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Abstract: In this work, we study the vibration and bending response of functionally graded graphene
platelets reinforced composite (FG-GPLRC) rectangular plates embedded on different substrates and
thermal conditions. The governing equations of the problem along with boundary conditions are
determined by employing the minimum total potential energy and Hamilton’s principle, within a
higher-order shear deformation theoretical setting. The problem is solved both theoretically and
numerically by means of a Navier-type exact solution and a generalized differential quadrature
(GDQ) method, respectively, whose results are successfully validated against the finite element
predictions performed in the commercial COMSOL code, and similar outcomes available in the
literature. A large parametric study is developed to check for the sensitivity of the response to
different foundation properties, graphene platelets (GPL) distribution patterns, volume fractions of
the reinforcing phase, as well as the surrounding environment and boundary conditions, with very
interesting insights from a scientific and design standpoint.

Keywords: FG-GPL; GDQ; heat transfer equation; higher-order shear deformation theory

1. Introduction

Due to their outstanding thermal and mechanical properties, carbon-based nano-
filler reinforced composites are widely applied in many engineering fields, such as civil,
biomedical and automotive engineering [1–6]. In more detail, graphene platelets (GPLs)
are increasingly introduced as carbon nano-fillers because of their relevant potentials in
terms of high surface area, elasticity modulus, thermal conductivity, etc. GPLs, as one
of novel nanosize reinforcements, have special properties, and their two-dimensional
geometry enables them to be scattered in the matrix with less agglomeration, unlike the
one-dimensional anisotropic ones. Due to their excellent mechanical, chemical, and physi-
cal properties, graphene-based composites demonstrate a wide range of applications in
an engineering field, such as sensors, fuel cells, supercapacitors, and batteries. The addi-
tion of graphene as reinforcing agent in a polymer matrix, indeed, improves the overall
performances and properties of composite materials, as largely demonstrated in the litera-
ture from researchers working in this area [7,8]. The primary interest of using graphene
materials stems from their excellent mechanical, thermal, electrical and physicochemical
properties with prosing results in all fields of technologies. For example, graphene repre-
sents one of the stiffest and most grounded materials, with an elastic modulus of ∼ 1 TPa
and quality of ∼ 100 GPa [9–11]. By introducing 1 volume percent of graphene in a poly-
mer matrix, the nanocomposite material reaches a conductivity of about 0.1 Sm−1 with
adequate consequences for electrical applications, along with significant changes in quality
and strength [12]. In such a context, several theories and computational models have
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been developed in the last decades in the field of GPL-reinforced media. Anamagh and
Bediz [13], for example, studied the buckling and vibration response of GPL-reinforced rect-
angular plates with different boundary conditions, based on a spectral-Tchebychev model.
Reddy et al. [14] surveyed the vibrational frequencies of the composite plates reinforced by
GPLs, and investigated the effect of various parameters, primarily, boundary conditions,
distribution patterns, geometry and weight fractions of GPLs, on the natural frequencies
of the system. In addition, Qaderi and Ebrahimi [15] focused on the frequency response
of GPL reinforced rectangular plates embedded on viscoelastic substrates, and their sen-
sitivity to different damping coefficients. In line with the previous works, Song et al. [16]
studied the free and forced vibration behavior of FG-GPL-reinforced (FG-GPLR) plates
by applying a first-order shear deformation theory (FSDT), with a clear enhancement of
the vibration performances even with the addition of small quantities of GPLs. Based
on the Chebyshev—Ritz procedure, Yang et al. [17] investigated the natural frequencies
and critical buckling loads of FG-GPLR nanocomposite plates in presence of different
porosities levels. Among the recent literature, different continuum-based nonlocal models
have been considered as effective methods to treat plate-like nanostructures and to avoid
possible difficulties encountered during experimental characterizations or time-consuming
computational atomistic simulations of nanotubes. In this context, some theoretical studies
of the free vibration response of graphene sheets can be found in the recent works [18–24],
based on different nonlocal theoretical assumptions, accounting for different small-scale
parameters, geometrical properties, boundary and environmental conditions. It is also
well-known that different substrates can surround a structural member, thus affecting its
mechanical behavior and stability. Numerous engineering problems (e.g., heavy machines,
pavement of roads, etc.), indeed, are modeled as structural members resting on an elastic
medium [25]. The elastic substrates are commonly modeled as Winkler or Pasternak foun-
dations by means of one or two parameters [26,27]. The effect of visco-Pasternak substrate
on the nonlinear dynamic response of the FG-GPLRC rectangular plates can be found in the
seminal works by Fan et al. [28], and by Liu et al. [29] along with a sensitivity study of the
mechanical behavior to different foundation parameters and porosity distributions. Among
further works, Gao et al. [30] analyzed the nonlinear vibrational frequencies of FG-GPLR
porous plates embedded on a two-parameter-type elastic medium, where an increased
porosity coefficient was found to reduce the overall stiffness of structures. The vibrational
properties of FG rectangular plates resting on a two-parameter elastic substrate were also
surveyed by Thai and Choi [31]. They demonstrated that an increased quantity of metal
components can significantly increase the deformability in a structural system. Similarly,
Zhou et al. [32] studied the frequency response of thick plates on elastic media, while check-
ing for the effect of different parameters, namely, the foundation coefficients, boundary
conditions and aspect ratios, on the structural stiffness. A FSDT was also proposed in [33]
to assess the nonlinear vibrational frequency and dynamic behavior of FG-GPLR plates
resting on a viscoelastic-Pasternak foundation, with a clear reduction of the structural
capacity for increased compressive loads.

Starting with the available literature on the topic, the present work aims at determin-
ing a general thermo-elasticity solution to treat both the static and frequency problems of
GPLRC rectangular plates under different boundary conditions and embedding founda-
tions, as typically applied in many lightweight mechanical and biomedical components, as
well as in membranes and flexible wearable sensors and actuators. Despite the available
literature on plate-like nanostructures, usually based on nonclassical approaches, the pro-
posed work explores the capability of a higher-order shear deformation plate formulation
combined with a modified Halpin and Tsai model to handle the problem, and checks for the
potentials of the generalized differential quadrature (GDQ) approach as high-performance
numerical tool to solve the equations even with a reduced computational effort, in lieu
of the most common continuum finite element methods from the literature. The govern-
ing equations are here derived by means of the Hamilton’s principle, accounting for a
modified Halpin–Tsai model for the definition of the material properties and the effect
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of the dispersion in nanocomposites. The GDQ-based solution is here compared to the
analytical once based on a Navier-type expansion, and numerically. An extensive study
is performed systematically to analyze the impact of different parameters such as the
distribution patterns and weight fractions of the reinforcement phase, complex environ-
ments, Winkler–Pasternak foundation coefficients, and Kerr substrate constants on the
overall response of FG-GPLRC rectangular plates. Results of the present study would be
useful for the design of advanced lightweight composite members in civil and mechanical
engineering, due to the importance of nanofillers dispersion and the application of foun-
dation structures. The proposed GDQ method represents an innovative computational
tool for design purposes, due to its great capability to solve challenging problems, with
high simplicity and accuracy. A further extension of the formulation accounts for the
thermal buckling of nanocomposite members within a unified setting, as useful for coupled
problems for which theoretical predictions are usually cumbersome to obtain.

2. Theoretical Formulation

Here, we consider a FG-GPLRC rectangular plate resting on an elastic Winkler–
Pasternak and Kerr medium, whose geometry and dimensions are depicted in Figure 1.
The GPLs reinforcement is assumed to be distributed either uniformly (GPL-UD) or in a
functionally graded way throughout the thickness, with two symmetric patterns, GPL-X,
and GPL-O, respectively.

Figure 1. Cont.
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Figure 1. Rectangular plate embedded on and elastic foundation.

2.1. Effective Material Properties

The material properties are here defined according to a modified Halpin–Tsai model,
such that the effective Young’s modulus of the GPL/polymer composite E reads as fol-
lows [34]:

E =
3
8
(1 + ξLηLVGPL)

(1− ηLVGPL)
EM +

5
8
(1 + ξWηWVGPL)

(1− ηWVGPL)
EM (1)

where

ξL = 2
LGPL
tGPL

, ξW = 2
WGPL
tGPL

, ηW = −
1−

(
EGPL
EM

)
ξW +

(
EGPL
EM

) , ηL =

(
EGPL
EM

)
− 1

ξL +
(

EGPL
EM

) (2)

with EM and EGPL are the Young’s moduli of the polymer matrix and GPLs, respectively;
VGPL is the GPL volume fraction, ξL and ξW are the parameters characterizing both the
geometry and size of GPL nanofillers; LGPL, WGPL and tGPL are the average length, width,
and thickness of GPLs, respectively.

In line with findings by Rafiee et al. [35], the effective Young’s modulus of GPL/polymer
nanocomposites is well-approximated by the modified Halpin–Tsai model. The result
determined by Equation (1), indeed, is only 2.7% higher than the experimental predictions.
Based on the same rule of mixtures, the effective Poisson’s ratio and mass density read
as follows:

ρ = ρGPLVGPL + ρM(1−VGPL), ν = νGPLVGPL + νM(1−VGPL) (3)

while, the effective shear modulus is defined as:

G =
E

2(1 + ν)
(4)

As also depicted in Figure 2, we select three different distribution patterns of GPLs
along the thickness direction of the structure, whose analytical expressions take the follow-
ing form [36]:
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VGPL
(
zj
)
=



 2 V∗GPL

(
1− 2 Z

h

)
0 ≤ Z ≤ h

2

2 V∗GPL

(
1− 2 (h−Z)

h

)
h
2 ≤ Z ≤ h

GPL− X
2 V∗GPL

(
1− 2 (

h
2−Z)

h

)
0 ≤ Z ≤ h

2

2 V∗GPL

(
1 + 2 (

h
2−Z)

h

)
h
2 ≤ Z ≤ h

GPL−O

{
V∗GPL 0 ≤ Z ≤ h

2
V∗GPL

h
2 ≤ Z ≤ h

UD

(5)

being V∗GPL = ΛGPL(
ρGPL

ρM

)
(1−ΛGPL)+ΛGPL

and zj =
(

1
2 + 1

2n −
j

NL

)
h, j = 1, 2, 3, . . . , NL.

Figure 2. Distribution patterns of GPLs: (a) GPL-UD distribution, (b) GPL-X distribution, (c) GPL-O distribution.

2.2. Displacement Field

As already mentioned in the introduction, we follow a higher order shear deformation
theory (HSDT) to define the kinematic field of the structure, i.e., [37].

u(x, y, z, t) = u0(x, y, t) + z u1(x, y, t) + z2u2(x, y, t) + z3u3(x, y, t)
v(x, y, z, t) = v0(x, y, t) + z v1(x, y, t) + z2v2(x, y, t) + z3v3(x, y, t)
w(x, y, z, t) = w0(x, y, t)

(6)

where (u, v, w) refer to the axial displacement components of an arbitrary point (x, y, z)
within the domain; (u0, v0, w0) stand for the related components at the reference mid-
plane; (u1, v1, w1) are the rotations of the normal about the y-, x-, and z-axis respectively;
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u2,v2,u3,v3 define the higher-order terms in the Taylor’s series expansion. Also, the non-null
strain components are defined in Appendix A.

The constitutive relations for the elastic problem are expressed as:


σx
σy
τyz
τxz
τxy



(K)

=


Q11 Q12 0 0 0
Q21 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66


(K)

εx
εy
γyz
γxz
γxy



(K)

(7)

where the elastic constants are defined in Appendix A.

2.3. Hamilton’s Principle and Governing Equations

The fundamental equations of the problem are determined by applying the Hamilton’s
principle, in the following variational energy form [38]:∫ t2

t1

(δΦk − δΦe − (δΦw1 + δΦw2 + δΦw3 + δΦw4))dt = 0 (8)

where Φk and Φe stand for the kinetic and elastic energy, respectively, and the external
work Φw is split as Φw1, Φw2, Φw3, and Φw4 whose definition depends on the elastic
Winkler–Pasternak and Kerr substrates, as well as on the mechanical loading, respectively.
The above-mentioned quantities are defined in a variational form as:

δΦk =
∫
V

ρ

(
∂U
∂t

∂δU
∂t

+
∂V
∂t

∂δV
∂t

+
∂W
∂t

∂δW
∂t

)
dV (9)

δΦe =
∫
V

(
σxxδεxx + σyyδεyy + σzzδεzz + τxyδγxy + τyzδγyz + τxzδγxz

)
dV (10)

In addition

δΦw1 =
∫
A

(
−kwwo + kp

(
∂2wo
∂x2 + ∂2wo

∂y2

))
δwodA (11)

kw and kp being the Winkler and Pasternak constants.
While

δΦw2 =
∫
A

(
− kl ku

kl+ku
wo +

ksku
kl+ku

(
∂2wo
∂x2 + ∂2wo

∂y2

))
δwodA (12)

where ks, ku, kl , refer to the shear layer, upper, and lower spring layers, respectively [39].
The last energy contribution related to the external load P acting on the top surface of the
plate reads as follows [40]:

δΦw3 = −
∫
A

Pδw0dA (13)

In addition, the conductive layer reinforced with GPLs satisfies the following Fourier
heat conduction relation:

∇2T + R = ρc
∂T
∂t

(14)

In absence of a thermal generation, in steady-state conditions, it is:

∇2T = 0 (15)

For a conductive layer reinforced with a UD or FG distribution of GPLs, we get the
following relations:

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 = 0 for UD (16a)
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∂

∂x

(
Kc

∂T
∂x

)
+

∂

∂y

(
Kc

∂T
∂y

)
+

∂

∂z

(
Kc

∂T
∂z

)
= 0 for FG (16b)

whose thermal boundary conditions read as follows:

T(0, y, z) = 0, T(a, y, z) = 0, T(x, 0, z) = 0, T(x, b, z) = 0, T(x, y, 0) = T1, T(x, y, h) = T2 (17)

The last energy contribution related to the thermal load can be obtained as:

δ Φw4 =
∫
A

(
(NT

1 )
∂w0

∂x
∂δw0

∂x
+ (NT

2 )
∂w0

∂y
∂δw0

∂y

)
dA (18)

with

NT
1 =

h
2∫

− h
2

(Q11 + Q12)αC(T − T0)dz, NT
2 =

h
2∫

− h
2

(Q21 + Q22)αC(T − T0) dz (19)

and T0 being the ambient temperature.
By substitution of Equations (9)–(13), and (18) into Equation (8), after a mathematical ma-

nipulation we get the following equations as presented in Appendix A (Equations (A4)–(A12)).

3. Thermal Field

To satisfy the thermal boundary conditions in Equation (17), we introduce a Fourier-
type solution as follows:

T =
∞

∑
m=1

∞

∑
n=1

Tmn(z) sin(Pmx) sin(Pny) . (20)

where Pm = mπ/a and Pn = nπ/b. Moreover, the thermal conductivity coefficients related
to the GPLs distribution pattern are determined as:

UD :
Kc

Km
= 1 + D (21a)

GPL− X :

{
Kc
Km

= 1 + 2D(1− 2 Z
h ) 0 ≤ Z ≤ h

2
Kc
Km

= 1 + 2D(−1 + 2 Z
h )

h
2 ≤ Z ≤ h

(21b)

GPL−O :

{
Kc
Km

= 1 + 4D( Z
h ) 0 ≤ Z ≤ h

2
Kc
Km

= 1 + 4D(1− Z
h )

h
2 ≤ Z ≤ h

(21c)

Inserting Equations (20) and (21a) into Equation (16a) and solving the equation ana-
lytically in its final form, we obtain the following expression of temperature gradient for
GPLRC rectangular plates with a uniform distribution of GPLs.

Tmn = C11e
√

A11Z + C22e−
√

A11Z (22)

where C11 , C22, and A11 are arbitrary constants determined with appropriate enforcement
of the thermal surface boundary conditions (see more details in Appendix B).

At the same time, by combining Equations (20), (21b) and (21c), the heat conduction
differential Equation (16b) reduces to the following hypergeometric equation:

(A1Z + A2)
∂2Tmn(z)

∂Z2 + (A3Z + A4)
∂Tmn(z)

∂Z
+ (A5Z + A6)Tmn(z) = 0 (23)
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with A1, A2, . . . , A6 being constant coefficients depending on the pattern of GPLs distribu-
tion (see Appendix B). The analytical solution of Equation (23) takes the following form:

Tmn = C1eα1KummerM(β1, β2, β3)(A2 + A1Z)α2 + C2eα1KummerU(β1, β2, β3)(A2 + A1Z)α2 (24)

where the Kummer’s function, also known as the confluent hypergeometric function of the
first kind, is a solution to a Kummer’s differential equation. In addition, KummerU and
KummerM functions represent two special types of Kummer function.

As the thermal behavior of a structure depends on its thermo-mechanical properties,
it is worth noticing in Figure 3 that the temperature distribution in thermoelastic solutions
is completely different from a uniform or harmonic distribution.

Figure 3. Different temperature distributions, when b = 10 h, a = b, ΛGPL = 0.3 (wt%), GPL-X, T1 = 300, T2 = 400.
(a) Representation of the effect of different distribution, (b) temperature variation for different temperature boundary T2.

4. Solution Procedure
4.1. Analytical Solution

Following a Navier-type procedure, we now introduce the analytical solution to the
above-mentioned governing equations for simply supported FG-GNPRC plates, namely [37]:

(u0, u1, u2, u3) =
∞

∑
n=1

∞

∑
m=1

(U0, U1, U2, U3) cos(pmx) sin(pny) exp(iωt) (25a)

(v0, v1, v2, v3) =
∞

∑
n=1

∞

∑
m=1

(V0, V1, V2, V3) sin(pmx) cos(pny) exp(iωt) (25b)

w0 =
∞

∑
n=1

∞

∑
m=1

W0 sin(pmx) sin(pny) exp(iωt) (25c)

Substituting Equations (25a)–(25c) into Equations (A4)–(A12) (see Appendix A), it is
possible to derive the following relations in matrix form, under the assumption p = 0(

[K]− [M]ω2
)
{δ} = {0} (26)

with [K] and [M] being the stiffness and mass matrix, respectively, and {δ}T = {U0, V0, W0,
U1, V1, U2, V2, U3, V3}. Thus, the natural frequencies are determined by means of the
following eigenvalue relation: ∣∣∣[K]− [M]ω2

∣∣∣ = 0 (27)
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4.2. Numerical Solution

The same problem is also solved numerically by means of the GDQ method, due to
its capability to yield accurate solutions even with a reduced computational effort [41–46]
while maintaining a certain flexibility when involving any kind of boundary condition
along the structural edges. The proposed method allows solving of the problem in a strong
form, by discretizing the derivatives of a function in the following form [41]:

∂ f
∂x

∣∣∣∣
x=xi , y=yj

=
Nx

∑
m=1

Ny

∑
n=1

Ax
im Iy

jn fmn (28a)

∂ f
∂y

∣∣∣∣
x=xi , y=yj

=
Nx

∑
m=1

Ny

∑
n=1

Ix
im Ay

jn fmn (28b)

∂

∂r

(
∂ f
∂θ

∣∣∣∣
x=xi , y=yj

)
=

Nx

∑
m=1

Ny

∑
n=1

Ax
im Ay

jn fmn (28c)

∂2 f
∂x2

∣∣∣∣
x=xi , y=yj

=
Nx

∑
m=1

Ny

∑
n=1

Bx
im Iy

jn fmn (28d)

∂2 f
∂y2

∣∣∣∣
x=xi , y=yj

=
Nx

∑
m=1

Ny

∑
n=1

Ix
imBy

jn fmn (28e)

where Ix
im and Iy

jn are equal to one when i = m and j = n, or equal to zero, otherwise. In

addition, Ax
im, Ay

jn, Bx
im and By

jn are the weighting coefficients of the first and second-order
derivatives along the x and y-directions, respectively, defined as:

A(1)
im =


ξ(xi)

(xi−xm)ξ(xm)
when i 6= m

−
Nx
∑

k=1,k 6=i
A(1)

ik when i = m
i, m = 1, 2, . . . , Nx (29a)

A(1)
jn =


ξ(yj)

(yj−yn)ξ(yn)
when j 6= n

−
Ny

∑
k=1,k 6=j

A(1)
jk when j = n

j, n = 1, 2, . . . , Ny (29b)

with

ξ(xi) =
Nx

∏
k=1,k 6=i

(xi − xk) (30a)

ξ
(
yj
)
=

Ny

∏
k=1,k 6=j

(
yj − yk

)
(30b)

and

B(2)
im = 2

(
A(1)

ii A(1)
im −

A(1)
im

(xi − xm)

)
i, m = 1, 2, . . . , Nx , i 6= m (31a)

B(2)
jn = 2

A(1)
jj A(1)

jn −
A(1)

jn(
yj − yn

)
 j, n = 1, 2, . . . , Ny , j 6= n (31b)

B(2)
ii = −

Nx

∑
k=1,k 6=i

B(2)
ik , i = 1, 2, . . . , Nx, i = m (31c)
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B(2)
jj = −

Ny

∑
k=1,k 6=j

B(2)
jk , j = 1, 2, . . . , Ny, j = n (31d)

In what follows, we select a Chebyshev distribution of grid points within the domain
defined as:

xi =
a
2

(
1− cos

(
(i− 1)
(Nx − 1)

π

))
i = 1, 2, 3, . . . , Nx (32a)

yj =
b
2

(
1− cos

(
(j− 1)(
Ny − 1

)π

))
j = 1, 2, 3, . . . , Ny (32b)

Thus, the algebraic eigenvalue problem can be redefined in matrix form as:{[
[Mdd] [Mdb]
[Mbd] [Mbb]

]
ω2

mn +

[
[Kdd] [Kdb]
[Kbd] [Kbb]

]}{
δd
δb

}
= 0 (33)

where we distinguish among inner and boundary grid-points, by means of subscripts d
and b, respectively, whereas δ stands for the displacement vector. The natural frequencies
of the problem are derived as solutions of Equation (33).

5. Minimum Total Potential Energy Principle

Now we apply the minimization procedure of the total energy associated to the
structural system to study its static response [47], namely:

δ(Φe + Φw1 + Φw2 + Φw3 + Φw4) = 0 (34)

which is combined with the energy quantities in Equations (10)–(13) and (18) to yield
the following governing equations of GPL reinforced composite rectangular plates (see
Equations (A34)–(A42) in Appendix B).

Bending Analysis

The analytical solution for a static problem stems from a Fourier-type series discretiza-
tion of the mechanical force, as follows [48]:

Pmn =
∞

∑
n=1

∞

∑
m=1

qmn sin(pmx) cos(pny) (35)

in which qmn = 4p0
mnπ2

(
1− (−1)n)(1− (−1)m), and p0 = 0.1 MPa.

By substitution of Equations (35) and (25a)–(25c) into Equations (A34)–(A42), with the
assumption ω = 0, we get the following relation:

{[F] + [K]}{δ} = 0 (36)

which is solved in terms of the kinematic unknowns.
At the same time, based on a GDQ definition of the problem, the substitution of Equa-

tions (28a)–(28e) into Equations (A34)–(A42) leads to the following relation in matrix form:{[
[Fdd] [Fdb]
[Fbd] [Fbb]

]
+

[
[Kdd] [Kdb]
[Kbd] [Kbb]

]}{
δd
δb

}
= 0 (37)

depending on the kinematic unknowns δd and δb.

6. Results and Discussion
6.1. Validation

We now present the results from a large numerical investigation aimed at studying
the static and vibrational response of GPLRC multilayer rectangular plates, with material
properties as summarized in Table 1. After a preliminary convergence study, we test the
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performances of our proposed formulation with a comparative evaluation against the open
literature or further numerical methods.

Table 1. Material properties of the system (see Ref. [3]).

Polymer Epoxy (Matrix) Graphene Platelets

νm = 0.34 νGPL = 0.186
ρm [kg/m3] = 1.2× 103 ρGPL [kg/m3] = 1.06× 103

Em [GPa] = 2.85 EGPL [TPa] = 1.01
lGPL [µm] = 2.5
wGPL [µm] = 1.5
tGPL [nm] = 1.5

The GDQ numerical study starts considering the effect of an increased grid point
distribution on the structural response in terms of dimensionless fundamental frequency
and bending deflection, for two different boundary conditions (completely clamped and
simply-supported), as visible in Figures 4 and 5, respectively. Based on the plots in these
figures it is worth noticing the very fast stabilization of results even with a reduced number
of sampling points, whose rate of convergence maintains almost constant independently of
the selected boundary conditions. As a further step we perform a parametric evaluation
of the frequency response for GPL reinforced thick rectangular plates in terms of natural
frequencies for different reinforcement distributions, accounting for different longitudinal
and transverse modes, as summarized in Table 2. A FSDT is adopted in this case for
comparative purposes with predictions by Song et al. [16], with a perfect matching for all the
selected graphene distributions and mode shapes. Among the different GPL distributions,
it seems that a GPL-X distribution predicts the highest vibrational frequencies of the system,
whereas a pure epoxy material yields the lowest vibrational values.

Figure 4. Convergence study of the first fundamental frequency, when assuming a GPL-UD, b/a = 5, a/h = 10, and
ΛGPL = 0.5%: (a) CCCC boundary conditions, (b) SSSS boundary conditions.
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Figure 5. Convergence study of the bending deflection, when assuming a GPL-UD, p0 = 105, b/a = 5, a/h = 10, and
ΛGPL = 0.5%: (a) CCCC boundary conditions, (b) SSSS boundary conditions.

Table 2. Dimensionless natural frequency of a rectangular plate made by pure epoxy and dif-
ferent types of graphene distribution with various longitudinal and transverse mode shapes for
(a× b× h = 0.45 m × 0.45 m × 0.045 m), ωmn = ωmnh

√
ρm/Em, and ΛGPL = 1 %.

GPL-X GPL-O GPL-UD Pure Epoxy ωmn (m, n)

0.1378 0.102 0.1216 0.0584 Ref. [16]
(1, 1)0.1378 0.102 0.1216 0.0584 FSDT

0% 0% 0% 0% Error%

0.3249 0.2456 0.2895 0.1391 Ref. [16]
(2, 1)0.3249 0.2456 0.2895 0.1391 FSDT

0% 0% 0% 0% Error%

0.4939 0.3796 0.4436 0.2132 Ref. [16]
(2, 2)0.4939 0.3796 0.4436 0.2132 FSDT

0% 0% 0% 0% Error%

0.5984 0.4645 0.54 0.2595 Ref. [16]
(3, 1)0.5984 0.4645 0.54 0.2595 FSDT

0% 0% 0% 0% Error%

0.7454 0.586 0.6767 0.3251 Ref. [16]
(3, 2)0.7454 0.586 0.6767 0.3251 FSDT

0% 0% 0% 0% Error%

0.969 0.7755 0.8869 0.4261 Ref. [16]
(3, 3)0.969 0.7755 0.8869 0.4261 FSDT

0% 0% 0% 0% Error%

We focus, now, on the statics of FG square plates, with the upper and lower surfaces
made by a pure ceramic and metal, respectively. The mechanical properties of the system
are assumed to vary along the thickness direction based on the following relation [49]:

E(z) = (Ec − Em)
(

z
h + 1

2

)p
+ Em

ρ(z) = (ρc − ρm)
(

z
h + 1

2

)p
+ ρm

v(z) = (vc − vm)
(

z
h + 1

2

)p
+ vm

(38)

where subscripts c and m refer to the ceramic and metal phases, respectively, and p is the
power-law index of the FG material. The mechanical properties of pure ceramic and metal
phases are summarized in Table 3, where the ceramic phase features a meaningful higher
stiffness than a pure metal. This means that an increased quantity of metal components
in the structure would increase its flexibility, as specified in the deflection response of
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Table 4, for different exponents p, in line with findings by References [48,49]. As further
validation, we compare our vibration results with finite element predictions as performed
in COMSOL, for a square plate with constant thickness h = 10 mm, length 250 mm,
and different GPL distribution profiles. As the GPLRC plate features an inhomogeneous
behavior, the material properties are assumed to be graded in the thickness direction. In
Tables 5–7, we compare the vibration results for the first six modes, and for three different
reinforcement distributions, namely, a GPL–UD, –X, and –O profile, respectively, It is worth
noticing the very good matching of results compared to finite elements, with a limited
percentage error (lower than 1.04% in each case), despite the reduced computational
effort. For a GPL-O distribution we also represent the related mode shapes in Figure 6,
while keeping ΛGPL = 0.1 (wt%), with a reasonable kinematic response with the selected
simply-supported boundary condition.

Table 3. Material properties of the system.

Property Value

Ec 380 GPa
Em 70 GPa
vc 0.3
vm 0.3

Table 4. Effect of the volume fraction exponent of the FG material on the dimensionless deflections
of SSSS FG square plates.

Present Ref. [49] Ref. [48] p

0.4621 0.4666 0.4665 p = 0 (Ceramic)
0.9416 - 0.9287 1
1.2002 1.1908 1.194 2
1.3204 - 1.32 3
1.3869 1.3769 1.389 4
1.4342 - 1.4356 5
1.4741 1.4554 1.4727 6
1.5107 - 1.5049 7
1.5455 1.5157 1.5343 8
1.579 - 1.5617 9

1.6112 1.5695 1.5876 10
2.5085 - 2.5327 p = ∞ (Metal)

Table 5. Comparison with FEM (GPL-UD).

S. No Mode ω (Hz) FEM (Hz) Relative Error%

S1 1 494.9 495.9 0.19%
S2 2 996.8 997.3 0.05%
S3 3 1453.0 1451.9 0.07%
S4 4 1766.1 1763.9 0.12%
S5 5 2180.2 2175.1 0.23%
S6 6 2752.5 2743.3 0.33%

Table 6. Comparison between FEM-based predictions and results from our formulation (GPL-X).

S. No Mode ω (Hz) FEM (Hz) Relative Error

S1 1 520.2 520.51 0.06%
S2 2 1046.4 1044.0 0.23%
S3 3 1523.8 1516.3 0.49%
S4 4 1840.6 1840.1 0.027%
S5 5 2283.2 2264.3 0.83%
S6 6 2879.9 2850.2 1.04%
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Table 7. Comparison between FEM-based predictions and results from our formulation (GPL-O).

S. No Mode ω (Hz) FEM (Hz) Relative Error

S1 1 468.1 470.1 0.42%
S2 2 944.0 947.3 0.34%
S3 3 1377.3 1381.4 0.29%
S4 4 1665.5 1670.2 0.28%
S5 5 2069.4 2074.0 0.22%
S6 6 2615.0 2620.4 0.20%

Figure 6. The first six mode shapes of a GPLRC rectangular plate with a GPL-O distribution pattern.
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6.2. Parametric Study

We perform, now, a parametric study focusing on the sensitivity of the frequency
response ∆ω% =

(
ωc −ωepoxy

)
/ωepoxy × 100 against the weight fraction of GPLs for each

selected distribution pattern (Figure 7), with a clear beneficial effect on the structural
stiffness and stability as ΛGPL increases within the material. Moreover, due to the presence
of high normal stresses in the upper and lower sides of multilayered plates, a GPL-X
distribution with an increased quantity of GPLs causes a hardening effect on the system,
together with higher natural frequencies. On the other hand, a higher concentration of the
reinforcing phase in the middle surface of the plate increases the structural deformability
monotonically, whose variation rate is plotted in Figure 7, with a perfect agreement with
predictions by Song et al. [16]. A further parameter affecting the frequency response
is the number of layers NL in the structure, as plotted in Figure 8 for three different
reinforcement distributions. Except for the uniform reinforcement case for which the
response is unaffected by NL, a small increase of this parameter can cause some hardening
or softening effects on the structural stiffness, with a sharp increase or decrease of the
frequency, for a GPL-X or GPL-O distribution, respectively. Even for these two distributions,
the solutions stabilize for a number of layers equal or higher than 10, as also predicted by
Song et al. [16]. The sensitivity of the response to the number of layers in the thickness
direction is plotted in Figure 9 in terms of dimensionless vibrational frequency, for a square
plate with a/h = 25 and ΛGPL = 0.3% under a completely-clamped (CCCC) and simply-
supported (SSSS) boundary condition. Based on a comparative evaluation of the plots in
these two figures, the best stability response seems to be reached for a CCCC multilayered
structure with NL = 10 and a GPL-X reinforcement distribution, in terms of vibration
frequency (see Figure 9). At the same time, an increased number of layers more than
10 becomes deleterious for the overall stability of plates with a GPL-O type distribution,
both for CCCC and SSSS boundary conditions. Figure 10 depicts the variation of the first
vibration frequency against the thermal gradient ∆T of moderately thick square plates for
different GPL weight fractions. Due to the variation of the thermoelastic properties of the
system, together with the presence of initial internal stresses and strains in the structure by
thermal attacks, this complex environment causes a combined hardening-softening impact
on the system. More specifically, an increased thermal variation decreases the fundamental
frequency of the system up to a certain value of ∆T, for which the fundamental frequency
becomes zero, and the structure undergoes a static instability phenomenon. This critical
temperature moves towards higher values for increased weight fractions of GPLs (from
0.2% up to 0.8%). It is worth also noticing that in the pre-divergence zone, by approaching
the static instability phenomenon, an enhanced temperature causes a very fast reduction
of the vibrational frequency of the system. In order to survey the effect of the Kerr
foundation on the vibrational behavior and static instability of GPL-reinforced plates,
we plot the variation of dimensionless first fundamental frequency versus the thermal
variation for different substrate coefficients while selecting an SSSS and CCCC boundary
condition, respectively, in Figure 11a,b. As the presence of an elastic foundation can vary the
bending stiffness of a structure, we note that an enhanced value of the foundation constants
improves the vibrational behavior of the system. Meanwhile, the divergence instability can
be delayed by increasing the substrate coefficients values. In other words, the presence of an
elastic medium gets higher critical values at which the static instability phenomenon takes
place. In addition, clamped boundary constraints reduce the positive effect of foundations,
with a less pronounced variation in the critical temperature corresponding to the static
instability and natural vibrational frequencies of the system.

A further goal of the systematic analysis is also the evaluation of the maximum
deflection of the structure, hereafter reported in dimensionless form. In Figure 12 we
show the variation of this kinematic quantity versus the number of layers within a SSSS
(Figure 12a) and CCCC (Figure 12b) laminated structure, accounting for the three different
GPLs patterns. Unlike the UD of GPLs, the kinematic response seems to be clearly sensitive
to the number of layers NL within a multilayered structure, with a monotone increase
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or decrease depending on whether a GPL–O or –X distribution is selected as reinforcing
phase, with a plateau obtained in correspondence of NL = 10. With regard to the sensitivity
of the deflection response to the reinforcement weight fraction, we plot the results in
Figure 13a,b for a SSSS and CCCC boundary condition, respectively. Based on the plots in
this figure, an increased amount of GPL nanofillers decreases monotonically the overall
deformability of the structure. For example, the introduction of a small percentage of GPLs
(equal to 0.5%) is able to reduce the deformability of the system up to a percentage of
360%, for a GPL-X symmetric distribution. This last reinforcement dispersion provides the
highest stiffness in multilayered structures, for both a SSSS and CCCC boundary conditions,
whereas the highest deformability is obtained for GPL-O distributions of the reinforcing
phase under the same weight fraction assumptions. From a design standpoint, a GPL-X
symmetric dispersion is desirable as the best reinforcing distribution among others, due to
its capability to limit the structural deformability. At the same time, a further reduction
in deformability can be obtained, accounting for the elastic properties of the surrounding
medium, as plotted in Figures 14 and 15 for a Winkler–Pasternak or Kerr elastic substrate,
respectively. In both cases, indeed, elastic foundations with increased stiffness properties
get lower deflections, while keeping fixed the GPL weight fraction within the structure.
This reduction is even more pronounced for more relaxing boundary conditions as simply-
supports, while assuming a Kerr medium in lieu of a Winkler–Pasternak-type foundation
(compare the plots of Figures 14 and 15).

Figure 7. Relative frequency variation vs. the GPL weight fraction, for different GPL distribution
patterns (b/a = 1, a/h = 10, and SSSS boundary condition).

Figure 8. Relative frequency variation vs. the number of layers, for different GPL distribution
patterns (b/a = 1, a/h = 10, and SSSS boundary condition).
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Figure 9. Dimensionless fundamental frequency vs. the number of layers, for different GPL distribution patterns
(b/a = 1, a/h = 25, ∆GPL = 0.3%): (a) CCCC boundary conditions, (b) SSSS boundary conditions.

Figure 10. Dimensionless fundamental frequency vs. thermal variation, for different GPL weight
fractions (a = b, a/h = 25, and GPL-X).

Figure 11. Dimensionless fundamental frequency vs. thermal variation, for different Kerr substrate coefficients (a = b,
a/h = 25, ΛGPL = 0.3%, Kl = 105, and GPL-X): (a) SSSS boundary conditions, (b) CCCC boundary conditions.
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Figure 12. Dimensionless deflection vs. number of layers, for different distribution patterns of reinforcement
(b/a = 1, a/h = 25, ∆GPL = 0.3%, p0 = 105): (a) SSSS boundary conditions, (b) CCCC boundary conditions.

Figure 13. Dimensionless deflection changes vs. GPL weight fraction, for different distribution patterns of reinforcement
(b/a = 1, a/h = 10, p0 = 105): (a) SSSS boundary conditions, (b) CCCC boundary conditions.

Figure 14. Dimensionless deflection vs. GPL weight fraction, for different elastic foundation coefficients (b/a = 1,
a/h = 10, GPL− X, p0 = 105): (a) SSSS boundary conditions, (b) CCCC boundary conditions.
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Figure 15. Dimensionless deflection vs. GPL weight fraction, for different Kerr foundation coefficients (b/a = 1,
a/h = 10, GPL− X, p0 = 105 and KI = 105): (a) SSSS boundary conditions, (b) CCCC boundary conditions.

7. Conclusions

In this paper we focused on the vibrational and static response of FG-GPLRC multi-
layer rectangular plates by combining a higher order formulation of shells together with
a modified Halpin and Tsai model to account the effect of the dispersion in nanocom-
posites. The problem is here solved both theoretically with a Navier-type solution, and
computationally, by means of the GDQ approach, as high-performance numerical tool.
The proposed model is successfully validated in its accuracy against predictions from
the literature and results from finite element formulations in the first part. Based on a
parametric study, it seems that A GPL-X pattern in a multilayered member provides the
highest fundamental frequencies and stiffness of the structure. These mechanical properties
increase for an increased GPL weight fraction within the material. In addition, the vibration
and kinematic results based on a uniform distribution of GPLs are always unaffected by the
reinforcement weight fraction and number of layers within the structure. At the same time,
the elastic foundations with increased stiffness properties reduce the overall deformability
of multilayered GPL-reinforced structures, which confirms the importance of considering
the correct mechanical performances of different substrates around a structural member for
design purposes. It is also observed that the presence of a thermal environment reduces the
structural efficiency and stiffness due to the introduction of an additional stress and strain
field in the system. Meanwhile, elastic foundations with increased stiffness properties
raise the critical temperature of multilayered structures while reducing their deformability.
This study would provide useful scientific insights and an enhanced tool to engineers and
designers for the development of novel and efficient composite structures and components,
such as electronic circuits, sensors, or flexible electrodes for displays and solar cells.
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Appendix A

The non-null strain components are defined as
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The elastic constants used in Equation (7) are introduced as

Q11 =
EC

1− ν2
C

, Q12 =
νCEC

1− ν2
C

, Q13 = Q23 = Q12, Q33 = Q22 = Q11, Q44 = Q55 = Q66 = GC (A3)

The set of governing associated to the Hamilton’s principle takes the following form
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where
..

( ◦ ) refers to the acceleration field, and Ii are the mass inertias. The corresponding
boundary conditions are defined as
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(A14)
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(A15)
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)
+ F44

(
∂u3
∂y + ∂v3

∂x

)
N∗y = C21

∂u0
∂x + D21

∂u1
∂x + E21

∂u2
∂x + F21

∂u3
∂x + C22

∂v0
∂y + D22

∂v1
∂y + E22

∂v2
∂y + F22

∂v3
∂y

M∗x = D11
∂u0
∂x + E11

∂u1
∂x + F11

∂u2
∂x + Y11

∂u3
∂x + D12

∂v0
∂y + E12

∂v1
∂y + F12

∂v2
∂y + Y12

∂v3
∂y

M∗xy = D44

(
∂u0
∂y + ∂v0

∂x

)
+ E44

(
∂u1
∂y + ∂v1

∂x

)
+ F44

(
∂u2
∂y + ∂v2

∂x

)
+ Y44

(
∂u3
∂y + ∂v3

∂x

)
M∗y = D21

∂u0
∂x + E21

∂u1
∂x + F21

∂u2
∂x + Y21

∂u3
∂x + D22

∂v0
∂y + E22

∂v1
∂y + F22

∂v2
∂y + Y22

∂v3
∂y

(A18)

Based on relations (A13)–(A16), different boundary conditions can be set as follows

Clamped (C) edges:{
x = 0, a
y = 0, b

→


u0 = 0 u1 = 0 u2 = 0 u3 = 0
v0 = 0 v1 = 0 v2 = 0 v3 = 0 ,
w0 = 0

(A19)

Simply (S) edges:

 x = 0, a → {Nxx = Mxx = N∗xx = M∗xx = 0

y = 0, b →
{

Nyy = Myy = N∗yy = M∗yy = 0
. (A20)

Appendix B

The parameters in Equations (21a)–(21c) are defined as follows

D =
1
3

V∗GPL

 2
H + 1

Kx
Km −1

+
1

1
2 (1− H) + 1

Kz
Km −1

, (A21)
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H =
Ln
[
ρ
(
ρ+

√
ρ2 − 1

)]
√
(ρ2 − 1)3

− 1
ρ2 − 1

, (A22)

Kx =
Kg

2RkKg
L + 1

, (A23)

Kz =
Kg

2RkKg
t + 1

, (A24)

ρ =
lGPL
tGPL

. (A25)

The constants in Equation (23) are determined as

C11 =

∣∣∣∣ T1 T2

1 e−
√

A1h

∣∣∣∣∣∣∣∣ 1 1
e
√

A1h e−
√

A1h

∣∣∣∣ , C22 =

∣∣∣∣ T2 T1

e
√

A1h 1

∣∣∣∣∣∣∣∣ 1 1
e
√

A1h e−
√

A1h

∣∣∣∣ , A11 = P2
m + P2

n , (A26)

where

FG− X:
Z < h

2 ⇒ A1 = − 4D
h ; A2 = 1 + 2D ; A3 = 0 ; A4 = − 4D

h ; A5 = −A11
4D
h ; A6 = (1 + 2D )A11

Z > h
2 ⇒ A1 = 4D

h ; A2 = 1− 2D ; A3 = 0 ; A4 = 4D
h ; A5 = A11

4D
h ; A6 = (1− 2D )A11

(A27)

FG−O :
Z < h

2 ⇒ A1 = 4D
h ; A2 = 1 ; A3 = 0 ; A4 = 4D

h ; A5 = A11
4D
h ; A6 = A11

Z > h
2 ⇒ A1 = − 4D

h ; A2 = 1 + 4D ; A3 = 0 ; A4 = − 4D
h ; A5 = − 4D

h A11; A6 = (1 + 4D )A11

(A28)

More details about coefficients in Equations (25a)–(25c) are defined in the following

α1 = −

(
A3 +

√
−4A5 A1 + A32

)
2A1

Z (A29)

α2 =
A1

2 − A1 A4 + A2 A3

A1
2 (A30)

β1 =
−2A6 A1

2−2A1
2
√
−4A5 A1+A3

2−2A2 A5 A1

2A1
2
√
−4A5 A1+A3

2

+
−A1 A3 A4+A1 A4

√
−4A5 A1+A3

2+A2 A3
2−A2 A3

√
−4A5 A1+A3

2

2A1
2
√
−4A5 A1+A3

2

(A31)

β2 =
2A1

2 − A1 A4 + A2 A3

A1
2 (A32)

β3 =

√
−4A5 A1 + A32(A2 + A1Z)

A1
2 (A33)

The governing equations of GPLRC plates determined by means of minimum total
potential energy principle in Section 5 are defined as

δu0 :
∂Nxx

∂x
+

∂Nxy

∂y
= 0 , (A34)

δv0 :
∂Nyy

∂y
+

∂Nxy

∂x
= 0, (A35)
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δw0 :
∂Qx
∂x +

∂Qy
∂y − NT

1
∂2w0
∂x2 − NT

2
∂2w0
∂y2 + kp

∂2w0
∂x2 + kp

∂2w0
∂y2 − kww0

− klku
kl+ku

w0 +
ksku

kl+ku

∂2w0
∂x2 + ksku

kl+ku

∂2w0
∂y2 − Pw0 = 0,

(A36)

δu1 :
∂Mx

∂x
+

∂Mxy

∂y
−Qx = 0, (A37)

δv1 :
∂My

∂y
+

∂Mxy

∂x
−Qy = 0, (A38)

δu2 :
∂N∗x
∂x

+
∂N∗xy

∂y
− 2Sx = 0 , (A39)

δv2 :
∂N∗y
∂y

+
∂N∗xy

∂x
− 2Sy = 0 , (A40)

δu3 :
∂M∗x
∂x

+
∂M∗xy

∂y
− 3Q∗x = 0 , (A41)

δv3 :
∂M∗y
∂y

+
∂M∗xy

∂x
− 3Q∗y = 0 , (A42)

The boundary conditions and static quantities associated with the problem are the
same as defined in Equations (A13)–(A16).
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