
applied  
sciences

Article

Adaptive Abnormal Oil Temperature Diagnosis Method of
Transformer Based on Concept Drift

Zhibin Zhao † , Jianfeng Xu † , Yanlong Zang † and Ran Hu *

����������
�������

Citation: Zhao, Z.; Xu, J.; Zang, Y.;

Hu, R. Adaptive Abnormal Oil

Temperature Diagnosis Method of

Transformer Based on Concept Drift.

Appl. Sci. 2021, 11, 6322. https://

doi.org/10.3390/app11146322

Academic Editors: Alfonso Monaco

and Nicola Amoroso

Received: 31 May 2021

Accepted: 1 July 2021

Published: 8 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Software, Nanchang University, Nanchang 330447, China; zhaozhibin@ncu.edu.cn (Z.Z.);
jianfeng_x@ncu.edu.cn (J.X.); JoeyLong351@outlook.com (Y.Z.)
* Correspondence: huran@ncu.edu.cn
† These authors contributed equally to this work.

Abstract: The diagnosis of abnormal transformer oil temperature is of great significance to guarantee
the normal operation of the transformer. Due to concept drift, the oil temperature abnormal diagnosis
of the oil-immersed main power transformer is usually unstable via the classic data mining method.
Thus, this paper proposes an adaptive abnormal oil temperature diagnosis method (AAOTD) of
the transformer based on concept drift. First, the bagging ensemble learning method was used
to predict the oil temperature. Then, abnormal diagnosis was performed based on the difference
between the predicted oil temperature and the actual measured oil temperature. At the same time,
based on the concept drift detection strategy and Adaboost ensemble learning methods, adaptive
update of the base classifier in the abnormal diagnosis model was realized. Experiments validated
that the algorithm proposed in this paper can significantly reduce the influence of concept drift
and has higher oil temperature prediction accuracy. Furthermore, since this method only utilizes
the existing power grid data resources to realize abnormal oil temperature diagnosis without extra
monitoring equipment, it is an economic and efficient solution for practical scenarios in the electric
power industry.

Keywords: transformer; oil temperature; ensemble learning; abnormal diagnosis; concept drift

1. Introduction

The transformer is a core piece of equipment in the power system [1]. If the trans-
former is overloaded for a long time, then the oil temperature of the transformer will be
conspicuously higher than the normal standard, the components of the transformer will
experience accelerated aging, and the working condition of the transformer will be unsta-
ble [2]. Therefore, the abnormal diagnosis of transformer’s oil temperature is a significant
issue to maintain the stable and safe operation of the transformer.

In recent decades, there has been important progress in the field of transformer oil
temperature abnormal diagnosis. However, traditional transformer oil temperature abnor-
mal diagnosis is generally based on the thermal circuit model and oil chromatographic
analysis [3]. Based on the monitoring and analysis of related parameters from the chromato-
graphic method, it can be judged whether the top-level oil temperature of the transformer
is abnormal or not. Although the accuracy of the chromatographic method is high, it still
has many problems, such as complicated parameter adjustment, the expensive cost of
deployment, equipment maintenance, etc. Those problems make it difficult to widely use
this method in most practical scenarios.

With the development of artificial intelligence research, scholars have attempted
to use machine learning technology to analyze historical working condition data of the
transformer to diagnose the abnormal oil temperature of the transformer. He et al. [4]
proposed a method based on the artificial neural network to predict the top-level oil
temperature of the transformer. Pradhan et al. [5] proposed a method based on the ANN
algorithm to predict the internal oil temperature of the transformer. Du et al. [6] applied
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the least squares support vector machine, integrated with the adaptive boost algorithm, to
the transformer fault diagnosis. However, Galdi et al. [3] found that the method based on
machine learning is more convenient and easier to realize, but the accuracy of this type of
diagnosis method is generally not high. However, based on our research, we found that
the reason leading to the low accuracy is always related to unpredictable fluctuations of
transformer working condition data, which are caused by the continuous oxidation of the
internal components of the transformer and the irregular fluctuation of the power load of
the transformer [7]. It can be considered as a typical concept drift phenomenon.

Concept drift means that the performance of the previously trained classification
model or regression model may experience irregular and sharp deterioration when the
probabilistic distribution of data changes over time [8]. Since concept drift was proposed by
Schlimmer in 1986 [9], it has remained a hot research topic in the field of machine learning.

To date, several researchers have obtained results regarding the problem of data
concept drift. The existing processing methods can be roughly divided into incremental
learning [10] and ensemble learning [11,12]. The incremental learning method uses a single
classifier to learn from data and dynamically adjusts the model to achieve the characteristics
of adapting to data changes. For example, the concept drift detection method based on
a sliding window obtains new samples by continuously sliding the window forward
for incremental learning and performs comparisons with the old distribution data to
detect concept drift [13,14]. A common method is the concept drift detection method
based on a single window (SWCDS), which detects the changes of data distribution by
periodically detecting the change of the classification error rate in the sliding window [13].
Du L et al. [15] proposed a window adjustment method based on information entropy to
determine the distribution of new and old instances of the window (ADDM) in 2014. Ali
et al. [16] proposed an accelerated Hoeffding drift detection method (FHDDM). However,
the forgetting mechanism of a single classifier still has many problems, such as difficulty in
window selection, nonconvergence, unstable learning, and unsuitability for the detection
of gradual concept drift.

Therefore, many researchers have constructed multiple simple classifiers, namely
ensemble learning, to overcome the problem of data concept drift. Soares et al. [17]
proposed an on-line weighted ensemble (OWE) method based on a regression model
which can retain the old concept information when the concept recurs. The AWE [18]
algorithm is improved on the basis of algorithm SEA, which sets weights according to the
classification accuracy of each base classifier and directly replaces the base classifier with
the smallest weight when updating the classifier. The CDOL algorithm [19] consists of two
weighted base classifiers. After detecting the concept drift, the new base classifier is trained
with new samples, and the one with the smaller weight in the original base classifier is
removed. Song et al. [20] proposed a new ensemble model, namely dynamic clustering
forest (DCF), which is used for the concept drift of text stream classification. However, the
adaptive ensemble learning method only evaluates which base classifiers to delete based
on the classification accuracy of each base classifier for the current data block, ignoring the
historical importance of the base classifier. In addition, a small concept may cause historical
importance base classifiers to be deleted by mistake, causing the retained base classifier to
not be globally dominant. Thus, it is difficult to obtain good prediction results [21].

One of the mainstream ideas for detecting concept drift is to judge whether the drift
has occurred based on the change trend of the classification model test accuracy [22,23].
This idea needs to ensure that the classification model decides on the new sample before
it proceeds to the next training. The detector analyzes the change trend of classification
accuracy in time [24]. Aiming at the problem of concept drift in the abnormal diagnosis of
transformer oil temperature, this paper proposes an adaptive oil temperature abnormal
diagnosis method based on concept drift. The main work is as follows:

1. The diagnosis method of transformer abnormality is proposed. First, a series of base
classifiers are generated in parallel using datasets randomly selected from a dataset
of transformer historical operating conditions. Then an integrated decision is made
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with the help of a voting weighting mechanism to predict the oil temperature of the
transformer. Finally, the abnormal diagnosis of the transformer is performed based on
the relationship between the predicted oil temperature, the measured oil temperature
and the time of the three judgment thresholds.

2. A concept drift detection method based on three-branch decision and an adaptive
update algorithm of classifier based on ensemble learning are proposed to judge
which decision should be made through the test accuracy of the model. If the decision
model is no longer applicable to the data at this stage, the base learners and weights
are adjusted according to the learning effect of each base learner on the previous
data. In this way, the poorly performing base learners in the model are continuously
replaced to ensure that each base classifier in the model is optimized. The model
converge quickly and achieves stable learning results, and the historical importance
of the base classifier is not ignored. The model can be adapted to the concept drift
data stream.

This paper is organized as follows. After the introduction in Section 1, Section 2
illustrates the dataset in this paper and explains the methodology of adaptive abnormal oil
temperature diagnosis method (AAOTD). Section 3 analyzes and discusses the experimen-
tal results to validate the efficiency of AAOTD method. Section 4 summarizes the work of
this paper and represents our perspective.

2. Materials and Methods
2.1. Dataset of the Transformer’s Working Condition and Oil Temperature

The oil temperature working condition dataset of the oil-immersed transformer
recorded the parameters related to the operation of the oil-immersed transformer. These pa-
rameters included the timestamp of working condition data (OCCUR_TIME); active power
of the high-voltage side, medium-voltage side, and low-voltage side (YG_YC_G/Z/D); re-
active power of the high-voltage, medium-voltage, and low-voltage side (WG_YC_G/Z/D);
power factor of the high-voltage, medium-voltage, and low-voltage side (COS_G/Z/D);
AC current RMS value of the high-voltage, medium-voltage, and low-voltage side (I_YC_G);
winding temperature of the A/B/C phase (RZWDA/B/C_YC); and the oil temperature of
the A/B/C phase (YWA/B/C_YC). The sample period was 5 min. The specific explanation
of the above parameters related to the transformer is shown in Table 1:

Table 1. Description of the transformer’s parameters.

Label Description

Transformer 220 KV AC oil-immersed main power transformers with 3 windings; rated power: 120 MVA

OCCUR_TIME Timestamp ID of real-time working conditional record at specified timepoint

YG_YC_G/Z/D 3 measured values of active power from power load monitoring equipment at the high-voltage side,
medium-voltage side, and low-voltage side respectively

WG_YC_G/Z/D 3 measured values of reactive power from power load monitoring equipment at the high-voltage
side, medium-voltage side, and low-voltage side, respectively

COS_G/Z/D 3 measured values of reactive power from power monitoring equipment at the high-voltage side,
medium-voltage side, and low-voltage side, respectively

I_YC_G/Z/D RMS value of the AC current from power load monitoring equipment at the high-voltage side,
medium-voltage side, and low-voltage side, respectively

RZWDA/B/C_YC 3 values of temperature from the monitoring sensors at windings of the A phase, B phase,
and C phase, respectively

YWA/B/C_YC 3 values of temperature from the monitoring sensors at top-level oil of the A phase, B phase,
and C phase, respectively

The external environment of the transformer can conspicuously influence the heat
radiation of the transformer, such as the rise of the transform’s restraining tempera-
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ture due to cold and windy weather. Therefore, in this paper, the weather data at the
location of the transformer were also taken into consideration as important parame-
ters, including the timestamp of weather data (OCCUR_TIME), local temperature (TEM-
PERATURE), highest temperature of the day (HIGH_TEMPERATURE), lowest temper-
ature of the day (LOW_TEMPERATURETEM), rainfall capacity (RAIN), wind direction
(WIND_DIRECTION), wind velocity (WIND_VELOCITY), pressure (PRESSURE), and
humidity (HUMIDITY). The sample period was 5 min. The specific explanation of the
above parameters related to the weather data is shown in Table 2:

Table 2. Description of weather data.

Label Description

Location Specified districts that transformers located, China

OCCUR_TIME Timestamp ID of weather records at specified timepoint

TEMPERATURE Value of temperature at specified location

HIGH_TEMPERATUR Highest value of temperature in whole-day records at specified location

LOW_TEMPERATURETEM Lowest value of temperature in whole day records at specified location

RAIN Value of rainfall capacity at specified date and specified location

WIND_DIRECTION Value of wind direction at specified hour and specified location

WIND_VELOCITY Value of wind velocity at specified hour and specified location

PRESSURE Value of atmospheric pressure at specified hour and specified location

HUMIDITY Value of relative humidity at specified hour and specified location

The formal expression of the dataset for the abnormal oil temperature abnormal
diagnosis of transformer in information system is IS = {(X, Y)}, where X are the attributes
of working conditions with weather data and Y are the decision attributes, which are oil
temperature from the sensors measurement at 1 phase of the transformer.

2.2. Abnormal Detection of Oil Temperature Based on Bagging Ensemble Learning

Based on background knowledge about the strong correlation between transformer
working conditions and oil temperature, this paper proposes an abnormal detection ap-
proach of the transformer oil temperature based on bagging ensemble learning. According
to bagging ensemble learning, the oil temperature prediction model is organized with
a set of base classifiers and their power weights, which are trained in parallel by ran-
dom sampling from historical working condition datasets and oil temperature datasets
with replacements.

The steps of Algorithm 1 are described as follows:

Algorithm 1. Oil Temperature Prediction Based on Bagging Ensemble Learning.

Input: Training dataset IS = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, which includes the historical working
condition dataset of transformer X, historical oil temperature dataset Y, and initial base classifiers
C = {C1, C2, . . . , Ck}.

Output: Trained base classifiers C and their power weights w = {w1, w2, . . . , wk}.
The Steps of Algorithm 1:

Step 1. Sample k training datasets {IS1, IS2, . . . , ISk} from IS independently from X with corresponding Y,
where Xj ⊆ X and Yj ⊆ Y.
Step 2. Train base classifier Cj from training set ISj. Therefore, k training datasets from ISj ∈ IS can
independently construct k base classifiers Cj ∈ C.
Step 3. The expected value of predicted oil temperature TY′ can be calculated as TY′ = ∑k

i=1 wiY′i from k
prediction results Y′i of Ci, according to Ci ∈ C, and wi ∈ w, where wi = 1/k and ∑k

i=1 wi = 1.
Step 4. Algorithm ends.

According to trained base classifiers C and their power weights w from Algorithm 1,
the present oil temperature can be predicted from the present working condition data.
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Furthermore, through 2 preset thresholds {α,β}, (0 < α < β < 1), the deviation rates
between the predicted oil temperature and actual oil temperature can be used to judge
the present working state of the transformer using the 3-way decision-making rule. The
flowchart of the 3-way decision-making rule is shown in Figure 1.
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Figure 1. The flowchart of 3-way decision-making rule in Algorithm 2. According to the difference
between the predicted oil temperature and actual oil temperature, the 3 transformer states FINE,
ERROR, and WARNING were obtained.

The detailed steps of Algorithm 2 are described as follows:

Algorithm 2. Abnormal Detection of the Transformer’s Working State.

Input: Present working condition data TS, present actual oil temperature Y, k base classifiers
C = {C1, C2, . . . , Ck} and their power weights w = {w1, w2, . . . , wk}, and 2 preset thresholds α and β.

Output: k base classifiers C and their power weights w, working state of transformer S.
The Steps of Algorithm 2:

Step 1. Input the present transformer’s working condition data TS into k trained base classifiers C,
respectively, and obtain k values of prediction

{
Y′1, Y′2, . . . , Y′k

}
.

Step 2. Calculate the expected value of k prediction results TY′ = ∑k
i=1 wiY′i as the present predicted oil

temperature.
The steps of Algorithm 2 are described as follows:
Step 2.1. If

∣∣TY′ − Y
∣∣/Y ≤ α, then the working state of transformer S = ′FINE′,

and the algorithm ends. Otherwise, it goes to the next step.
Step 2.2. If α <

∣∣TY′ − Y
∣∣/Y < β, then the working state of transformer

S = ′WARNING′, which means the transformer has potential problems but can still
work, and the algorithm ends. Otherwise, go to the next step.
Step 2.3. If

∣∣TY′ − Y
∣∣/Y ≥ β, then the working state of transformer S = ′ERROR′,

which means the transformer has serious problems and should stop to overhaul.
Step 3. Algorithm ends and outputs C, w, and S.

The above oil temperature prediction and abnormal detection model based on bagging
ensemble learning is the foundation of the oil temperature abnormal diagnosis method
in this paper. However, if concept drift occurs in the working condition dataset of the
transformer, then the prediction and abnormal detection model will have obvious bias and
inevitably lead to the incorrect diagnosis result.

2.3. Concept Drift Solution of Oil Temperature Prediction and Abnormal Detection Model

Given that the specified factors, such as the aging of the transformer’s components,
cause the fluctuation of the transformer’s working condition feature, concept drift always
influences the result of oil temperature prediction. Therefore, in this paper, a concept drift
solution based on performance testing is proposed to reduce the influence of concept drift.
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Suppose that, during timeseries t = {t1, t2, . . . , tn}, there is transformer’s working
condition data series Vx = {Xt1 , Xt2 , . . . , Xtn} and the actual oil temperature data se-
ries Vy = {Yt1 , Yt2 , . . . , Ytn}, where Xti ∈ Vx represents the working condition data at
ti time, and Yti ∈ Vy represents the oil temperature data at ti time. According to the
transformer’s working condition data series Vx, the predicted oil temperature results
V′y =

{
Y′t1

, Y′t2
, . . . , Y′tn

}
can be obtained from the oil temperature prediction model.

Definition 1. Relative Error Rate of Oil Temperature Prediction.

The relative error rate is the quotient of the absolute difference between the predicted
oil temperature and actual oil temperature divided by actual oil temperature. The formal
equation of relative error rate δti at time ti is as follows:

δti =

∣∣Y′ti
− Yti

∣∣
Yti

× 100% (1)

Hence, the set of relative error rate during all time is δ = {δt1 , δt2 , . . . , δtn}.
The preset threshold γ of relative error rate is defined as the warning trigger. If the

relative error rate δti is greater than threshold γ, then the prediction result considers that
concept drift occurred. Otherwise, the prediction is considered without influence from
concept drift.

Definition 2. Three-Way Decision-Making Rule of Conceptual Drift Whether Influences Oil
Temperature Prediction or not.

The thresholds of the 3-way decision-making rule were preset as µ and ν. Suppose
that the set of relative error rate δ = {δt1 , δt2 , . . . , δtn} exists k elements δt, which are less
than the warning threshold γ defined in definition 1. If k is greater than or equal to the
threshold ν, then concept drift influences prediction model, and the detection result will
be L = ‘With Influence of Concept Drift’. If k is less than or equal to the threshold µ, then
there is no influence of concept drift on prediction model, and detection result will be
L = ‘Without Influence of Concept Drift’. If k is less than the threshold ν but greater than
the threshold µ, then the decision will be delayed, and detection result will be L = ‘Delay
to Make Decision’.

According to Definition 2, the formal expression of 3-way decision-making rule is:
k ≥ ν,
k ≤ µ,

µ < k < ν,

L = With Influence of Concept Drift
L = Without Influence of Concept Drift

L = Delay to Make Decision

(2)

Note: k is the number of δt < γ.
Based on definition 2, a concept drift detection algorithm is proposed in this paper.

When the relative error rates of a specified number of base classifiers are higher than
the preset thresholds, the decision can be made that concept drift has occurred and has
obviously influenced the result of the prediction model.

Moreover, to reduce the influence of concept drift on the prediction model, we de-
signed a concept drift detection algorithm. The flowchart of concept drift adaptation is
shown in Figure 2.

First, use the concept drift detection algorithm (see Algorithm 3 for details) to detect
whether the current concept drift occurs. The process is to calculates the relative error rate
on the prediction data using the oil temperature prediction algorithm, and then obtain the
detection result through Definition 2. If the result is that the concept drift did not happen,
the algorithm ends. If the result requires a delayed decision, then update the prediction
data and redetect the concept drift. If the result is that the concept drift happens, the oil
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temperature prediction model must be adjusted (see Algorithm 4 below for details). The
following is a detailed description of Algorithm 3, the detection algorithm of concept drift.
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Algorithm 3. Concept Drift Detection Algorithm.

Input: The present transformer’s working condition data series Vx =
{

Xt1 , Xt2 , . . . , Xtn

}
, k base

classifiers C = {C1, C2, . . . , Ck} and their power weights w = {w1, w2, . . . , wk}, and the present actual oil
temperature data series Vy =

{
Yt1 , Yt2 , . . . , Ytn

}
.

Output: The prediction result matrix M of all base classifiers and the decision of concept drift detection
result L.

The Steps of Algorithm 3:
Step 1. Initialize the delay decision threshold λ = 0 and the count number of delay decision a = 0.
Step 2. Input the transformer’s working condition data series Vx into k base classifiers C, and, respectively,

obtain the prediction results: M =


YC1

t1
YC1

t2
. . . YC1

tn

YC2
t1

YC2
t2

. . . YC2
tn

...
...

. . .
...

YCk
t1

YCk
t2

. . . YCk
tn

.

Note: Y
Cj
ti
∈ M, i ∈ [1, n] and j ∈ [1, k]

Step 3. Calculate the expected value of prediction TY′ =
{

TY′t1
, TY′t2

, . . . , TY′tn

}
based on M, where

TY′ti
= ∑k

j=1 wjY
Cj
ti

, i ∈ [1, n] and j ∈ [1, k].

Step 4. According to Definition 1, calculate relative error rate δti =
∣∣∣TY′ti

− Yti

∣∣∣/Yti × 100% and

δ =
{
δt1 , δt2 , . . . , δtn

}
.

Step 5. According to the 3-way decision-making rule in Definition 2, the decision L, whether to use the
concept drift influence prediction model or not, will be made by the count number m of relative error rate set
δ, which are less than the warning threshold γ.

Step 5.1. If the decision L = ‘With Influence of Concept Drift’, then go to Step 6 and
output the decision L and the prediction result matrix M.
Step 5.2. If the decision L = ‘Without Influence of Concept Drift’, then go to Step 6
and output the decision L.
Step 5.3. If the decision L = ‘Delay to Make Decision’, then update the count number
of delay decision a to a = a + 1 and compare a with the delayed decision threshold λ as following:

Step 5.3.1. If a ≥ λ, then return to Step 5.1.
Step 5.3.2. if a < λ, then update the transformer working condition data series
Vx and oil temperature data series Vy and return to Step 2.

Step 6. Algorithm ends.

According to the decision from Algorithm 3, the update of prediction model will be
executed only when the decision L is ‘With Influence of Concept Drift’.
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Based on the decision L of the concept drift detection result and the prediction result
matrix M of all base classifiers, the adaptive update algorithm of base classifiers tends to
update each base classifier Ci ∈ C and their power weight w to reduce the influence of
concept drift the following Adaboost ensemble learning approach if the decision of concept
drift L = ‘With Influence of Concept Drift’.

The Adaptive Update Algorithm of Base Classifiers is described as follows:

Algorithm 4. Adaptive Update Algorithm of Base Classifiers Based on Adaboost Ensemble Learning.

Input: Prediction result matrix M, present transformer’s working condition data series
Vx =

{
Xt1 , Xt2 , . . . , Xtn

}
, k base classifiers C = {C1, C2, . . . , Ck} and their power weights

w = {w1, w2, . . . , wk}, present actual oil temperature data series Vy =
{

Yt1 , Yt2 , . . . , Ytn

}
, and historical

training data set IS = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}.
Output: Updated base classifiers C and their updated power weights w.
The Steps of Algorithm 4:

Step 1. Initialize the sample weight ηi ∈ {η1, η2, . . . , ηM}, where ηi = 1/M, and ∑M
i=1 ηi = 1, and j = 1.

Step 2. Update the base classifiers C and their power weights w.
Step 2.1. Sample M data from IS = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} to obtain training
dataset ISj = {(X1, Y1), (X2, Y2), . . . , (XM , YM)}
Step 2.2. Train base classifier Cupdated

j based on ISj, and calculate total error rate

ej = ∑M
i=1 ηi I

(
Y′i 6= Yi

)
, where Y′i = Cupdated

j (Xi) is the predicted oil temperature.
Step 2.3. Update the power weight wj of base classifier Cj.

wupdated
j = 1

2 log
1−ej

ej
(3)

Step 2.4. Update all sample weights {η1, η2, . . . , ηM}, and ηi ∈ {η1, η2, . . . , ηM}.

η
updated
i =

{
ηold

i exp
(
−wj

)
, i f Y′i = Yi

ηold
i exp

(
wj
)
, i f Y′i 6= Yi

(4)

Step 2.5. Normalize the sample weights
{

η
updated
1 , η

updated
2 , . . . , η

updated
M

}
to make ∑M

i=1 η
updated
i = 1.

Step 2.6. Set j = j + 1 , and return to Step 2.1 until j = k.
Step 2.7. Normalize the power weights

{
wupdated

1 , wupdated
2 , . . . , wupdated

k

}
to make ∑k

j=1 wupdated
j = 1.

Step 3. Expected value of predicted oil temperature TY′ can be calculated as:

TY′ =
k
∑

j=1
wupdated

j Y′j
(5)

where Y′j = Cupdated
j (TX), Cupdated

j ∈
{

Cupdated
1 , Cupdated

2 , . . . , Cupdated
k

}
and

wupdated
j ∈

{
wupdated

1 , wupdated
2 , . . . , wupdated

k

}
.

Step 4. Algorithm ends.

In summary, Algorithm 1 (Oil Temperature Prediction Based on Bagging Ensemble
Learning) was first utilized to construct k base classifiers and their power weights. Then,
Algorithm 2 (Abnormal detection of the transformer’s working state) was utilized for the
transformer’s abnormal oil temperature diagnosis. After a period of time, Algorithm 3
(Concept Drift Detection Algorithm) was used to evaluate the influence of concept drift. If
the concept drift did not influence the prediction result of model such that L = ‘Without
Influence of Concept Drift’, then the working state S of the transformer from Algorithm 2
was the final decision of diagnosis. If the concept drift happened and influenced the
prediction of model such that L = ‘With Influence of Concept Drift’, then Algorithm 4
(Adaptive Update Algorithm of Base classifiers Based on Adaboost ensemble learning)
was used to update the base classifiers and their power weight. Then, we returned to
Algorithm 2 again to obtain the final working state S of the transformer.

3. Results Validation
3.1. Introduction of Experiment

The experimental data were collected from 4,110 kv main oil-immersed main trans-
formers in China from January 2018 to July 2018, as well as the local weather data during
the same period. These data were equally divided into 18 sections in order of time sequence,
and there are the data of 15 days in each section.

In order to validate the efficiency of our proposed adaptive abnormal oil temperature
diagnosis method (AAOTD) of the transformer based on concept drift, we utilized five
other methods for comparison, including classification and regression tree (CART) [25],
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random forest (RF) [26], support vector machine (SVM) [27], accuracy weighted ensemble
(AWE) [18], and basic abnormal transformer oil temperature diagnosis of the transformer
based on ensemble learning without concept drift (BAOTD).

In terms of the advice from experts in the relative domain, the critical parameters of
the abnormal oil temperature diagnosis of he transformer were preset as the thresholds
α = 0.2, β = 0.5, which are the deviation rate between predicted oil temperature and
actual oil temperature from Algorithm 2; γ = 0.5, which is the warning threshold from
Definition 1; µ = 3 and ν = 12, which are the decision-making thresholds from Definition 2;
and λ = 6, which is the delay decision threshold from Algorithm 3.

3.2. Evaluation of Experiment

In this paper, two indicators were used to evaluate the efficiency of the algorithms:
Oil temperature prediction accuracy rate P, and oil temperature abnormal warning rate R.

Oil temperature prediction accuracy rate P is illustrated as following:

P =
N×M

∑
i=1

Ai/(N ×M) (6)

where N is the number of days in an evaluation period and M is the number of prediction
procedure per day, so that N ×M is the amount of all prediction procedure in one evalua-
tion period. A represents the accuracy rate in one prediction procedure and is described
as follows:

A = 1− |Y
′ −Y|

(Y′ × ε)
, (ε ≥ 1) (7)

where Y′ is the predicted oil temperature, Y is the actual oil temperature, and ε is the
factor to magnify the relative difference between the predicted oil temperature and actual
oil temperature.

Oil temperature abnormal warning rate R is illustrated as following:

R =
m
N

(8)

where m is the number of days in which warning happened and N is the number of days
per sections of dataset, such that N = 15.

3.3. Result Analysis

Figure 3 shows the broken line graph of the transformer oil temperature prediction
accuracy rate of the six algorithms (CART, RF, SVM, AWE, BAOTD, and AAOTD) on the
prediction set. The four subgraphs (a), (b), (c), and (d) of Figure 3 represent the experimental
results on transformers at four different locations (Xinyu, Gulu, Xuzhou, and Yanghang).
Since these six algorithms were trained using historical working condition data before the
prediction timepoint, in the initial stage of prediction, all algorithms already had accurate
values for the transformer oil temperature (Figure 3).

However, as time passed, uninterrupted oxidation of the internal components of the
transformer and irregular changes in the external load of the transformer were likely to
cause unforeseen changes in the data of the transformer oil temperature. From the four
subgraphs of Figure 3, after the algorithm predicted the transformers in Xinyu, Gulu,
Xuzhou, and Yanghang through several prediction sets (after predicting the new data for
about 2 months), the accuracy of the four algorithms (CART, RF, SVM, and BAOTD) in oil
temperature prediction began to decline to varying degrees.

As the forecast continued, the model became increasingly inaccurate. After comparing
with the original historical data, we found that the data distribution changed greatly when
the prediction set was 3, 6, 8, 13, 16.
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The x-coordinate represents the serial number of the prediction set, and the y-coordinate represents the accuracy of the
predicted oil temperature.

Therefore, the model trained with historical data did not perform well on the new data
distribution, and the robustness of the model was poor. It can be seen from the red and
brown lines in the four subgraphs (a), (b), (c), and (d) that the performance of algorithm
AAOTD proposed in this paper and the commonly used concept drift adaptive algorithm
AWE declined to a certain extent at the beginning. However, these two algorithms (AAOTD
and AWE) can update themselves with the continuous arrival of new data, which is why
the prediction accuracy of these two algorithms is better than the other four algorithms.

Both the AAOTD and AWE algorithms use an ensemble framework to build the
algorithm model and use the regression tree model as the base classifier in the ensemble
algorithm. The relevant parameter settings of the base classifier are also the same. However,
it can be seen from the comparison of the red and brown lines in Figure 3 that the AAOTD
algorithm had a higher prediction accuracy than the AWE algorithm. This is because the
AWE algorithm only replaces the base classifier by judging whether the performance of
the base classifier is lower than the minimum threshold. This update method ignores the
historical importance of the base classifier, and a small conceptual fluctuation may cause
historically important base classifiers to be deleted by mistake. The method proposed
in this paper to detect concept drift based on the three-way decision-making rule is a
decision model based on human cognition, which can effectively avoid the influence of
false concept fluctuations caused by misjudgment. Moreover, in updating the base classifier,
the AAOTD algorithm adopts the update strategy of Adaboost, which makes it possible to
avoid ensemble learning to overcome the problem of concept drift in the data.

Given working condition of transformer in Xinyu, Table 3 lists the detail of various
methods’ evaluations.
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Table 3. The results of the 6 algorithms on the transformer in the Xinyu area: The initial accuracy, the change of accuracy in
the 3 conceptual drifts (a positive number represents an increase in accuracy, a negative number represents a decrease in
accuracy), and the final accuracy.

Algorithm Initial Accuracy
Accuracy Rate after the Concept Drift

Final Accuracy
First Time Second Time Third Time

BAOTD 0.9954 −0.2863 −0.1963 −0.8266 0.3376
CART 0.9743 −0.5079 −0.1409 −0.1107 0.0027

RF 0.9845 −0.2827 −0.2008 −0.8397 0.3439
SVM 0.9896 −0.3228 −0.2498 −0.7627 0.1895
AWE 0.9898 −0.0108 +0.0235 +0.1217 0.8515

AAOTD 0.9942 +0.0012 +0.0598 +0.1538 0.9555

The AWE, AAOTD, and BAOTD algorithms had high accuracy in predicting oil
temperature, reaching 98.98%, 99.42%, and 99.54% accuracy, respectively. This is because
these three algorithms use an ensemble algorithm model. The final prediction result of
the ensemble algorithm was obtained by the weighted average of the oil temperature
prediction results of each base learner in the algorithm. Compared with a single complex
classifier, this ensemble method has more stable accuracy, which also shows that using
integrated algorithms is better in the context of transformer oil temperature prediction.

Table 3 shows the three significant declines in the accuracy of oil temperature pre-
diction. Among them, the accuracy of the BAOTD, CART, RF, and SVM algorithms
decreased because these algorithms themselves do not have the ability to adapt to concept
drift. When the concept drift occurred in the oil temperature working condition data,
the abovementioned algorithms (BALOTD, CART, RF, and SVM) did not use the latest
oil temperature working condition data to update the algorithm model, but still used
the algorithm model trained with historical oil temperature operating condition data to
predict the oil temperature. So, with the continuous change of the concept drift in the oil
temperature working condition data, the accuracy of the algorithm model will continue to
decline, while the accuracy of the algorithms with self-renewal (AWE and AAOTD) will
experience a smaller decline.

For the AAOTD algorithm, when the accuracy of the algorithm changes, the concept
drift detection will be performed according to the Concept Drift Detection Algorithm
mentioned in Section 2. Then, different decisions will be made according to the Adaptive
Update Algorithm of Base Classifiers Based on Adaboost Ensemble Learning algorithm to
update the base classifiers, so that the updated base classifier can adapt to the conceptual
drift in the oil temperature working condition data. From the data in the table, the final
accuracy rate of the oil temperature prediction of the AAOTD algorithm proposed in this
paper only slightly decreased, still reaching 95.55%. This shows that the performance of
the AAOTD algorithm is stronger than other algorithms used in this experiment.

Next, we input the predicted oil temperature values of the above six algorithms
into Algorithm 2 (Abnormal detection of transformer’s working state) and calculated the
changes in the warning rate of each algorithm in each prediction set according to Formula
8 to obtain Figure 4.

The four subgraphs (a), (b), (c), and (d) of Figure 4 plot the warning rate changes
curves of the transformers in Xinyu, Gulu, Xuzhou, and Yanghang of the six algorithms.
The yellow curve represents the abnormal rate of the transformer under real conditions. In
real situations, there were fewer cases of warning and error in the transformer. The broken
line of the AAOTD and AWE algorithm is more consistent with the broken line in the real
situation, among which the AAOTD algorithm is the best.

It can be seen from Figure 4 that the other four algorithms also performed poorly in
the early warning of the transformers. This is because they do not consider concept drift,
so the accuracy of oil temperature prediction was not high, which led to poor diagnosis
results of abnormal transformers.



Appl. Sci. 2021, 11, 6322 12 of 14
Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 15 
 

(a) (b) 

(c) (d) 

Figure 4. Tendency of abnormal oil temperature warnings from various methods. The 4 

subgraphs (a–d) show the results of six algorithms for oil temperature prediction of the 

transformers in 4 different regions (Xinyu, Gulu, Xuzhou, and Yanghang). The x-coordi-

nate represents the serial number of the prediction set, and the y-coordinate represents 

the early warning rate of the transformer. 

The four subgraphs (a), (b), (c), and (d) of Figure 4 plot the warning rate changes 

curves of the transformers in Xinyu, Gulu, Xuzhou, and Yanghang of the six algorithms. 

The yellow curve represents the abnormal rate of the transformer under real conditions. 

In real situations, there were fewer cases of warning and error in the transformer. The 

broken line of the AAOTD and AWE algorithm is more consistent with the broken line in 

the real situation, among which the AAOTD algorithm is the best. 

It can be seen from Figure 4 that the other four algorithms also performed poorly in 

the early warning of the transformers. This is because they do not consider concept drift, 

so the accuracy of oil temperature prediction was not high, which led to poor diagnosis 

results of abnormal transformers. 

Overall, the AAOTD algorithm proposed in this paper had a higher oil temperature 

prediction accuracy and more correct oil temperature abnormal warning rate in the oil-

immersed transformer-related dataset. Compared with classic concept drift adaptation al-

gorithms and other machine learning algorithms that do not consider that the transformer 

oil temperature working condition data is prone to concept drift, this algorithm has con-

cept drift adaptation capability, better transformer abnormal diagnosis results, and is 

more robust. 

  

Figure 4. Tendency of abnormal oil temperature warnings from various methods. The 4 subgraphs (a–d) show the results of
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The x-coordinate represents the serial number of the prediction set, and the y-coordinate represents the early warning rate
of the transformer.

Overall, the AAOTD algorithm proposed in this paper had a higher oil temperature
prediction accuracy and more correct oil temperature abnormal warning rate in the oil-
immersed transformer-related dataset. Compared with classic concept drift adaptation
algorithms and other machine learning algorithms that do not consider that the trans-
former oil temperature working condition data is prone to concept drift, this algorithm has
concept drift adaptation capability, better transformer abnormal diagnosis results, and is
more robust.

4. Conclusions

In this study, an adaptive abnormal oil temperature diagnosis (AAOTD) method based
on the concept drift was proposed. This method can significantly reduce the influence
of concept drift from performance degradation of the transformer’s components. The
contributions of this paper are as follows. First, a new concept drift detection model was
developed using three-way decision-making theories, which can infer the influence level of
concept drift based on changes of model accuracy. Then, ensemble learning algorithm was
employed to adaptively adjust the base learners and their weights to reduce the influence
of concept drift. The efficiency of AAOTD methods was validated via the experiments.
In the experiments, the average oil temperature prediction accuracy of AAOTD in four
regions reached 95.03% (Xinyu: 94.27%, Gulu: 93.58%, Xuzhou: 95.82%, Yanghang: 94.46%),
which is 1.52% higher than the AWE algorithm and 20–40% higher than other traditional
machine learning algorithms. Furthermore, since this method only utilizes the existing
power grid data resources to realize abnormal oil temperature diagnosis without extra
monitoring equipment, it is an economic and efficient solution for practical scenarios in the
electric power industry.
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However, due to the ensemble learning steps, the computational complexity of the
algorithm proposed in this paper is higher than the traditional methods. Therefore, in the
future work of this research, we will focus on reducing the computational complexity of
the algorithm.
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