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Abstract: In order to effectively reduce the impact of Global Navigation Satellite System (GNSS)
attacks while providing mobile terminals with credible navigation and positioning results, this
paper proposes a credible navigation algorithm for GNSS attack detection using an auxiliary sensor
system. Based on a credible Kalman filter and measurement information provided by the auxiliary
sensor system on mobile terminals, the proposed algorithm can verify the credibility of the GNSS
positioning result and determine whether it has suffered from a GNSS attack using the credible
verification window and the credible verification threshold. According to the verification results, the
algorithm can adaptively select an updated model for measurement correction and achieve a credible
navigation result. The algorithm proposed in this paper has been verified on a self-developed mobile
terminal, and the experimental results show that the algorithm can provide credible navigation and
positioning services for mobile terminals in the context of GNSS attacks.
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1. Introduction

The existing and widely used GNSS can provide all-day global Position, Navigation
and Time (PNT) service. However, the GNSS signal is a type of radio signal and is
vulnerable to attacks from other radio signals in the same frequency band. As a result, the
GNSS signals acquired by mobile terminal often suffer from abnormalities, causing the
deviation of filter parameters, which results in an incorrect movement trajectory received
by the terminal and makes the navigation and positioning results undependable [1–4]. For
autonomous driving and the Internet of Vehicles, the increase in the level of automation
will also increase the chances of successful attacks by hackers, especially on the navigation
control module based on the GNSS, which could substantially deteriorate the safety of the
vehicle [5,6].

The main methods of GNSS signal attacks include suppressive interference and spoof-
ing interference [7]. Suppressive interference uses high-power signal blocking to prevent
the receiver from working normally, but it is relatively easy to be detected. On the other
hand, spoofing interference works by transmitting signals that are the same as or simi-
lar to the real satellite signals in order to deceive the terminal which rely on navigation
information for positioning, and this method is relatively difficult to detect. Therefore,
spoofing interference has gradually become a bigger threat to satellite navigation systems.
Spoofing interference upon the GNSS is usually conducted in three different forms: the
auto-generating type, repeater type and inducing type [8]. Auto-generating spoofing uti-
lizes public navigation signals to generate its own navigation signals autonomously and
seize control of the receiver afterwards. This spoofing method is low in cost and simple to
be implemented. However, the generated spoofing signal is far from the real signal and is
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easily detected. The repeater type of spoofing copies the received real signal, adds a delay,
and forwards it again as a spoofing signal. This spoofing is mainly used for navigation
signals whose interface files are not disclosed. However, in order to seize control, the
power of the spoofing signal still needs to be further increased; moreover, this method also
requires the interruption of the receiver to make it re-enter the capture state, which can
be detected using the power detection method. Inducting spoofing is the only spoofing
method that can seize control without changing the tracking state of the receiver. It is
concealed and difficult to detect with conventional methods, such as power detection.

In order to improve the credibility of mobile terminal navigation and positioning, dif-
ferent detection technologies are used for different types of GNSS attacks [9–11]. Today, the
detection technologies for GNSS attacks can be divided into the following categories [12]:
signal encryption authentication, signal feature detection and consistency verification with
other navigation sensors. The signal encryption authentication technology [13–15] is used
to encrypt the civil navigation signal or spreading code to deal with spoofing interfer-
ence. However, for the method to work, it is required to change the signal system, add a
reference receiver, and rely on other networks for collaborative detection. Signal feature
detection [16–20] detects spoofing based on the amplitude, arrival time and arrival angle
during the GNSS receiver’s capture and tracking phase in order to determine the credibility
of the GNSS signal. Compared to the previous one, this method does not need to change the
signal system, but it requires upgrades to the baseband signal processing algorithm related
to the GNSS receiver, or installation of anti-jamming modules, which are very expensive.
The consistency verification of the mobile terminal combined with the auxiliary navigation
sensors already installed on the mobile terminal can also effectively realize the detection
of GNSS jamming and spoofing. Currently, the commonly seen mobile terminals that use
GNSS signals, such as automobiles, aircraft, individual soldiers and unmanned terminals,
are usually equipped with auxiliary navigation sensors [21] such as inertial measurement
units (IMUs), odometers, etc. These auxiliary navigation sensors are non-radio sensors and
will not be attacked by GNSS jamming signals or GNSS spoofing signals. These sensors can
provide navigation and positioning information with good accuracy in a short time with
high update rate. The position coordinates calculated by the auxiliary navigation sensors
will be continuous, with no sudden interruption or signal jump.

By effectively using the measurement information provided by the auxiliary naviga-
tion sensors to check the consistency of the GNSS signal, the mobile terminal is capable
of detecting the involving jamming and spoofing attacks. Reference [22] proposed an
accelerometer-assisted spoofing detection algorithm, which compares the difference be-
tween accelerometer output and the GPS output to detect anomalies caused by spoofing
interference. Reference [23] proposed a joint spatial consistency check method that judges
whether the positioning solution meets the distance constraint to counter GNSS spoofing
attacks according to the known position provided by the GNSS receiver. Reference [24]
proposed a method that fuses the GNSS absolute positioning data with the data of the
vehicle speed sensor, acceleration sensor, and steering wheel angle sensor so that it can still
provide accurate vehicle positioning even when the GNSS signal is interrupted for a short
period of time. Reference [25] proposed a method for predicting the position deviation
of UAVs under GPS spoofing attacks based on innovative particle filters. The integrated
architecture of GPS/Loran-C/INS improves the accuracy of UAV’s true position prediction.
These methods mentioned above all use measurement navigation information provided by
auxiliary navigation sensors for signal attacking detection without increasing the user’s
hardware cost. However, when induced spoofing attacks occur, the calibration feedback
information of the Kalman Filter system in these methods will be biased due to GNSS
spoofing. Therefore, reference [26] proposed a MEMS-INS/GNSS tightly coupled spoofing
identification method based on the estimation of the spoofing contour: it reconstructs
and analyzes the spoofing distribution to predict GNSS attacks in the signal domain and
effectively identifies and eliminates induced spoofing attacks.
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In response to the problems discussed above, the purpose of this article is to design a
simple and effective navigation algorithm to detect and mitigate different kinds of GNSS
attacks, including GNSS jamming or GNSS spoofing, and then obtain a credible navigation
result in the positioning domain. Therefore, a credible navigation algorithm for GNSS
attacks detection using an auxiliary sensor system (ACNA) is proposed. By monitoring
the measurement information of the GNSS and the auxiliary navigation sensors in the
location domain during the credible verification window, the ACNA method analyzes
and determines whether the mobile terminal suffers a GNSS attack. According to the
verifications, the algorithm can adaptively select an updated model for measurement
correction, and output credible navigation results. Finally, through the data sets collected
by the self-developed mobile terminal, the analysis and verification of the algorithm
performance are verified.

2. Credible Kalman Filter Model

2.1. Filter Model Description

In this paper, GNSS attacks are divided into two categories depending on their impact
on the positioning domain: GNSS jump attacks and GNSS slow-change attacks. GNSS jump
attacks happen when the GNSS is jammed or spoofed, causing invalid or large deviation in
the positioning result. This type of GNSS attack is relatively easy to recognize, including
GNSS jamming attacks, GNSS-generated attacks and GNSS repeater attacks. GNSS slow-
change attacks happen when the positioning result drifts off slowly after the GNSS spoofing
attack. This type of GNSS attack, including induced spoofing attacks, a not easy to identify.
If the mobile terminal has suffered from a GNSS jump attack or a GNSS slow-change
attack during movement, the new observation data will be abnormal, as mentioned above.
With the feedback correction of the Kalman filter, the error will propagate and make the
positioning results not credible [25]. This paper proposes a credible navigation algorithm
based on an auxiliary sensor system, and a credible Kalman filtering framework (CKF)
which includes an optimized Kalman filter framework with the addition of a credible
decision-making module with two state-parameter update models (credible update model
and auxiliary update model). Through sliding the credible-verification window, GNSS
attacks that may occur in mobile terminals are continuously monitored, and the adaptive
selection of the state-parameter update model is performed. If there is no attack alarm,
the current GNSS signal is determined to be credible, and the credible update module is
selected to perform position prediction, and state parameters are updated and corrected.
If a GNSS attack warning does occur, it is determined to be untrusted, and the auxiliary
update model is selected for position prediction. In the end, the credible navigation and
positioning results are produced (see Section 3 in detail).

The credible Kalman filter framework is shown in Figure 1. In theory, the credible
Kalman filter model can be applied to any kind of auxiliary sensor system that can provide
the navigation position information (the auxiliary sensor system here includes IMUs,
odometers, visual odometers, cameras, and other sensors that can provide absolute or
relative position information. For example, the auxiliary navigation sensor could be an
inertial navigation system (INS), a differential drive encoder (DDE) system or a DDE/INS
integrated navigation system). In order to better explain the principle based on the self-
developed credible navigation test terminal, this paper selects the DDE/INS-integrated
navigation system as an auxiliary sensor system to derive the credible Kalman filter model.
If other auxiliary navigation sensors are used instead, the credible Kalman filter model
needs to be derived based on the corresponding sensor. The following is a theoretical
modeling of the GNSS, DDE/INS auxiliary sensor system and credible Kalman filter.
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2.2. GNSS Module

GNSS receivers generally use the WGS-84 ellipsoidal coordinate system [27] for co-
ordinate representation, while the auxiliary sensor system generally uses the navigation
coordinate system. In order to analyze the terminal position, the auxiliary sensor system in
the mobile terminal and the GNSS location information must be put together in the same
coordinate system. Therefore, it is necessary to transform the latitude, longitude and height
information obtained from the GNSS in the geodetic coordinate system to the navigation
coordinate system.

Assuming the latitude, longitude and height information of the starting position
ρ0 is (b0, l0, h0), where b0 is the latitude, l0 is the longitude, and h0 is the height. Then,
the position of ρ0 transformed into the WGS-84 coordinate system is (X0, Y0, Z0). In the
navigation coordinate system, the moving position ρ of the mobile terminal in the geodetic
coordinate system is (b, l, h), and the position ρ transformed into the navigation coordinate
system is (eG, nG, uG). The major axis of the ellipsoid model is a = 6, 378, 137 km, and
the oblateness is e = 1/298.257. Then, the state parameter xG of the GNSS model in the
navigation coordinate system is

xG =

 eG

nG

uG

 =

 − sin l0 cos l0 0
− sin b0 · cos l0 − sin b0 · sin l0 cos b0

cosb0 · cos l0 cos b0 · sin l0 sin b0

 (a + h) · cos b · cos l − X0
(a + h) · cos b · sin l −Y0

(a · (1− e2) + h) · sin b− Z0

. (1)

2.3. DDE/INS System Module

The auxiliary sensor system needs to independently maintain the output position of
the mobile terminal in the navigation coordinate system in order to verify the credibility
of the GNSS positioning result. The auxiliary sensor system used in this paper is the
DDE/INS auxiliary sensor system. The working principle of the DDE/INS system is
shown in Figure 2.

Given the initial position, the DDE/INS system will calculate the position and heading
of the mobile terminal through the DDE odometer. Before deriving the DDE/INS system
model, we should derive the DDE system module first. The two wheels of the DDE
odometer are independently controlled to realize the movement and steering control of
the chassis [28]. By collecting the encoded data of the two wheels in a DDE unit time
slot ∆tD, the relative displacement in the navigation coordinate system can be solved as
(∆eD, ∆nD, ∆yawD). The moving distance of the left and right wheels in ∆t is denoted as
(sl

k, sr
k). Then, in the navigation coordinate system, the calculation model of (sl

k, sr
k) is

sl
k = ol

k−1,k · 2π ·Wr · Ll

sr
k = or

k−1,k · 2π ·Wr · Lr
(2)
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where (ol
k−1,k, or

k−1,k) is the increment of the left and right wheels in ∆tD, (Ll, Lr) is the
maximum count per rotation of the left or right wheel, Wr is the radius of the wheel, and
Lw is the distance between the two wheels. Therefore, the navigation coordinate (eD

k , nD
k )

and yaw angle yawD
k at time k in the DDE system model is

eD
k = eD

k−1 +
1
2 · (sl

k + sr
k) · sin(yawD

k−1 +
(sl

k−sr
k)

Lw
)

nD
k = nD

k−1 +
1
2 · (sl

k + sr
k) · cos(yawD

k−1 +
(sl

k−sr
k)

Lw
)

yawD
k = yawD

k−1 +
(sl

k−sr
k)

Lw

. (3)
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However, the DDE system model is greatly affected if the road surface is not flat,
which causes a large error in the mileage calculation. In order to improve the navigation
performance of the auxiliary sensor system and the credibility of the ACNA algorithm, the
DDE system model is optimized by tightly coupling the yaw angle yawI and the height
∆uI calculated by INS, as shown in the following formula:

eDI
k = eDI

k−1 +
1
2 · (sl

k + sr
k) · sin(yawI

k)

nDI
k = nDI

k−1 +
1
2 · (sl

k + sr
k) · cos(yawI

k)

uDI
k = uDI

k−1 + ∆uI
k

(4)

where (eDI
k , nDI

k , uDI
k ), yawI

k and ∆uI
k are the navigation coordinate, the yaw angle and the

height at time k in the DDE/INS system.
In the navigation coordinate system, the velocity components (vx, vy, vz) of the mobile

terminal in the east and north directions at time k is

vx,k =
1

2∆tD · (sl
k + sr

k) · sin(yawI
k)

vy,k =
1

2∆tD · (sl
k + sr

k) · cos(yawI
k)

vz,k =
1

∆tD · ∆uI
k

(5)
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Therefore, the state parameter xDI of the DDE/INS system model is

xDI =


eDI

k

nDI
k

uDI
k

 =


eDI

k−1 + vx,k−1 · ∆tD

nDI
k−1 + vy,k−1 · ∆tD

uDI
k−1 + vz,k−1 · ∆tD

. (6)

2.4. Credible Kalman Filter Model

The state parameter of the CKF filter system based on the DDE/INS system is

x=[x, y, z, vx, vy, vz]
T (7)

where (x, y, z) is the navigation coordinate of the mobile terminal, while (vx, vy, vz) is the
velocity of the mobile terminal. Then, the state update model xk

′ at time k of the DDE/INS
system is

xk
′ =



xk
yk
zk

vx,k
vy,k
vz,k

 =



xk−1 + vx,k−1 · ∆tD

yk−1 + vy,k−1 · ∆tD

zk−1 + vz,k−1 · ∆tD

vx,k−1
vy,k−1
vz,k−1

 = xk−1
′ + ∆tD ·



vx,k−1
vy,k−1
vz,k−1

0
0
0

 (8)

If the GNSS information is determined to be credible, the GNSS state parameter xG

and the DDE/INS state parameters xDI are used as observations of the CKF filter system
to generate a credible update model A. In the update process of the CKF filter system, the
measurement vector ZA is expressed as

ZA=[eDI
k , nDI

k , uDI
k , yawI

k, eG
k , nG

k , uG
k ]

T
. (9)

If the GNSS information is determined to be untrusted, the CKF filter system shields
the GNSS state parameter xG, and only uses the DDE/INS state parameters xDI to generate
an auxiliary update model V . Then, it enters the CKF filter system update process, in which
the measurement vector ZV is expressed as

ZV=[eDI
k , nDI

k , uDI
k , yawI

k]
T

. (10)

3. Credible Navigation Algorithm

3.1. Algorithm Model

By setting the size of the credible verification threshold and the size of the credible
verification window, the ACNA algorithm monitors GNSS drift, effectively identifies GNSS
jump/slow attack, and improves the credibility of the system. The definitions of GNSS
drift, credible verification window and credible verification threshold are given below.

GNSS drift: The offset of the GNSS positioning result relative to the positioning result
of the auxiliary sensor system. The GNSS drift ∆ρk at time k is

∆ρk =

√
(eG

k − eDI
k )

2
+ (nG

k − nDI
k )

2
+ (uG

k − uDI
k )

2. (11)

Credible verification window: The credibility of GNSS is determined using the credible
verification window as a scope of judgment. During the process of credibility determina-
tion, the drift ∆ρ over several consecutive positioning time slots is analyzed to determine
whether the GNSS signal is credible. The number of consecutive positioning time slots
mentioned above is in fact the size of the credible verification window. The credible verifi-
cation window includes the jump verification window nj, and the slow-change verification
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window ns. Here, nj is used to verify whether the GNSS has experienced a GNSS jump
attack while ns is used to verify whether the GNSS has experienced a GNSS slow-change
attack. In the credibility determination process, the credibility verification window will
continue to slide over time.

Credible verification threshold: During the movement of the mobile terminal, the
trajectories of two adjacent points are correlated. The possible position range of the mobile
terminal at time k + 1 can be predicted according to the position at time k, the velocity at
time k, the yaw angle at time k and the measurement error of GNSS and the auxiliary sensor
system from time k to time k + 1. The GNSS signal lies within a certain error range: if it
exceeds a certain error range, the GNSS signal can be considered abnormal. At this point,
the radius of the abnormal position beyond the certain error range is set as the credible
threshold. During the determination of the credible verification window, it is required to
keep monitoring whether GNSS drift exceeds a certain threshold. This threshold is defined
as the credible verification threshold. Our method sets separate thresholds for GNSS jump
attacks and GNSS slow-change attacks as Thj and Ths.

If the signal continues to be abnormal, GNSS jump/slow-change attack can be detected
based on the analysis of measurement information in the credible verification window
range. If the credibility verification threshold is too high, a missing alarm may be triggered.
If the credible verification threshold is too low, a false alarm may be triggered. If there is
only one or two signal abnormalities within a certain period of time, it may be a “GNSS
signal false point”, which may be caused by other factors. In order to remove these
unwanted signal fluctuations, appropriate parameter values need to be set to filter them
out to effectively eliminate false points, improve the accuracy and reduce the false/missing
alarm rate of the system.

According to the state and prediction location results of ACNA, the location of points
is divided into four categories: (1) TP: predict as normal, in fact normal, (2) FP: predict as
normal, in fact abnormal, (3) TN: predict as abnormal, in fact abnormal, (4) FN: predict as
abnormal, in fact normal. Then, the accuracy rate of navigation prediction PD is

PD =
TP + TN

TP + FN + FP + TN
. (12)

The false alarm rate PFA is

PFA =
FP

FP + TN
. (13)

The missing alarm rate PMD is

PMD =
FN

TP + FN
. (14)

In order to improve the credibility of the ACNA algorithm, it is necessary to set the
appropriate credible verification threshold and credible verification window. According to
the minimum error criterion [29], minimizing the sum of integrity and availability risks
can maximize the accuracy of the navigation algorithm. Therefore, this then becomes an
optimization problem. The optimization objective is to maximize the accuracy rate of
the algorithm and minimize the false alarm rate and missing alarm rate of the algorithm.
That is:

max(PD) ∧min(PFA + PMD)

s.t.

nj > 1 (15)

ns > nj (16)

Thj ≥ σG (17)

Thj ≤ 3σG (18)
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Ths ≥ σG (19)

Ths ≤ 3σG (20)

Ths ≥
k

∑
i=k−ns+1

εDI
i /ns. (21)

Equations (15) and (16) are credible verification window constraints. The jump at-
tack of GNSS means that the GNSS drift exceeds the jump verification threshold for nj
consecutive moments. The jump attack detection method can be used to detect the “GNSS
signal false points” of the system, improve the accuracy rate, and reduce the false alarm
rate. Therefore, nj should satisfy nj > 1. The slow-change verification window ns is used
after the jump attack detection. Therefore, ns is set to be larger than the jump verification
window nj to optimize the algorithm running time.

Equations (17)–(21) are credible verification threshold constraints. The GNSS position-
ing solution follows a Gaussian distribution, with the mean and standard deviation being
µG and σG. According to the Pauta criterion (3σ criterion), the possibility that the GNSS
positioning solution exceeds the range (µ− 3σ, µ+3σ) is only 0.27%. Thus, an error of ±3σ
can be used as the limit error of the GNSS positioning settlement result. To identify GNSS
jump attack, the choice of Thj should not exceed the limit error of GNSS at 3σG. At the
same time, to ensure the positioning accuracy of the system, Thj should not be lower than
the GNSS error at σG. Thus, Thj should satisfy Equations (17) and (18).

As for the slow-change attack of GNSS, the location domain changes by only a small
amount per unit time, which is difficult to detect by jump verification. The selection of
Ths should be greater than the measurement error of the GNSS system and the cumulative
measurement error of the auxiliary sensor system. At each unit time in the credible verifica-
tion window, the measurement errors of the GNSS system are relatively independent, and
they all satisfy the 3σ principle. Ths should not be lower than the GNSS error at σG and
not exceed the limit error of GNSS at 3σG during the slow-change verification window ns.
Thus, Ths should satisfy Equations (19) and (20). The cumulative measurement error of the
auxiliary sensor system PDI is the cumulative measurement error of the auxiliary sensor
system during the credible verification window. The measurement error of the auxiliary
sensor system will continue to accumulate if there is no GNSS observation to correct and
calibrate the auxiliary sensor system. Therefore, PDI can be calculated as

PDI
k−ns+1,··· ,k−1,k =

k

∑
i=k−ns+1

εDI
i (22)

where εDI
i is the measurement error of the auxiliary sensor system at time i. Then, Ths

should be greater than the average cumulative error of the auxiliary sensor system to
accurately determine whether a GNSS attack occurs, as described in Equation (21). In
order to simplify the measurement error model of the auxiliary sensor system, we make
the following assumptions for the error model. The measurement errors of the auxiliary
sensor system εDI all have the same normal distribution, with a mean of µDI and a variance
of σ2

DI. That is
E(εDI

k ) = µDI

V(εDI
k ) = σ2

DI

(23)

At each unit time in the credible verification window, the measurement errors of the
auxiliary sensor system are relatively independent; thus, the measurement errors of the
auxiliary sensor system can be simplified as:

PDI
k−ns+1,··· ,k−1,k = σ2

DI × ns. (24)
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3.2. Algorithm Design

According to the optimization theoretical model above, we designed the ACNA
method to detect whether the GNSS was subjected to jump or slow-change attacks, based
on whether the GNSS drift exceeds the credible verification threshold within the credible
verification window. In order to maximize the accuracy of the algorithm and minimize the
risk of algorithm integrity and availability, the updated model of the filter was selected
adaptively to obtain the credible navigation prediction.

At time k, when the mobile terminal has a positioning requirement, it receives the
GNSS signal and calculates the position of the mobile terminal as ρG

k . At this time, the
estimated position obtained from the auxiliary sensor system is ρDI

k

ρG
k =[eG

k , nG
k , uG

k ]

ρDI
k =[eDI

k , nDI
k , uDI

k ]
(25)

After acquiring the GNSS signal in the current positioning time slot, ACNA enters
the GNSS interruption verification stage in order to determine whether the GNSS signal
acquired is valid. If the GNSS signal is invalid (ρG

k = V and V means the signal is invalid)
at this time, it is concluded that the GNSS signal is interrupted, and the system sends a
GNSS signal interruption alarm to the mobile terminal. Then, the auxiliary updated model
is selected to filter and update the position prediction until the GNSS is determined to be
valid (ρG

k 6= V). After that, the data of GNSS and auxiliary sensor system are extracted and
processed, and the jump attack detection stage is entered.

In the GNSS jump attack detection stage, the credibility of the GNSS positioning
results can be verified through ∆ρk, nj, and Thj. For the consecutive positioning time slots
nj, the GNSS drift ∆ρ should be determined between each positioning time slot. The jump
mark flagj tracks and records the GNSS signal jump, as

flagj(k) =

{
flagj(k− 1) + 1 ∆ρk > Thj

0 ∆ρk ≤ Thj
. (26)

If flagj(k) ≥ nj, it is verified that a GNSS jump attack has occurred, as shown in
Figure 3. At this time, GNSS is judged to be in the untrusted stage, and the auxiliary
update model is selected for terminal position prediction, and a jump alarm was issued at
the same time.
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If no GNSS jump attack occurs, the algorithm enters the GNSS slow-change verification
stage, and the GNSS positioning result is verified based on ∆ρk, ns and Ths. For the
consecutive positioning time slots ns, the GNSS drift ∆ρ in each slot should be tracked
and recorded by the slow-change mark flags. At time k, flags(k) represents the statistical
average of GNSS drift from time k + 1− ns to k, as

flags(k) =
ns

∑
i=1

∆ρk+i−ns /ns . (27)

If flags(k) ≥ Ths, it is verified that GNSS drift exceeds the threshold from time k− ns
to k during the slow-change verification window, which means a GNSS slow-change attack
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may occur, as shown in Figure 4. At this time, GNSS is judged to be in an untrusted stage,
and the auxiliary update model is selected for terminal position prediction, and at the same
time, a slow-change alarm is issued.
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If there is no interruption or jump/slow-change attack on the GNSS signal, the GNSS
is judged to be in a credible stage, and the credible update model is selected for the filtering
update and position prediction.

The algorithm flowchart is presented in Figure 5 and the logical flow of the algorithm
is explained as follows:
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Step 1: Initialization. Set the initial global position (converted to the navigation coordinate
system) according to the GNSS signal acquired when the mobile terminal is initially at
stationary. Initialize parameters nj, Thj, ns, Ths, flagj and flags.
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Step 2: Decide whether there is a navigation and positioning requirement. If so, the GNSS
receiver and auxiliary sensor will enter the working state and go to step 3; otherwise, go to
step 8.
Step 3: Determine whether the GNSS and auxiliary sensor system have new and valid
input data. If the acquired information of GNSS and auxiliary sensor system is valid, the
information of GNSS from global coordinates is converted to navigation coordinates, and
the position unity with the auxiliary sensor system is realized to obtain ρG

k and ρDI
k . Then,

we go to step 4; if the effective information of the auxiliary navigation sensor system is
obtained, and the GNSS positioning result is interrupted, the auxiliary update model is
used to maintain the terminal position prediction, and we go to step 3 again; if no valid
information is obtained, we go back to step 2.
Step 4: Calculate GNSS drift ∆ρk at time k. If ∆ρk > Thj, then we have flagj(k− 1) + 1, and
we go to step 5; otherwise, we have flagj(k)= 0, and we go to step 6.
Step 5: Determine the size of flagj(k). If flagj(k) < nj, we proceed to Step 6; if flagj(k) ≥ nj,
it is determined that there is a GNSS jump attack, the GNSS is set as an untrusted navigation
source, and the auxiliary update model is used to maintain the terminal position prediction
at this time. If this happens, we reverse back to step 3.
Step 6: Calculate flags(k). If flags(k) ≥ Ths, it is determined that there is a GNSS slow-
change attack, the GNSS is set as an untrusted navigation source, and the auxiliary update
model is used to maintain the terminal position prediction. Then, we go back to step 3;
otherwise, we continue to step 7.
Step 7: GNSS is in a credible stage. The credible update model is used to maintain the
terminal position output, and then we go to step 3 again.
Step 8: End.

4. Performance Evaluation
4.1. Experimental Platform and Data Set

In order to test the proposed ACNA algorithm, simulations and evaluations are
performed on two data sets collected during the real driving. The experiment is conducted
using a self-designed robot system named QJ-Racecar equipped with RTK, GNSS, INS and
DDE sensors. Its mechanical structure and sensors are shown in Figure 6. Additionally, the
sensor specifications are shown in Table 1 below.
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Table 1. List of sensor simulation parameters.

Sensor Model Sensor Error Sample Rate

RTK MXT906A Horizontal position
accuracy RTK 0.025 m 1 Hz

GNSS NEO-6M Horizontal position
accuracy GPS 2.5 m 1 Hz

Accelerometer MPU9250
Noise power Spectral
Density 300 µg/

√
Hz

10 Hz

Gyroscope MPU9250
Rate Noise Spectral Density

0.01◦/s/
√

Hz
10 Hz

Magnetometer MPU9250 Sensitivity Scale Factor
0.6 µT/LSB 10 Hz

DDE JGB37-520 Max Encoder 495 10 Hz

Two data sets are collected during the test ride. Data set 1 is named Ψ1, and it shows
an outdoor static test of the mobile terminal with a 5 min duration. This data set also
provides the initial position of the mobile terminal, as shown in Table 2 below. Data set
2 is named Ψ2, and it is collected by driving the robot along the sidelines of a 13.4 m long
and 6.1 m wide badminton field at an average speed of 0.5 m/s. The trajectories of the two
data sets exported by the RTK receiver are shown in Figure 7 and the number of available
satellites during driving is shown in Figure 8.

Table 2. Initial state parameters of the trajectory.

Type Initial State of the Trajectory

Lan/Lon/Height 40.0702◦ N/116.2747◦ E/54.63 m
Heading/Roll/Yaw 0◦, 0◦, 248◦
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4.2. Simulation Results

In order to validate the performance of the proposed algorithm ACNA, the GNSS
jump or slow-change attacks are simulated on the data set Ψ1 and Ψ2. The simulation of
GNSS jump attacks are applied to Ψ2 to obtain Ψ̃2. The simulation of GNSS slow-change
attacks are applied to Ψ2 to obtain Ψ̃3. Additionally, the simulation of GNSS jump and
slow-change attacks are applied to Ψ2 to obtain Ψ̃4.

GNSS jump attacks are injected into data set as follows:

ρ̃GJ=ρG + ∆ρJ, ∀∆ρJ ∼ N(20, 0.1) (28)

where ρ̃GJ represents the position after GNSS jump attacks are injected, ρG represents the
GNSS position, and ∆ρJ (random interference is added with an average of 20 m and a
variance of 0.1) represents the position disturbance caused by GNSS jump attacks in the
location domain. As can be seen from Equation (28), the jump attack injects big errors to
GNSS signals.

GNSS slow-change attacks are injected into data set as follows:

ρ̃GS=ρG + ∑
i=T

∆ρS
i , ∀∆ρS ∼ N(0.5, 0.05) (29)

where ρ̃GS represents the position after GNSS slow-change attacks are injected, and ∆ρS
i

(random interference is superimposed per second with an average of 0.5 m and a variance
of 0.05) represents the positional disturbance at time i generated by GNSS slow-change
attacks in the location domain. As can be seen from Equation (29), the slow-change attack
injects small errors to GNSS signals slowly and continuously during each second.

Under such a condition, slowly injected errors can influence the filter gradually. In
GNSS jump attack simulation (data set Ψ̃2), the segment from 150 s to 300 s of the data set
is exposed to GNSS jump attacks defined in Equation (28). In GNSS slow-change attack
simulation (data set Ψ̃3), the segment from 150 s to 300 s of the data set is exposed to GNSS
slow-change attacks defined in Equation (29). Additionally, in the jump and slow-change
attack simulation (data set Ψ̃4), the segment from 50 s to 100 s of the data set is exposed
to GNSS jump attacks defined in Equation (28) and the segment from 150 s to 200 s of the
data set is exposed to GNSS slow-change attacks defined in Equation (29).

4.3. Parameter Analysis

This section analyzes the impact of the jump parameter settings (nj and Thj) and slow-
change parameter settings (ns and Ths) on PD and PFA + PMD mentioned in Section 3.1.
First, we focus on the impact of jump parameter settings. Data set Ψ̃2 is selected for analysis
in order to shield the influence of slow-change parameter settings on PD, PFA and PMD.
According to Equations (16)–(18), the value range of nj is set from 1 to 20, and the value
range of Thj is set as follows:

Thj = 0.1t m
s.t. t = 0 ∼ 60

(30)

The simulation results are shown in Figure 9. It can be seen that when nj remains
unchanged, with the increase in Thj, PD becomes stable to 1 after its wavelike rising while
PFA + PMD becomes stable to 0 after its wavelike dropping.
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Then, we set a parameter fa in order to maximize the accuracy rate of the navigation
algorithm, as follows:

fa = max(PD). (31)

At the same time, we set another parameter fc to minimize the sum of the missing
alarm rate PMD and false alarm rate PFA to evaluate the sum of integrity and availability
risks, as follows:

fc = min(PFA + PMD). (32)

The simulation results are shown in Figure 10. The impact of nj on fa and fc is analyzed
in Figure 10a. It can be seen that as nj increases, fa is stable at 1, while fc is stable at 0. No
matter what the value of nj is, the value of fa and fc remains the same. That is, the value of
PD would become to 1 and PFA + PMD would become to 0 as the value of Thj increases no
matter what the value of nj is. The difference is that Thj is different when PD increases to
1. Therefore, according to Equation (15), the jump parameter nj is set to 2. Additionally,
according to the trend of PD and PFA + PMD when nj is set to 2, Thj is set to 1.5 m, as shown
in Figure 10b. Then, we will have PD = 100% and PFA + PMD = 0%.
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Next, the effect of the slow-change parameter on PD and PFA + PMD is analyzed based
on the data set Ψ̃3. In this experiment, the value range of the slow-change verification
window ns is set to the range 1 to 20, and the value range of Ths is set as follows:

Ths = 0.01t m
s.t. t = 0 ∼ 1000

(33)

The simulation results are shown in Figures 11 and 12. In Figure 11, it can be seen
that when the value of ns is constant, with the increase in Ths, PD becomes stable after
its wavelike rising and PFA + PMD becomes stable after its wavelike falling. According
to Figure 12a, the influence of the slow-change verification window on fa and fc can
be analyzed and reflected. In order to maximize the accuracy rate PD and minimize
PFA + PMD, we pick the slow-change parameters as ns= 5 and Ths= 1.28 m. Then, we will
have PD = 100%, and PFA + PMD = 0%, as shown in Figure 12b.
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5. Experimental Analysis

In order to verify the performance of the ACNA algorithm, we try to compare it
with the traditional extended Kalman filter method (EKF) [30] and the reduced IMU and
odometer algorithm (RIO) [24]. The EKF algorithm uses the traditional EKF algorithm
to fuse GPS and DDE/INS data with no GNSS verification process; that is, the updated
measurement is the direct input of the Kalman filter for state update and position prediction.
The RIO algorithm has distance constraints and can detect GNSS jump attacks. In the
following passage, we compare the three algorithms using data set Ψ̃2, Ψ̃3 and Ψ̃4.

5.1. Results of Data Set Ψ̃2

Figure 13 shows the position error of ACNA, EKF and RIO under GNSS jump attacks
(data set Ψ̃2). After GNSS attacks in data set Ψ̃2, the 1σ positioning accuracy of GNSS
increases to 13.47 m. Figure 14 shows the corresponding movement trajectories of the three
algorithms of ACNA, EKF and RIO under GNSS attacks. Their east, north and relative
positioning accuracy (σeast, σnorth and σ) and maximum error (EMaxEast, EMaxNorth and EMax)
are shown in Table 3 below.
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It can be seen that the EKF algorithm fails to detect GNSS jump attacks and the
positioning errors grows gradually as the GNSS attacks occur. The 1σ positioning accuracy
of the EKF algorithm increases to 13.24 m, with an improvement of 2% compared with
the GNSS. Additionally, the RIO algorithm and ACNA algorithm can detect jump attacks
in time. The 1σ positioning accuracy of the RIO algorithm increases to 1.39 m, with an
improvement of 90% compared with the GNSS. Additionally, the 1σ positioning accuracy
of the ACNA algorithm increases at 1.14 m, with an improvement of 92% compared with
the GNSS.

5.2. Results of Data Set Ψ̃3

Figure 15 shows the position error of ACNA, EKF and RIO in the east and north
directions after GNSS slow-change attacks (data set Ψ̃3). After GNSS attacks on data set
Ψ̃3, the 1σ positioning accuracy of the GNSS increases to 34.27 m. Figure 16 shows the
corresponding movement trajectory of the three algorithms under GNSS attacks. Their east,
north and relative positioning accuracy (σeast, σnorth and σ) and maximum error (EMaxEast,
EMaxNorth and EMax) are shown in Table 4 below.
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It can be seen from the results that EKF is unable to detect GNSS slow-change attacks
and its 1σ positioning accuracy increases to 32.76 m, with an improvement of 4% compared
with the GNSS. The RIO algorithm detects slow-change attacks after it occurs for 26 s.
Therefore, its 1σ positioning accuracy increases to 6.77 m, which is improved by 80%
compared with GNSS. On the other hand, the ACNA algorithm can detect GNSS slow-
change attacks in time and its 1σ positioning accuracy is 1.17 m, with an improvement of
97% compared with the GNSS.

5.3. Results of Data Set Ψ̃4

Figure 17 shows the position error of ACNA, EKF and RIO after GNSS jump and slow-
change attacks (data set Ψ̃4). After GNSS attacks on data set Ψ̃4, the 1σ positioning accuracy
of the GNSS increases to 11.80 m. Figure 18 shows the corresponding movement trajectory
of the three algorithms under GNSS attacks. Their east, north and relative positioning
accuracy (σeast, σnorth and σ) and maximum error (EMaxEast, EMaxNorth and EMax) are shown
in Table 5 below.
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It can be seen from the results that EKF is unable to detect GNSS jump attacks or slow-
change attacks and its 1σ positioning accuracy increases to 10.65 m, with an improvement
of 10% compared with the GNSS. The RIO algorithm can detect jump attacks but not
slow-change attacks in time. Its 1σ positioning accuracy is 6.75 m, which is improved by
43% compared with GNSS. On the other hand, the ACNA algorithm can detect both GNSS
jump attacks and slow-change attacks in time. Its positioning accuracy is 0.81 m, with an
improvement of 93% compared with the GNSS.

In contrast, the navigation performance of 1σ positioning accuracy for the ACNA
algorithm is better than the other two algorithms, no matter whether GNSS jump attacks
occur or GNSS slow-change attacks occur.

5.4. Positioning Accuracy Deterioration Factor

In order to evaluate the credible navigation effectiveness of ACNA, EKF and RIO,
we define the positioning accuracy deterioration factor γ and credibility of the algorithm
ς. Here, γ represents the ratio of the 1σ positioning accuracy calculated by the algorithm
before and after GNSS attacks. The larger γ becomes, the worse the positioning accuracy
of the algorithm in terms of resisting the GNSS attacks, and vice versa. The positioning
accuracy deterioration factor γ is

γ =
σ̃

σ
(34)

where σ is the 1σ positioning accuracy obtained by the algorithm before the GNSS attacks,
and σ̃ is the 1σ positioning accuracy calculated by the algorithm after the GNSS attacks.

The credibility of the algorithm ς stands for how well each algorithm can help im-
prove on the positioning accuracy deterioration factor γ. The smaller the ς, the lower the
credibility of the algorithm, and vice versa. The credibility of the algorithm ς is

ς =
γg − γ

γg
(35)

where γg is the GNSS positioning accuracy deterioration factor after GNSS attacks.
Table 6 concludes the σ, γ and ς for the three algorithms on data set Ψ̃4 before and

after GNSS attacks. It can be seen that before any GNSS attack, the three algorithms can
achieve a positioning accuracy at decimeter level.

Table 6. σ, γ and ς for the three algorithms.

Algorithm σ
~
σ γ ς

GNSS 0.59 11.80 20.01 /
EKF 0.53 10.65 20.16 −0.74%
RIO 0.53 6.75 12.77 36.19%

ACNA 0.54 0.81 1.49 92.53%

However, after GNSS attacks, the positioning accuracy deterioration factor of the
GNSS itself reaches 11.80. Consequently, the positioning accuracy deterioration factor of
EKF is 10.65, and the credibility of it drops to −0.74%. The positioning accuracy deteriora-
tion factor of RIO is 6.75, and the credibility of it is 36.19%. Nevertheless, the positioning
accuracy deterioration factor of ACNA is only 0.81 because the ACNA algorithm can
effectively make the credibility of the algorithm reach as high as 92.53%. Therefore, ACNA
can reduce the positioning accuracy deterioration factor better and improve the credibility
of the algorithm better when a GNSS attack occurs.
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5.5. Detection Latency

In order to evaluate the detection latency after GNSS attacks of ACNA, EKF and RIO,
we define the detection latency ∆δ. The detection latency ∆δ represents the time used for
the algorithm to detect a GNSS attack. The larger ∆δ becomes, the worse of the algorithm
in terms of detecting the GNSS attacks, and vice versa.

Table 7 concludes the detection latency of ACNA, EKF and RIO after GNSS attacks
on data set Ψ̃4. It can be seen that the EKF algorithm fails to detect GNSS attacks, and the
detection latency is null. The RIO algorithm detects GNSS jump attacks at a latency of 1s
and detects GNSS slow-change attacks at a latency of 27 s. Our proposed ACNA detects
GNSS jump attacks at a latency of 2 s and detects GNSS slow-change attacks at a latency of
5 s, which is consistent with the parameter analysis for the credible verification window set
in Section 4.3. For the detection latency in GNSS jump attacks, our proposed algorithm is
one second later than RIO because of the setting of the jump verification window, which is
consistent with the analysis to prevent false alarms in Section 3.1. For the detection latency
in GNSS slow-change attacks, our proposed algorithm is 22 s before RIO. Therefore, ACNA
can reduce the detection latency better when GNSS attacks occur.

Table 7. Detection latency for the three algorithms.

Algorithm After GNSS
Jump Attacks

After GNSSS
low-Change Attacks

EKF / /
RIO 1 s 27 s

ACNA 2 s 5 s

6. Conclusions

In order to detect GNSS attacks and obtain a credible navigation result for mobile
terminals, this paper proposes a credible navigation algorithm for GNSS attack detection
using an auxiliary sensor system. The credible navigation algorithm is constructed based
on the credible Kalman filter model. By adding a credible decision-making system to the
Kalman filter framework and utilizing the complementary characteristics of the GNSS
and the auxiliary sensor system, the algorithm overcomes the shortcomings of a single
sensor and can detect GNSS attacks. By using a credible verification window to detect
different kinds of GNSS attacks, including GNSS jump attacks and GNSS slow-change
attacks, our proposed algorithm adaptively chooses an updated model to perform filter
measurement correction and position prediction according to the outcome. Finally, the
uninterrupted position information of the mobile terminal and the credible navigation
result can be obtained.

In addition, two data sets are collected during real driving for simulation and eval-
uation. Through these data sets, the parameter settings of the proposed algorithm are
determined, and the advantage of the proposed algorithm is verified. We show that the
proposed algorithm has better positioning accuracy, a lower positioning accuracy deteri-
oration factor, higher navigation credibility and lower detection latency compared with
conventional algorithms under GNSS jump attacks or GNSS slow-change attacks.
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