalone mode. However, the overall performance is notably improved
when it is used as a supportive tool for the physician [33,55–58]. Although SPECT MPI
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scans are of high importance for diagnosing CAD in nuclear cardiology, only one study
was reported in the literature to apply CNNs in these types of MPI images. Thus, there
is plenty of space for further research over the investigation on the advantageous and
outstanding capabilities of CNNs in the field of nuclear cardiology.

1.3. Contribution of This Research Work

According to the previous work of the authors, new, fast and powerful CNN architec-
tures were proposed to classify bone scintigraphy images for prostate and breast cancer
patients in nuclear medicine [33,56,57,59]. More specifically, an RGB-based CNN model
has been proposed to automatically identify whether a patient has bone metastasis or
not by viewing whole-body scans. The results showed the superior performance of the
RGB-CNN model against other state-of-the-art CNN models in this field [56,57]. Based on
the advantageous features of the model, such as robustness, efficacy, low time cost, simple
architecture, and training with a relatively small dataset [57], along with the promising
results, authors were driven to study further and test the generalization capabilities of this
methodology. This research work investigates the performance of the new models, apply-
ing them in nuclear cardiology, making the necessary parameterization and regularization
to address the recognition of myocardial perfusion imaging from SPECT scans of patients
with ischemia or infarction. Hence, the objectives are: (i) to diagnose cardiovascular disease
by exploring efficient and robust CNN-based methods and (ii) to evaluate their perfor-
mance, in line with SPECT MPI scans. A straightforward comparative analysis between the
proposed RGB-based CNN methods with state-of-the-art deep learning methods, such as
VGG16, Densenet, Mobilenet, etc., found in the literature was also conducted to show their
classification performance. The produced results reveal that the proposed deep learning
models achieve high classification accuracy with small datasets in SPECT MPI analysis and
could show the path to future research directions with a view to a further investigation of
the classification method application to other malignant medical states.

Overall, the innovation of this paper which highlights its contribution is two-fold:
(a) the application of a predefined CNN-based structure, namely RGB-CNN [56,57], which
was recently proposed in bone scintigraphy after a meticulous exploration analysis on its
architecture and (b) the implementation of a deep learning classification model utilizing
transfer learning for improving CAD diagnosis. The produced fast, robust and highly
efficient model, in terms of accuracy and AUC score, can be applied to automatically
identify patients with known or suspected coronary artery disease by looking at SPECT
MPI scans.

This work is structured as follows: Section 2 includes the methods and materials used
in this study. Section 3 provides the proposed deep learning architectures for SPECT MPI
classification. In Section 4, a rigorous analysis is conducted, including the exploration
of different configurations to determine the most accurate of the proposed classification
models. Finally, the discussion of results and the conclusions follow in Section 5.

2. Materials and Methods
2.1. Patients and Imaging Protocol

The dataset used in this study corresponds to a retrospective review that includes
224 patients (age 32–85, average age 64.5, 65% men and 55% CAD), whose SPECT MPI
scans were issued by the Nuclear Medicine Department of the Diagnostic Medical Center
“Diagnostiko-Iatriki A.E.”, Larisa, Greece. The dataset consists of images from patients
who had undergone stress and rest SPECT MPI on suspicion of ischemia or infarction
concerning the prediction of CAD between June 2013 and June 2017. The participant
patients went through invasive coronary angiography (ICA) 40 days after MPI.

The set of stress and rest images collected from the records of 224 patients constitute
the dataset used in this retrospective study. The dataset includes eight patients with
infarction, 142 patients with ischemia, and eight patients with both infarction and ischemia,
while the remaining (61 patients) were normal. Indicative image samples are illustrated in
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Figure 1. This dataset is available only under request to the nuclear medicine physician
and only for research purposes.
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(c) healthy).

A 1-day stress–rest injection protocol was used for Tc-99m tetrofosmin SPECT imag-
ing. Patients underwent either symptom-limited Bruce protocol treadmill exercise testing
(n = 154 [69%]) or pharmacologic stress (n = 69 [31%]) with radiotracer injection at peak
exercise or during maximal hyperemia, respectively.
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Within 20 min after an injection of 7 to 9 mCi 99mTc-tetrofosmin, stress SPECT images
were collected due to either an effort test or pharmacological stress with dipyridamole.
In the case of the effort test, a treadmill test was performed. The Bruce protocol was
employed, and when at least 85% of the age-predicted maximum heart rate was achieved,
a 99mTc-tetrofosmin injection was provided to the patient, whereas the exercise stopped
1 min later. Rest imaging followed 40 min after a dose of 21–27 mCi 99mTc-tetrofosmin had
been injected. The data collected from SPECT system came from 32 projections regarding a
period of 30 s for the stress and 30 s for the rest SPECT MPI. The rest of the configurations
regarded a 140 keV photopeak, a 180-degree arc and a 64 × 64 matrix.

2.2. Visual Assessment

The assignment of patients’ scanning was delivered by a Siemens gamma camera
Symbia S series SPECT System (by dedicated workstation and software Syngo VE32B,
Siemens Healthcare GmbH, Enlargen, Germany) comprising two heads that include low
energy high-resolution (LEHR) collimators. The Syngo software was utilized for the
Standard SPECT MPI processing allowing the nuclear medicine specialist to automatically
produce SA (short axis), HLA (long horizontal axis), and VLA (long vertical axis) slices from
raw data [55]. Afterwards, two expert readers with considerable clinical expertise in nuclear
cardiology (N. Papandrianos, who is the first author of this work and N. Papathanasiou,
who is Ass. Professor in Nuclear Medicine, University Hospital of Patras), provided visual
assessments solely for the series of stress and rest perfusion images in color scale, though
not including functional and clinical data [18]. The case is labeled as normal when there is
a homogeneous involvement of 99mTc-tetrofosmin in the left ventricular walls.

On the contrary, a defect is defined when radiopharmaceuticals are less involved
in any part of the myocardium. A comparative visual analysis is conducted, including
the images collected after the stress SPECT MPI and those after the rest SPECT MPI,
respectively. Potential defects are identified as a result of the injected radiopharmaceutical
agent or even exercise. In this context, the condition is described as ischemia when a
perfusion defect was detected in the SPECT images obtained after exercise but not in the
rest images. Instead, infarction is the condition in which both stress and rest images include
evidence of the defect. The classification process of all SPECT MPI images carried out by
expert readers utilizes a two-class label (1 denotes normal and 2 abnormal) to administer
additional tasks [53].

2.3. Overview of Convolutional Neural Networks

Convolutional neural networks are among the most dominant deep learning method-
ologies since they are designated as techniques with a remarkable capacity for image
analysis and classification. Their architecture is originated from the perceptron model in
which a series of fully connected layers is established, and all neurons from consecutive
layers are individually interconnected. A detailed description of all different types of
layers follows.

Concerning the first layer in the architecture, the “convolutional” layer is named after
the type of neural network. Its role is substantial for CNNs since this layer is responsible for
the formation of activation maps. In particular, specific patterns of an image are extracted,
helping the algorithm detect various characteristics essential for image classification [34,60].
Then, a pooling layer follows, whose duty is image downsampling, whereas any unwanted
noise that might fuzzy the algorithm is appropriately discarded. This layer retains the
set of pixel values that exceed a threshold optimally defined, rejecting all the remaining.
For this process, the elements within a matrix that are in line with specific requirements
concerning the maximum or average value are correctly selected.

The last part of a CNN architecture comprises one or more fully connected layers
assigned for the “flattening” of the previous layer’s output every time. This is considered
as the final output layer, which takes the form of a vector. According to the values of the
outcome vector, a specific label is assigned by the algorithm to every image. On the whole,
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the set of the fully connected layers are classified into distinct subcategories emanated from
their role. For instance, the vectorization is attained by the first layer, whereas the category
of each class given is defined by the final layer [61,62].

Concerning the activation function in the CNN models, the rectified linear unit (ReLU)
is deployed in all convolutional and fully connected layers, while the sigmoid function
serves as the final most common activation function in the output nodes [62]. It is worth
mentioning that selecting the most suitable activation function is crucial and dependent on
the desired outcome. The Softmax function can be efficiently utilized for the multiclass clas-
sification task. It has the ability to target class probabilities through a normalization process
conducted on the actual output values derived from the last fully connected layer [62].

2.4. Methodology

This work discusses the recently proposed RGB-CNN model as a new efficient method
in scintigraphy/ nuclear medical image analysis, regarding its application on the classifica-
tion of SPECT MPI scans in coronary artery disease patients. This two-class classification
task involves the cases of ischemia or infarction presence as well as those being labeled
as normal in a sample of 224 patients. It particularly involves three distinctive processes,
which are pre-processing, network design and testing/evaluation. These stages have
been previously presented in common publications (see [30,50,53]). The pre-processing
step consists of data normalization, data shuffle, data augmentation and data split into
training, validation and testing. Data augmentation involves specific image processes such
as range, enlargement, rotation and flip. The augmentation process is conducted before
its entrance into the exploration and training of CNN. Concerning data split, the training
dataset regards 85% of the provided dataset of 275 MPI images, whereas the remaining 15%
is used for testing purposes. Next, the network design stage deals with the construction
of a proper architecture through an exploration process. Then, the testing phase follows,
utilizing the best CNN model derived. In the final stage, the produced CNN model is
tested using unknown to the model data.

Likewise, the respective classification approach is deployed for the tasks of image
pre-processing, network training and testing, and is applied to the new dataset. The process
for the examined dataset of SPECT MPI scans is visually represented in Figure 2.
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3. Methodology
3.1. RGB-Based CNN Architecture for Classification in Nuclear Medical Imaging

In this research study, we apply an efficient and robust CNN model, the RGB-CNN
(proposed in a recent study in the domain of bone scintigraphy), to precisely categorize MPI
images as normal or abnormal suffering from CAD. The developed CNN will demonstrate
its capacity for high accuracy utilizing a fast yet straightforward architecture regarding
MPI classification. A number of experiments were performed for different values of
parameters, like pixels, epochs, drop rate, batch size, number of nodes and layers as
described in [56–58]. Then, appropriate features are extracted and selected manually,
following the most common classic feature extraction techniques. On the other hand,
CNNs that resemble ANNs, achieve automatic feature extraction by applying multiple
filters on the input images. Next, they proceed in selecting the most suitable for image
classification through an advanced learning process.

A deep-layer network is constructed within this framework, embodying five convolutional-
pooling layers, two dense layers, a dropout layer, followed by a final two-node output layer
(see Figure 3).
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The dimensions of the input images vary from 250 × 250 pixels to 400 × 400 pixels.
According to the structure of the proposed CNN, the initial convolutional layer includes
3 × 3 filters (kernels) followed by a 2 × 2-sized max-pooling layer and a dropout layer
entailing a dropout rate of 0.2. The first convolutional layer is formed by 16 filters, whereas
each layer that follows includes a double number of filters compared with the previous
one. The same form is followed by the max-pooling layers that come next. A flattening
operation is then utilized to transform the 2-dimension matrices to 1-dimension arrays
so that they are inserted into the hidden dense layer of 64 nodes. The role of the dropout
layer that follows is to randomly drop the learned weights by 20% to avoid overfitting. The
output two-node layer comes as last in the proposed CNN model architecture.

The most common function utilized by CNNs is ReLU, which is applied to all convolu-
tional and fully connected (dense) layers. In the output nodes, the categorical cross-entropy
function is applied. The algorithm is tested through multiple runs by trying a different
number of epochs varying from 200 to 700 to fully exploit the most valid number of epochs
for CNN training. In this context, the ImageDataGenerator class from Keras is used, pro-
viding specific augmentation tasks over images, such as rotation, shifting, flipping and
zoom. Finally, the categorical cross-entropy function is considered as a performance metric
applied for the calculation of loss. It employs the ADAM optimizer, an adaptive learning
rate optimization algorithm [36].
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3.2. Deep Learning Models, Including Transfer Learning for CAD Classification in
Medical Imaging

In this subsection, we introduce the process followed in this study on applying
deep learning architectures, including transfer learning for benchmark CNN models in
CAD diagnosis.

In deep learning model development, the traditional pipeline is the neural network
training from scratch, which depends highly on the size of the data provided. Transfer
learning is an alternative, most preferred and used process in developing deep learning
architectures [63]. This process offers the capability to sufficiently employ the existing
knowledge of a pre-trained CNN through the use of ImageNet dataset so as to result in
competent predictions.

For an accurate classification process, an improved model training process is required,
which derives from the incorporation of transfer learning during the training phase of
the proposed CNN architectures. More specifically, the ImageNet [63,64] dataset needs
to be utilized for network pre-training, thus resulting in accurate classification of medical
SPECT myocardial perfusion imaging scans into two categories, namely normal and
abnormal (patient with ischemia or infarction). According to the relevant literature, the
ImageNet dataset is employed by the popular CNN methods for model pre-training and
includes 1.4 million images with 1000 classes. Based on this pre-training process, VGG16
and DenseNet models are trained to extract particular features from images through the
assignment of constant weights on them. The number of the weight layers affects the depth
of the model, along with the steps needed for feature extraction.

The training dataset, representing 85% of the provided dataset of 224 SPECT MPI
images, is loaded into the pre-trained models after undergoing a proper augmentation
process. Hence, an improved CNN model is produced, which is inserted into the next
testing phase. The remaining 15% of the provided dataset is accordingly incorporated into
the evaluation process. The proposed transfer learning methodology of the state-of-the-
art CNN models is graphically presented in Figure 4, regarding the examined dataset of
224 patients.
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Following the process in which the benchmark CNN model is selected for the classifi-
cation task, the exploration and identification of suitable, robust and efficient architectures
of these CNN models come next for the specific problem solving, which concerns the
identification of the correct category of CAD diagnosis. On this basis, the fine-tuning of the
model parameters and the configuration of several other hyperparameters were success-
fully attained through a thorough investigation regarding the appropriate deep learning
architecture. For comparison purposes, various common deep learning architectures such
as Densenet, VGG16, Mobilienet and InceptionV3 were investigated.

4. Results

This study attempts to address this image classification problem considering the
classification of images into 2 categories: normal and abnormal (ischemic or infarction
patient cases). The classification processes were individually repeated 10 times to produce
the overall classification accuracy.

All the simulations were performed in Google Colab [65], a cloud-based environment
that supports free GPU acceleration. The Keras 2.0.2 and TensorFlow 2.0.0 frameworks
were utilized to develop the employed deep learning architectures. Image augmentations
(like rotations, shifting, zoom, flips and more) took place only during the training process of
the deep networks and were accomplished using the ImageDataGenerator class from Keras.
The investigated deep learning architectures were coded in the Python programming
language. Sci-Kit Learn was used for data normalization, data splitting, calculation of
confusion matrices and classification reports. It should be noted that all images produced
by the scanning device and used as the dataset in this research were in RGB format,
providing 3-channel color information.

4.1. Results from RGB-CNN

In this study, a meticulous CNN exploration process regarding the deep learning
architectures of RGB-CNN was accomplished. In particular, an experimental analysis was
conducted, where various drop rates (between 0.1–0.9), epochs (200 to 700), number of
dense nodes (like 16–16, 32–32, 64–64, 128–128, 256–256, 512–512 and 1024–1024), pixel sizes
(from 200 × 200 × 3 up to 450 × 450 × 3) and batch sizes (8, 16, 32 and 64) were tested. To
prevent overfitting [62] in the proposed deep learning architectures, the authors conducted
an exploratory analysis for different dropouts and numbers of epochs. According to the
conducted analysis results, a dropout value of 0.2 and the set of 500 epochs were adequate
to produce satisfactory results for the investigated RGB-CNN architecture.

Moreover, an exploration analysis involving the testing of various pixel sizes was
conducted. The best pixel size of the input images was determined as regards the clas-
sification accuracy and loss. Figures 5 and 6 illustrate the produced results in terms of
accuracy for the examined pixel sizes, for both CNN-based architectures. These figures
foster the successful selection of the appropriate pixel size for each architecture which is
250 × 250 × 3 for RGB-CNN.

Following this exploration process, several configurations, including dropout = 0.2
and three batch sizes (8, 16 and 32), various pixel sizes and dense nodes in RGB-CNN
model consisting of 5 layers (16–32–64–128–256) were investigated. Tables 1–3 illustrate
the results produced for the relevant pixel sizes for the well-performed batch sizes of 8, 16
and 32. These results helped in the selection of the most appropriate pixel size, which is
250 × 250 × 3.

As regards the two dense blocks that are the last ones in both architectures, a rigorous
exploration process was performed to determine the best configuration in terms of accuracy
(validation and testing) and loss. The results are depicted in Figures 3 and 4 regarding
4 and 5 convolutional layers, respectively. Looking at the specific figures, it emerges that
64–64 is the optimum combination for the CNN model.
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Figure 5. RGB-CNN architecture with 4 layers, various dense nodes and batch sizes for CAD
classification problem.
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Figure 6. RGB-CNN architecture with 5 layers, various dense nodes and batch sizes for CAD
classification problem.

Table 1. Results for various pixel sizes and dense nodes in RGB-CNN with 5 layers (16–32–64–128–256), dropout = 0.2 and
batch size = 8.

Pixels Dense Nodes Val. Acc. Val. Loss Test Acc. Test Loss AUC Time (s)

200 × 200 × 3 32–32 90.12 0.25 89.7 0.31 0.916 890
64–64 93.41 0.2 92.64 0.21 0.935 831

128–128 89.05 0.36 89.21 0.33 0.871 860

250 × 250 × 3 32–32 94.72 0.16 93.62 0.12 0.926 1125
64–64 92.53 0.25 93.47 0.13 0.921 1116

128–128 82.89 0.44 80.87 0.18 0.845 1043

300 × 300 × 3 32–32 90.78 0.17 88.23 0.28 0.9025 1736
64–64 85.3 0.36 86.47 0.29 0.893 1641

128–128 86.84 0.45 73.52 0.69 0.716 1469

350 × 350 × 3 32–32 78.94 0.51 70.58 0.61 0.78 2200
64–64 80.52 0.47 68.35 0.62 0.765 2221

128–128 74.21 0.57 65.43 0.71 0.711 2185
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Table 2. Results for various pixel sizes and dense nodes in RGB-CNN with 5 layers (16–32–64–128–256). dropout = 0.2 and
batch size = 16.

Pixels Dense
Nodes Val. Acc. Val. Loss Test Acc. Test Loss AUC Time (s)

200 × 200 × 3 32–32 92.73 0.183 92.15 0.24 0.885 748
64–64 92.53 0.24 93.13 0.265 0.948 679

128–128 91.72 0.23 89.91 0.22 0.885 674

250 × 250 × 3 32–32 94.73 0.12 91.17 0.22 0.769 990
64–64 91.21 0.235 90.36 0.26 0.873 971

128–128 92.1 0.195 90.3 0.21 0.898 1089

300 × 300 × 3 32–32 94.73 0.158 91.66 0.21 0.920 1547
64–64 91.42 0.24 91.905 0.183 0.93 1387

128–128 92.03 0.19 92.01 0.218 0.915 1409

350 × 350 × 3 32–32 88.46 0.31 87.74 0.29 0.871 1854
64–64 89.47 0.325 91.17 0.198 0.887 1856

128–128 92.1 0.185 92.01 0.205 0.914 1910

Table 3. Results for various pixel sizes and dense nodes in RGB-CNN with 5 layers (16–32–64–128–256). dropout = 0.2 and
batch size = 32.

Pixels Dense
Nodes Val. Acc. Val. Loss Test Acc. Test Loss AUC Time (s)

200 × 200 × 3 32–32 87.71 0.323 92.15 0.31 0.935 630
64–64 90.34 0.33 91.9 0.3 0.931 790

128–128 93.82 0.18 92.04 0.245 0.923 707

250 × 250 × 3 32–32 90.78 0.2 91.17 0.21 0.855 1110
64–64 89.91 0.253 93.12 0.187 0.921 1065

128–128 89.47 0.263 89.69 0.305 0.909 1039

300 × 300 × 3 32–32 88.59 0.29 90.19 0.276 0.917 1440
64–64 89.46 0.224 91.15 0.24 0.907 1569

128–128 92.1 0.21 91.37 0.2 0.914 1573

350 × 350 × 3 32–32 87.28 0.26 88.57 0.23 0.898 1650
64–64 90.78 0.38 86.77 0.42 0.854 2077

128–128 89.47 0.295 91.17 0.245 0.898 1980

Next, for the selected pixel size (250 × 250 × 3), different batch sizes (8, 16 and
32) with various configurations in dense nodes were investigated, also utilizing the
two previously best-performed architectures concerning the number of convolutional
layers (which are 16–32–64–128 and 16–32–64–128–256), as presented in recent research
studies [56–58]. The outcomes of this exploration are presented in Figures 5 and 6. These
figures show that the best CNN configuration corresponds to batch size 8, five convolu-
tional layers (16–32–64–128–256) and dense nodes 32–32. It emerges that dense 32–32 is
the most suitable configuration concerning the dense nodes.

Figure 7 shows the accuracy, loss and AUC values for various dense nodes regarding
the best batch size (8) and the number of convolutional layers (16–32–64–128–256).

Additionally, further exploration analysis was performed for various numbers of con-
volutional layers. Some indicative results are presented in Figure 8. It is observed that the
model was able to increase its classification accuracy for 5 convolutional layers significantly.
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To sum-up, the best RGB-CNN architecture with this problem is: pixel size (250× 250× 3),
batch size = 8, dropout = 0.2, conv 16–32–64–128–256, dense nodes 32.32, epochs = 500 (average
run time = 1125 s).

In addition, Table 4 depicts the confusion matrix of the best VGG16 architecture.
Figure 9 illustrates the classification accuracies (validation and testing) with their respective
loss curves for the proposed RGB-CNN architecture. Figure 10 depicts the diagnostic
performance of RGB-CNN model in SPECT MPI interpretation assessed by ROC analysis
for CAD patients.

In the proposed method, the early stopping condition for RGB-CNN was investigated
considering 100 epochs, thus providing adequate accuracy, higher than that of the other
CNNs. In particular, the produced accuracy for early stopping was approximately 89% in
most of the examined runs. However, using the minimum error stopping condition, the
capacity of the algorithm was explored, increasing the accuracy of the RGB-CNN model
up to 94% approximately. Figure 9a illustrates the precision curves presenting a smooth
change in accuracy for the proposed model.

Table 4. Best confusion matrix for the proposed RGB-CNN.

2-Classes Abnormal Normal

Abnormal 26 0
Normal 1 7
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4.2. Results from Deep Learning Architectures Applying Transfer Learning and
Comparative Analysis

In this subsection, the second deep learning classification approach of CAD patients
using transfer learning was implemented, followed by a comparative analysis. Following
the process discussed in Section 2.4, transfer learning was utilized employing several pre-
trained CNN models, avoiding training a new network with randomly initialized weights.
In this way, the classification process of SPECT MPI scans is faster and more efficient due
to the limited number of training images.

This approach includes efficient state-of-the-art CNNs in the medical image analysis
domain, which were mainly reported in previous studies in similar classification tasks.
In particular, for the purpose of this research work, certain SoA CNN architectures such
as: (i) VGG16 [39], (ii) DenseNet in [43], (iii) MobileNet [59], and (iv) Inception V3 [60]
were used.

Concerning the training characteristics of this approach, the stochastic gradient de-
scent with momentum algorithm was used, and the initial learning rate was set to 0.0001.
It is worth mentioning that an exploratory analysis for the SoA CNNs [25,33] was pre-
viously conducted in the reported literature, paying particular attention to overfitting
avoidance [62]. Overfitting is a common issue in most state-of-the-art CNNs that work
with small datasets; thus, a meticulous exploration with various dropout, dense layers
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and batch sizes was applied to avoid it. Overall, the CNN selection and optimization
of the hyperparameters was performed following an exploration process considering a
combination of values for batch-size (8, 16, 32, 64, and 128), dropout (0.2, 0.5, 0.7 and
0.9), flatten layer, number of trainable layers and various pixel sizes (200 × 200 × 3 up to
350 × 350 × 3). Moreover, a divergent number of dense nodes, like 16, 32, 64, 128, 256 and
512 was explored. The number of epochs ranged from 200 up to 500. The best-performing
CNN models in terms of accuracy and loss function in the validation phase were selected
as the optimum for classifying the test dataset [24,56].

After the extensive exploration of all the provided architectures of popular CNNs, the
authors defined the optimum values for the respective models’ parameters, as follows:

• VGG16: pixel size (300 × 300 × 3), batch size = 32, dropout = 0.2, Global Average
Poolong2D, dense nodes 64 × 64, epochs = 400, (average run time = 1853 s),

• DenseNet: pixel size (250 × 250 × 3), batch size = 8, dropout = 0.2, Global Average
Poolong2D, dense nodes 16 × 16, epochs = 400, (average run time = 2074 s),

• MobileNet: pixel size (250 × 250 × 3), batch size = 8, dropout = 0.2, Global Average
Poolong2D, dense nodes 32 × 32, epochs = 400, (average run time = 3070 s),

• InceptionV3: pixel size (300 × 300 × 3), batch size = 8, dropout = 0.2, Global Average
Poolong2D, dense nodes 256 × 256, epochs = 400, (average run time = 1538 s).

Concerning the dropout value, 0.2 was selected as the best-performed for the in-
vestigated CNN configurations, according to the exploration process. The testing image
dataset was used to evaluate the network’s performance; however it is not involved in the
training phase.

The results of the explored SoA CNN architectures proposed in the second approach
are compared to the best-performed RGB-CNN model. They are gathered in the following
three figures. More specifically, Figure 11 depicts the classification accuracy in validation
and testing phases for the best-performed deep learning architectures. Figure 12 illustrates
the respective loss for all SoA CNNs. Finally, Figure 13 presents the AUC score values for
all performed CNNs.
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5. Discussion of Results and Conclusions

Due to their ability to track complex visual patterns, powerful and widely used CNN
algorithms are employed in the medical image analysis domain to address the problem of
CAD diagnosis in nuclear cardiology. In this research study, two different deep learning
classification approaches, namely, the RGB-based CNN model and the transfer learning-
based CNN models (the benchmark CNN models pre-trained by ImageNet dataset), were
adopted to identify perfusion defects through the use of SPECT MPI scans. The first
classification approach is based on RGB-CNN algorithms, previously proposed for image
classification in nuclear medicine regarding bone scintigraphy. The second approach
utilizes transfer learning incorporated in well-known deep learning architectures. The
provided dataset, comprising stress and rest images from 224 subjects, is employed to assess
the proposed models with respect to their performance. The problem was formulated as a
two-class classification problem.

For an in-depth assessment of the results, a comparative analysis regarding the classi-
fication performance of the proposed model against that of other CNNs reported in the
literature is performed (even indirectly) in the examined field of CAD diagnosis in nuclear
medicine, using solely SPECT-MPI images. A decent amount of relevant research studies in
this scientific field was gathered in Introduction and presented in Table 5, followed by the
classification accuracies and evaluation metrics of the respective models. As regards the
previous works of [50–52], where polar map images were used for CAD classification, deep
CNNs and graph-based CNNs were employed for normal/abnormal classification. These
are not related to this research study and provide classification accuracies up to 91%.



Appl. Sci. 2021, 11, 6362 18 of 24

Table 5. Related works in coronary artery disease classification using ML and DL techniques.

Reference Input Data ML/DL Methods Classification Problem Reference Standard Results

Quantitative Data and Clinical Data from Polar Maps

Arsanjani et al. [48] Quantitative data Boosted ensemble learning Normal/Abnormal Coronary Angiography Stress TPD: Accuracy 0.88, AUC
0.94, Specificity 093, Sensitivity 0.81

Hu et al. [45], 2020 Clinical and quantitative data Ensemble LogitBoost
algorithm (ML) Normal/Abnormal Coronary Angiography Accuracy 0.72, AUC 0.79.

Rahmani et al. [47], 2019 Clinical and
Quantitative data

Feed-forward ANN
(multi-layer perceptron)

Absence/Presence of
coronary

artery stenosis >50%
in at least a vessel

Coronary Angiography Accuracy 0.86, Specificity 1.00,
Sensitivity 0.82

Feed-forward ANN
(2 classes)

Normal/Abnormal
angiography result

Coronary Angiography Accuracy 0.93, Specificity 1.00,
Sensitivity 0.92

Arsanjani et al. [55] Quantitative and
functional data SVM

Absence/Presence
of coronary

artery stenosis ≥70%
Coronary Angiography

Stress TPD: Accuracy 0.86,
AUC 0.92, Specificity 0.88,

Sensitivity 0.84

Guner et al. [49], 2010 Quantitative polar maps

ANN: multilayer perceptron
(WEKA), input layer of

50 nodes, one hidden layer of
5 nodes and one output node.

Absence/Presence
of coronary

artery stenosis
Coronary Angiography AUC 0.74, Specificity 0.68,

Sensitivity 0.71
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Table 5. Cont.

Reference Input Data ML/DL Methods Classification Problem Reference Standard Results

Polar Maps (Images)

Betancur et al. [50], 2019 Upright and supine
polar maps

DL:
3 × (Conv.Layers, Relu,
Max-Pooling filter) and
3 fully connected layers.

Presence of coronary
artery stenosis ≥70%

and >50% in left
main coronary artery
(Normal/Abnormal)

Coronary Angiography The AUC score, specificity and
sensitivity were 81%, 83%, and 66%

Betancur et al. [51], 2018 Raw and quantitative
polar maps

Deep CNN:
3 × (Conv.Layers, Relu,

Max-Pooling filter), 3 fully
connected layers, followed by

3 parallel outputs—1 per
coronary territory

Presence of coronary
artery stenosis ≥70%
(Normal/Abnormal)

Coronary Angiography The AUC score, specificity and
sensitivity were 80%, 58%, and 82%

Spier et al. [52], 2019 Polar maps Graph-based CNN,
Chebyshev

Presence of coronary
artery stenosis

(Normal/Abnormal)
Expert Reader The accuracy, specificity and

sensitivity were 91%, 96%, and 86%

2D SPECT MPI images

Berkaya et al. [53], 2020 SPECT MPI images SVM with deep
features, VGG-19

(2 classes)
Normal, Abnormal Expert Reader

The accuracy, specificity and
sensitivity were 79%, 57%,

and 100%

SVM with shallow
features, VGG-19

(2 classes)
Normal, Abnormal Expert Reader

The accuracy, specificity and
sensitivity were 94%, 100%,

and 88%

Transfer learning,
VGG-16

(2 classes)
Normal, Abnormal Expert Reader

The accuracy, AUC, specificity and
sensitivity were 86%, 92%, 71%,

and 100%

Knowledge-based (2 classes)
Normal, Abnormal Expert Reader

The accuracy, specificity and
sensitivity were 93%, 86%,

and 100%

Proposed work SPECT MPI images

RGB-CNN
batch size = 8, dropout = 0.2,

conv 16–32–64–128–256,
dense nodes 32.32

(2 classes)
Normal, Abnormal Coronary Angiography

The accuracy, AUC, specificity and
sensitivity were 94%, 93%, 78%,

and 94%
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It is worth mentioning that only one previous work is highly related to the current
research study and regards the presence of coronary artery stenosis (normal or abnormal)
as a two-class classification problem. This work employed well-known CNNs to classify
normal/abnormal patient cases [53], utilizing transfer learning. The authors employ
deep neural networks that underwent a pre-training phase as well as an SVM classifier
characterized by deep and shallow features derived from the respective networks. Most of
the applied DL-based methods (AlexNet, GoogleNet, DenseNet, Resnet, VGG-16) in this
dataset provided accuracies less than 87%, and only the VGG-19 utilizing SVM with shallow
features increased the accuracy slightly. The knowledge-based classification model, which
uses extracted features based on shapes and empirically verified parameters, fine-tuned
on the training and validation images, provided the highest classification accuracy of up
to 93%. Through the conducted comparative analysis of the proposed RGB-CNN method
with the related ML and deep learning techniques as listed in Table 5, it is concluded that
the proposed RGB-CNN model outperforms all the previous techniques in MPI imaging. It
provides slightly better performance in classification accuracy (94%) and AUC score (93%),
making it a competitive solution to this diagnosis task.

Following the process of rigorously exploring possible hyperparameters and regu-
larization methods of the proposed RGB-CNN architecture, the best overall classification
accuracy for the deep network model (best RGB-CNN) was established (see Figures 11–13).
Authors selected the RGB-CNN model with 5 convolutional layers, batch size = 16, dropout
= 0.2 and 64–64 dense nodes as the simplest and most optimum performed CNN, concern-
ing testing accuracy and loss. Moreover, from the results above, it appears that the best
RGB-CNN model is characterized by an overall classification accuracy of 93.47% ± 2.81%
when the produced overall test loss is approximately 0.18 (see Figure 12). To lay emphasis
on the classification performance of the CNN approaches presented in this study, the
authors followed a comparative analysis between the proposed RGB-CNN model and
other SoA CNNs, commonly used for image classification problems, with reference to
accuracy and other metrics such as the AUC score. Regarding the produced AUC value
for the RGB-CNN models and the other SoA CNNs, as depicted in Figure 13, RGB-CNN
seems to have the highest AUC score, making it possibly the best classifier in terms of
performance for the given problem. The average run time of the best architecture for the
proposed model is 1125 s which is considered fast for such types of networks. Similar to the
other CNN-based methods, this method presents faster run time as shown in the previous
works of the same team of authors [33,56] in the case of bone scintigraphy.

The results indicate that the proposed RGB-CNN is an efficient, robust and straight-
forward deep neural network able to detect perfusion abnormalities related to myocardial
ischemia and infarction on SPECT images in nuclear medicine image analysis. It was also
demonstrated that this is a model of low complexity and generalization capabilities com-
pared to the state-of-the-art deep neural networks. Moreover, it exhibits better performance
than the SoA CNN architectures applied in the specific problem regarding accuracy and
AUC values. The proposed CNN-based classification approach can be employed in the
case of SPECT-MPI scans in nuclear cardiology and can support CAD diagnosis. It can as
well contribute as a clinical decision support system in nuclear medicine imaging.

To sum up, among the major differences of RGB-CNN compared to other conventional
CNNs are (i) their ability to efficiently train a model considering a small dataset without
the need to undergo network pre-training with ImageNet dataset, (ii) their ability to be
optimized through an exploratory analysis which helps to avoid overfitting and generalize
well to unknown input images, and (iii) their less complex architecture which enhances
their performance in an efficient run time [33,57].

Regarding the limitations presented in previous studies, the models proposed in this
work do not depend on specific characteristics like gender and camera specifications that
can elevate the number of inputs [34]. In addition, they can perform sufficiently, even
when not many training images are available. Among the privileges the proposed models
enjoy is their ability to use SPECT images as input without the need for any additional
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data. This feature is rather distinguishing between this work and other studies. Finally,
less experienced physicians can improve their diagnostic accuracy by supporting their
opinion with the results of such systems. However, there are some limitations that need
to be considered in future work. These are (i) the limited number of normal cases in the
dataset, making it unbalanced, and (ii) the disregard of clinical and other functional data in
the classification process, which would improve the diagnosis.

According to the overall results of this study, the proposed deep learning structures of
RGB-CNN are accredited for being extremely efficient in classifying SPECT MPI scans in nu-
clear medicine. Even though these effective CNN-based approaches use a relatively limited
number of patients, this study further considers a deep learning classification methodology,
incorporating transfer learning, and in collaboration with the well-known CNN models, as
a technique that can have a considerable impact on myocardial perfusion detection.

As a typical black box AI-based method, deep learning lacks clarity and reasoning
for the decision, which is highly important in medical diagnosis. Since DL models are
often criticized because of their internal unclear decision-making process, explainable
AI systems should come with causal models of the world supporting explanation and
understanding. Recent research efforts are directed towards developing more interpretable
models, focusing on the understandability of the DL-based methods.

Future work is also oriented toward the acquisition of more scan images of patients
suffering from CAD, with a view to expand the current research and validate the efficacy
of the proposed architecture. But, overall, the findings of this work seem highly reassuring,
particularly when the computer-aided diagnosis is involved, establishing the proposed
CNN-based models as a suitable tool in everyday clinical work.
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