
applied
sciences

Article

The Modification of pBFT Algorithm to Increase Network
Operations Efficiency in Private Blockchains

Youn-A Min

����������
�������

Citation: Min, Y.-A. The

Modification of pBFT Algorithm to

Increase Network Operations

Efficiency in Private Blockchains.

Appl. Sci. 2021, 11, 6313. https://

doi.org/10.3390/app11146313

Academic Editor: Gianluca Lax

Received: 30 May 2021

Accepted: 7 July 2021

Published: 8 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Applied Software Engineering, Hanyang Cyber University, 220, Wangsimni-ro, Seongdong-gu,
Seoul 04763, Korea; yah0612@naver.com

Abstract: The use of blockchain technology is becoming more widespread. Governments have
expanded their use of the technology from online polls to business management of smaller local
governments while private institutions have increased their services from financial to medical services
management. This paper presents the modified pBFT blockchain consensus algorithm for a more
efficient data management method in cases of applying blockchains in authorized nodes such as
governmental agencies. The network communication cost was minimized while the consensus
accuracy was maximized by applying a method of simplifying the request management process
and electing the reliability-based consensus node during the pBFT consensus algorithm process.
By applying the modified pBFT consensus algorithm, stability and speed of the consensus and
verification process among various organizations can be guaranteed as well as application in efficient
management and value creation of data.

Keywords: blockchain; consensus algorithm; pBFT (Practical Byzantine Fault Tolerance)

1. Introduction

Blockchain is a decentralized data ledger management-based technology that allows
direct transactions between users through the sharing and management of all transactions
by all nodes connected to the decentralized network environment [1]. Through a hash
function-based encryption and encryption through electronic signatures, the blockchain
actively applies security technology and enables data protection and precise management
based on decentralization [2].

Comprehensive technology applications are increasing, such as in inventory tracking,
origin certification, and financial services, and the global financial consulting enterprise
PricewaterhouseCoopers (PwC) has predicted that most global businesses will adopt
blockchain, and that blockchain will boost global GDP by USD 1.76 trillion by 2030, setting
the economic value of blockchain at USD 7600 by this time [3]. As per the increase in
contact-free environments and development of communications, the amount of data being
transacted and handled is increasing. In most cases, the data managed by an organization
are transacted and handled by a third party or a centralized management form. With the
size and range of data created by organizations and websites becoming larger every day,
and companies seeking to utilize the value of said data, many are seeking to supplement
the data breach dangers associated with the centralized management form and are looking
for a new value of data application [4,5].

Blockchain is widely applied not only to government agencies but also to the Industrial
Internet of Things (IIoT) and, recently, research in which blocks are arbitrarily compressed
without considering latency for an optimized solution of IIoT is being conducted [4].

Since the blockchain is composed of many nodes, there is a possibility that a malicious
attack may occur, which may lead to the Byzantine general problem. Various consensus
algorithms suggest a way to solve the Byzantine general problem, but most are processed
based on a synchronous system. pBFT is one of the blockchain consensus algorithms that

Appl. Sci. 2021, 11, 6313. https://doi.org/10.3390/app11146313 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11146313
https://doi.org/10.3390/app11146313
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11146313
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11146313?type=check_update&version=1

Appl. Sci. 2021, 11, 6313 2 of 11

can solve the Byzantine general problem in an asynchronous network and guarantee the
finality of the consensus.

The pBFT consensus algorithm has the advantage in that it can normally lead to
a consensus even with the malicious behavior of less than 33% of nodes, but since it is
premised that communication between all nodes is required for consensus, the network
operation cost increases as the number of nodes increases.

Variants of pBFT include Tendermint and Neo, and EdgeTC (electronic toll collection)
is an example of using pBFT on an inter-institutional blockchain platform [6]. Tendermint
and Neo increase the speed and efficiency by applying the delegated method. Recently,
as the application of blockchain by government agencies increases, a modified blockchain
consensus algorithm that can increase economic efficiency and availability by considering
the characteristics according to the weight of work is needed. In the case of government
agencies, since the weight of the client’s request is varied, it is necessary to further subdivide
and transform the contents of the consensus algorithm such as Tendermint. This paper
proposes a modified pBFT (mpBFT) as a method to flexibly process the consensus algorithm
in consideration of the weight of tasks in a public blockchain composed of nodes based
on trust, such as government agencies, and to efficiently manage network operation costs.
The mpBFT proposed in the study of this paper is a trust-based consensus algorithm that
can be used efficiently between organizations, and it simplifies the process and guarantees
the stable selection of leader nodes. In this study, when a client requests a state change, a
state flag that distinguishes the importance of Msg is requested together, and PreCommit
is performed by the minimized leader nodes in the preparation and commit stages. The
election process of leader nodes is also made to be voted based on the reliability of the
nodes, so that both efficiency and stability are considered. Through the proposal of this
paper, it is possible to operate discriminatively with respect to node requests and to manage
data between nodes safely and efficiently [7,8].

The paper examines the characteristics of the blockchain consensus algorithm within a
network compromised of authorized nodes in the following chapter, while the third chapter
discusses the management and modification process of the pBFT consensus algorithm. The
fourth chapter compares and analyzes the benefits of the application of modified pBFT,
followed by the results assessed regarding the presented algorithm in the final chapter.

2. Blockchain Consensus Algorithm

As a method of sharing data between nodes existing in the network, blockchain
applies an algorithm for the nodes in a network to reach a consensus to a single result for
an accurate and transparent management of data [1].

Per the composition range of the nodes, blockchains can be divided into public and
private blockchains [1,9]. In a public blockchain, anyone can participate in the network, and
all the nodes go through consensus and verification to document the data to the block [8].

If a multitude of malicious nodes participate in the network in a public blockchain, a
Byzantine fault may occur in which at least 50% of the participating nodes have reached
a consensus [8]. This may lead to forgery and alteration of data. In a consensus to create
a block, certain nodes are given rewards, which may lead to an extensive mining by
various nodes to create a bifurcation of blocks, resulting in finality. This would increase the
calculation costs of the network, and the consensus would need to be rewarded [10,11].

The representative consensus algorithm of public blockchains would be Proof of Work
(PoW) and Proof of Stake (PoS) [12].

2.1. Consensus Algorithm of Public Blockchains
2.1.1. PoW (Proof of Work)

PoW is the consensus algorithm most widely used in public blockchains, in which the
miner who finds the nonce of random numbers can create a block. If multiple people find
the number simultaneously, multiple blocks will form, and the longest blockchain will be
chosen through a fork [12].

Appl. Sci. 2021, 11, 6313 3 of 11

2.1.2. PoS (Proof of Stake)

PoS is a method that sets priority of block creation depending on the share a node has.
A node with a higher share will have a lower computation difficulty for mining and will
have the upper hand in creating a block. PoS has a lower computing cost compared to PoW,
but it still has issues regarding competitive computing and bifurcation from malicious
nodes [13]. PoS can apply sharding technology. Sharding is a technology that presupposes
data partitioning. The sharding technology divides the entire network, stores transactions
by area, processes them in parallel, and expands them to the blockchain. Data are stored
and processed by dividing the data into units called shards [14].

Through sharding, an on-chain solution that improves performance by changing
the protocol of the main chain itself for blockchain scalability is possible. The sharding
technology has the disadvantage that the procedure becomes complicated and slow when
transmission between multiple shards occurs. In addition, the PoS consensus algorithm to
which sharding technology is applied is a proof-of-stake consensus algorithm that allows
all nodes to participate in consensus, and among them, block generation and verification
opportunities are given differentially by stake. It is not efficient because there may be a
possibility of threat, and nodes with a large stake may cause a nothing at stake problem,
resulting in the possibility of a fork in the blockchain [14].

2.2. Consensus Algorithm of Private Blockchains

Only authorized nodes may participate in a network in a private blockchain, and
compared to public blockchains, the consensus process is much shorter and does not need
rewards in consensus [15]. Because only authorized nodes make up the network, exten-
sive mining competition and computing exhaustion are unnecessary. The representative
consensus algorithms are Paxos, Raft, and pBFT [15,16].

2.2.1. Paxos and Raft

Paxos is an algorithm that calculates in order of sequence numbers for a single value
consensus among many nodes [17]. Paxos has three roles: proposer, acceptor, and learner.
The proposer chooses a new proposal number n and sends a prepare message of n to
numerous acceptors [17,18]. Once an acceptor receives a prepare message of a proposal
number larger than the one responded to previously, the acceptor accepts by promising
not to accept requests of proposal numbers smaller than n and also sends the request
with the largest number accepted previously as a response. Once the proposer receives
multiple responses from acceptors, the accept message is sent to the acceptors regarding the
proposal number n. Once the acceptor accepts the request for n, the request is accepted only
if the acceptor had never previously accepted a request larger than n. If the acceptor has
responded to a prepare message larger than n, the acceptor may tell the proposer to give
up on the request and help for optimization without any effect to the accuracy. However,
there is the problem that each agent may become slower and may cause a shutdown and
restart error, causing an overlapping or dissipation [17].

Raft is an algorithm that can process only the leader for client requests, and if there is
no information about the leader, the request is accepted for random selection among all
nodes (Figure 1). It has the status of Follower, Candidate, and Leader, and Raft’s algorithm
is modified and used for the Leader Group Election proposed in this paper.

Appl. Sci. 2021, 11, 6313 4 of 11

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 11

Figure 1. Raft Consensus Algorithm [16,17].

2.2.2. pBFT (Practical Byzantine Fault Tolerance)

Once a Byzantine fault occurs in a public blockchain, a 51% attack occurs. In a private

blockchain, however, some of this Byzantine fault is tolerated, as only approved nodes

may participate, and if a certain result reaches consensus, consensus is available. This spe-

cific case is called BFT (Byzantine Fault Tolerance), in which pBFT is the representative

BFT algorithm [17–19]. pBFT is used in a system in which reliability-based nodes are par-

ticipating and enables an asynchronous BFT consensus. The primary node is the repre-

sentative node among all the nodes and the rest are called backups.

In a pBFT case in which there are f malicious nodes in a total N number of nodes,

consensus can be reached if N is equal to 3f + 1 [18–20].

The following algorithm is applied to utilize pBFT.

As shown in Table 1, pBFT goes through five steps: request, pre-prepare, prepare,

commit, and reply [18]. In the request phase, the client sends a request MM for a service

operation to the primary. The primary node generates a sequential number N according

to the request and sends a message to the backups. The pre-prepare message is structured

as <Prepare, V, N, D(M)>, in which V is for view of the message, N is the sequential num-

ber, and D(M) is the description of the message M. The message is sent to a random node

in which the relationships between D(M), V, and N are verified, and once the verification

shows to be true, the verification message is sent to the rest of the nodes. The prepare

message is structured as <Prepare, V, N, D(M), a>, in which a is the number of the verifi-

cation node. Each node connected to the network collects the pre-prepare and prepare

messages and if the message is at least 2f, they prepare the certificate and become a state

of “prepared for the request”. Requests not reaching consensus are denied [19,21].

pBFT has a fault tolerance up to 33% and may ensure accuracy of a block creation by

broadcasting messages to all nodes multiple times, but this may cause the network con-

nection to slow down if there are too many nodes participating in the network [20,21].

The pBFT may be used in an asynchronous network and goes through two consensus

processes as shown in Table 2, which increases network communication for pBFT consen-

sus if the number of participating nodes increase [21,22].

This paper takes the fact that pBFT is comprised of authorized nodes based on relia-

bility into consideration and uses safety, stating that if a consensus is reached among

Figure 1. Raft Consensus Algorithm [16,17].

2.2.2. pBFT (Practical Byzantine Fault Tolerance)

Once a Byzantine fault occurs in a public blockchain, a 51% attack occurs. In a private
blockchain, however, some of this Byzantine fault is tolerated, as only approved nodes
may participate, and if a certain result reaches consensus, consensus is available. This
specific case is called BFT (Byzantine Fault Tolerance), in which pBFT is the representative
BFT algorithm [17–19]. pBFT is used in a system in which reliability-based nodes are
participating and enables an asynchronous BFT consensus. The primary node is the
representative node among all the nodes and the rest are called backups.

In a pBFT case in which there are f malicious nodes in a total N number of nodes,
consensus can be reached if N is equal to 3f + 1 [18–20].

The following algorithm is applied to utilize pBFT.
As shown in Table 1, pBFT goes through five steps: request, pre-prepare, prepare,

commit, and reply [18]. In the request phase, the client sends a request MM for a service
operation to the primary. The primary node generates a sequential number N according to
the request and sends a message to the backups. The pre-prepare message is structured as
<Prepare, V, N, D(M)>, in which V is for view of the message, N is the sequential number,
and D(M) is the description of the message M. The message is sent to a random node in
which the relationships between D(M), V, and N are verified, and once the verification
shows to be true, the verification message is sent to the rest of the nodes. The prepare mes-
sage is structured as <Prepare, V, N, D(M), a>, in which a is the number of the verification
node. Each node connected to the network collects the pre-prepare and prepare messages
and if the message is at least 2f, they prepare the certificate and become a state of “prepared
for the request”. Requests not reaching consensus are denied [19,21].

Appl. Sci. 2021, 11, 6313 5 of 11

Table 1. pBFT Process algorithm [19,20].

Node: Primary Node + Backup
Sends the client’s state conversion request—request(M) —to the primary node
Request result cleanup and Pre_Prepare by Primary(Leader) Node
-Generate sequential number for request (N)
-Sending Pre_Prepare message to Backup
<Pre_Prepare, V,N,D(M)>
v: the view to which the message is sent
N: sequential number
D(M): Summary of M

Verification of whether D(M), V,N correspond to each other for the Pre_Prepare message of any
backup node a
-if T: Send Prepare to all nodes on the rest of the network
-else: do not accept message
-Prepare< Pre_Prepare, V,N,D(M), a)
a: Node number for which Pre_Prepare was verified

Each node collects Pre_Prepare and Prepare messages
Check if the status of prepared certificate: If the number of collected Pre_Prepare messages is
2f + 1 and Prepare is 2f or more, it becomes the prepared the request node.

A node that satisfies the prepared certificate sends a commit message to all nodes in the network.
-commit<commit, V,N,a)

Each node collects commit message
-commit certificate: node with 2f + 1 commit message

A node that satisfies the prepared certificate and the commit certificate accepts the request:
satisfies safety

Request dismissal if not satisfied: Some sacrifices to Liveness

pBFT has a fault tolerance up to 33% and may ensure accuracy of a block creation
by broadcasting messages to all nodes multiple times, but this may cause the network
connection to slow down if there are too many nodes participating in the network [20,21].

The pBFT may be used in an asynchronous network and goes through two consensus
processes as shown in Table 2, which increases network communication for pBFT consensus
if the number of participating nodes increase [21,22].

This paper takes the fact that pBFT is comprised of authorized nodes based on re-
liability into consideration and uses safety, stating that if a consensus is reached among
nodes, any node should have the same value once approached, and liveness, that if there is
no problem within the block, there should definitely be a consensus within the network,
as an index of evaluation to modify the consensus process. In order to satisfy the two
conditions for a blockchain consensus, safety and liveness, pBFT considered N = 3f + 1 for
the conditions, resulting in a 33.3% loss of liveness and If the number of nodes increases in
a pBFT consensus algorithm, the network connection costs also increases, resulting in a
burden of expenses [21,22].

3. Modification of the pBFT Algorithm

Since pBFT is a BFT consensus algorithm, final agreement is possible by consensus of
nodes corresponding to two thirds of all nodes. The consensus of pBFT requires duplicate
verification and confirmation by all nodes, which increases network operation cost and
causes duplicate processing.

In this paper, we propose mpBFT in order to increase network operation cost, which
is a disadvantage of pBFT, and to efficiently operate duplicate verification for all nodes.

Appl. Sci. 2021, 11, 6313 6 of 11

In mpBFT, for the purpose of operating an efficient BFT consensus algorithm in an
asynchronous network, flexible consensus algorithm selection through status bits for client
requests and the consensus process of the leader node group are applied. The difference
from the previously announced Tendermint is the application of a flexible algorithm and
the method of selecting a representative node.

First, to apply a flexible algorithm, apply the status bit to the client’s request and
determine whether the requested content is based on processing or future queries. If
the request is for simple transaction processing, the mpBFT algorithm can quickly reach
consensus without a duplicate agreement, and verification is applied through leader nodes.
If transaction sharing and verification by all nodes such as a query is required, the existing
pBFT method and mpBFT should be properly mixed and utilized.

The difference between mpBFT and pBFT is that leader node groups can be selectively
used in response to client requests. Considering that it is a network in which only trusted
nodes participate, verification of the leader node group is possible in order to reduce
the duplicate verification process. In case of failure, it is necessary to reply to the client
that agreement is not possible. When selecting a leader node, a node weight is assigned
based on the node’s reliability, frequency of use, and previous history. For the leader node
election, the method of RAFT, the existing consensus algorithm, is modified and applied.

3.1. The Performance of the Consensus Algorithm

The number of nodes necessary for pBFT consensus and the calculation cost for the
network connection are examined to compare the consensus algorithm performance.

3.1.1. Number of Nodes for Consensus

Regarding the node f that has the failed message error, consensus is reachable if N-f
is met. The total number of nodes N and the malicious node f should satisfy (N-f)-f > f.
Therefore, pBFT can reach a consensus if N > 3f.

3.1.2. The Network Communication Cost within a Consensus Process

While processing pBFT, all nodes are broadcasted to in the prepare phase. Another
broadcast is given out to all the nodes in the commit phase. With the total number of nodes
N, the network connection cost within these processes can be calculated as 2 N2.

3.1.3. Drawbacks to the pBFT Algorithm Handling

The features of processing the pBFT algorithm discussed above are as follows.

3.2. mpBFT (Modified pBFT)

The mpBFT presented in this paper is designed to be useful in inter-organizational
consensus algorithms. By actively using the characteristics of the private network that has
reliability-based nodes, the algorithm proposes a simplification of safety and process by
assuming that only honest nodes would be present in a blockchain network. Based on
reliability among nodes, the number of broadcasts were minimized during the prepare
and commit stages in order to manage the network connection cost more efficiently, in
which the process is handled based on reliability to have a node elected via vote to be ID_α
(pBFT Leader ID). When electing a leader node, an opportunity for prioritization is given
in consideration of the frequency of the nodes and the reliability of the institution, and
voting should be taken into account when the leader node is re-elected.

The election process of the ID_α and the primary node is shown in Figure 2.

Appl. Sci. 2021, 11, 6313 7 of 11

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 11

given in consideration of the frequency of the nodes and the reliability of the institution,

and voting should be taken into account when the leader node is re-elected.

The election process of the ID_α and the primary node is shown in Figure 2.

Figure 2. ID_α election algorithm.

The primary node delivers a message to the leader node and, at the same time, com-

municates to all nodes that consensus is in progress by the leader node. The leader nodes

go through the consensus process through two methods depending on the importance of

the message. When the importance of the message is high, a consensus process is per-

formed through mutual confirmation between the leader nodes, and the computation cost

of (N/3) * (N/3) + N/3 = N2/9 is consumed. In general, it is delivered to the leader node for

consensus, and the leader nodes pass through the process of delivering it to the primary

node, which consumes the computational cost of N/3 + N/3 = 2N/3.

It can be seen that the efficiency in terms of computational cost can be improved,

considering that 2N2 of computational cost is consumed in the case of conventional pBFT.

Schematic of the mpBFT process is as follows.

A leader node is selected at the start of processing. ID_α (PBFT_Leader) is selected

through voting and node status and, when an error occurs, the insufficient leader node is

re-elected in the form shown in Figure 3.

When Msg arrives, it sends the client’s state change request to the start node, which

forwards the client’s request to the leader nodes and the leader nodes start processing the

message. At this time, the content to be transmitted to the leader node is Msg1 (PreStep,

V N, D (M)), ID_α) and the ID and Msg summary of the selected leader nodes (ID_α) are

transmitted. The leader nodes transmit the contents of Msg2 (V, N, ID_α, ID_αT) to all

nodes, along with the ID (ID_α) of the elected node, the reliability of the ID (ID_αT), and

the request status flag. The PreCommit processed by the leader nodes is delivered and

PreCommit is carried out, and the contents of the PreCommit (Msg (Commit, V, ID_α))

are sent to the start node. In each process, cases with high message importance and cases

without messages are selected and processed, and for the PreCommit result, the initiating

node transmits the consensus decision to all nodes. The pseudocode that schematically

shows the consensus process is shown in Figure 4.

Figure 2. ID_α election algorithm.

The primary node delivers a message to the leader node and, at the same time, com-
municates to all nodes that consensus is in progress by the leader node. The leader nodes
go through the consensus process through two methods depending on the importance
of the message. When the importance of the message is high, a consensus process is
performed through mutual confirmation between the leader nodes, and the computation
cost of (N/3) * (N/3) + N/3 = N2/9 is consumed. In general, it is delivered to the leader
node for consensus, and the leader nodes pass through the process of delivering it to the
primary node, which consumes the computational cost of N/3 + N/3 = 2N/3.

It can be seen that the efficiency in terms of computational cost can be improved,
considering that 2N2 of computational cost is consumed in the case of conventional pBFT.
Schematic of the mpBFT process is as follows.

A leader node is selected at the start of processing. ID_α (PBFT_Leader) is selected
through voting and node status and, when an error occurs, the insufficient leader node is
re-elected in the form shown in Figure 3.

When Msg arrives, it sends the client’s state change request to the start node, which
forwards the client’s request to the leader nodes and the leader nodes start processing the
message. At this time, the content to be transmitted to the leader node is Msg1 (PreStep,
V N, D (M)), ID_α) and the ID and Msg summary of the selected leader nodes (ID_α) are
transmitted. The leader nodes transmit the contents of Msg2 (V, N, ID_α, ID_αT) to all
nodes, along with the ID (ID_α) of the elected node, the reliability of the ID (ID_αT), and
the request status flag. The PreCommit processed by the leader nodes is delivered and
PreCommit is carried out, and the contents of the PreCommit (Msg (Commit, V, ID_α))
are sent to the start node. In each process, cases with high message importance and cases
without messages are selected and processed, and for the PreCommit result, the initiating
node transmits the consensus decision to all nodes. The pseudocode that schematically
shows the consensus process is shown in Figure 4.

Appl. Sci. 2021, 11, 6313 8 of 11

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 11

A blockchain network consisting of trust-based nodes (Private Network) and Process

Singularity is modified and processed by the existing pBFT processing process.

Requirements of the elected node is N/3; nodes are selected in consideration of the

node’s frequency of use and the node’s reliability variable among all nodes.

All nodes share the ID of the elected node and have the qualification of Followers

who can become elected nodes in the future. A start node is any node among the elected

nodes. mpBFT processing is available through the process shown in Figures 3 and 4, and

the Byzantine fault tolerance ratio and the network communications according to an in-

crease in the number of nodes can be expressed more efficiently.

Figure 3. Schematic of the mpBFT processing.

Figure 4. mpBFT process.

3.3. Performance Evaluation of mpBFT

Applying mpBFT can give the calculation costs as shown in Equation (1). The con-

sensus node ratio had sacrificed 33% liveness in mpBFT, assuming malicious nodes, but

Figure 3. Schematic of the mpBFT processing.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 11

A blockchain network consisting of trust-based nodes (Private Network) and Process

Singularity is modified and processed by the existing pBFT processing process.

Requirements of the elected node is N/3; nodes are selected in consideration of the

node’s frequency of use and the node’s reliability variable among all nodes.

All nodes share the ID of the elected node and have the qualification of Followers

who can become elected nodes in the future. A start node is any node among the elected

nodes. mpBFT processing is available through the process shown in Figures 3 and 4, and

the Byzantine fault tolerance ratio and the network communications according to an in-

crease in the number of nodes can be expressed more efficiently.

Figure 3. Schematic of the mpBFT processing.

Figure 4. mpBFT process.

3.3. Performance Evaluation of mpBFT

Applying mpBFT can give the calculation costs as shown in Equation (1). The con-

sensus node ratio had sacrificed 33% liveness in mpBFT, assuming malicious nodes, but

Figure 4. mpBFT process.

A blockchain network consisting of trust-based nodes (Private Network) and Process
Singularity is modified and processed by the existing pBFT processing process.

Requirements of the elected node is N/3; nodes are selected in consideration of the
node’s frequency of use and the node’s reliability variable among all nodes.

All nodes share the ID of the elected node and have the qualification of Followers who
can become elected nodes in the future. A start node is any node among the elected nodes.
mpBFT processing is available through the process shown in Figures 3 and 4, and the

Appl. Sci. 2021, 11, 6313 9 of 11

Byzantine fault tolerance ratio and the network communications according to an increase
in the number of nodes can be expressed more efficiently.

3.3. Performance Evaluation of mpBFT

Applying mpBFT can give the calculation costs as shown in Equation (1). The consen-
sus node ratio had sacrificed 33% liveness in mpBFT, assuming malicious nodes, but this
research only assumes honest nodes within the system. However, faults caused within the
node would be taken into consideration.

3.3.1. The Superiority of the Consensus Node Ratio

Equation (1): consensus node ratio.
Total number of nodes: N, Error Node: f

2/N = 3f + 1 (1)

Fault Tolerance ≥ 16.66 . . . %
As shown in Table 2, while pBFT sacrifices 33.3% of nodes, the revised new pBFT

would only sacrifice 16.7%.

Table 2. Fault Tolerance Comparison.

Node pBFT mpBFT
Case1

mpBFT
Case2

4 1.452 0.7981 0.7981
5 1.783 0.8991 0.8991
6 1.902 0.9919 0.9919
7 2.411 1.1891 1.1891
8 2.684 1.4523 1.4523

3.3.2. NCC: Network Communication Cost

The network communication cost can be written as Equation (2) based on the node
communication process in the mpBFT process.

Equation (2): network communication cost.
γ = computational cost for frequency of use (α1) and the institution’s reliability (β1)

NCC − case1 :
(

N
3

)
×

(n
3

)
+ γ (2)

NCC − case2 :
(

N
3

)
+

(
N
3

)
+ γ (3)

While pBFT requires 2N2, mpBFT NCC(NCC–case1, NCC–case2) requires N2

3 + γ and
2N
3 + γ. γ is computational cost for frequency of use (α1) and the institution’s reliabil-

ity (β1).
As shown in Table 3, as the number of nodes increases, a larger difference in network

communication costs can be seen.

Table 3. Network Communication Cost Comparison.

Node pBFT mpBFT
Case1

mpBFT
Case2

1 2.1 0.3 1.2
2 7.9 0.9 2.1
3 18.1 2.5 3.2
4 32.1 2.9 4.5
5 51.9 3.7 5.8

Appl. Sci. 2021, 11, 6313 10 of 11

3.3.3. TPS (Transaction Per Second)

The TPS (transaction per second) of mpBFT was measured in the research.
The results through the use of JMeter are shown in Table 4.

Table 4. TPS Comparison.

Node pBFT mpBFT
Case1

mpBFT
Case2

1 14,210 13,592 13,820
2 10,012 11,010 12,200
3 11,201 11,193 11,900
4 10,009 11,812 11,009
5 6253 10,901 9899

It can be seen that the difference in the number of transactions processed per second
increases as the number of nodes increases.

Through the performance evaluation Table 4, there is an evident decrease in the
number of fault tolerance nodes and network costs, while there is an increase in TPS.

4. Conclusions

With the increase in data usage through a contact-free society and the development of
communications, blockchain technology applications are becoming more widespread to
manage the mass of data accurately and transparently. Since pBFT, where BFT consensus is
possible, requires redundant consensus and verification processes by all nodes, the network
operation cost for consensus increases as the number of nodes increases. In this paper, the
purpose of the request is identified through the status bit of the client’s request, and the
mpBFT algorithm is applied flexibly. In addition, the mpBFT algorithm selects a leader
node group to speed up the consensus process, and when consensus fails, a new leader
node group is selected to give an opportunity for consensus once again. The selection
algorithm for the new leader node group election and leader node failure was explained
through the paper, and the RAFT algorithm was modified and applied.

The paper presents the mBFT blockchain consensus algorithm for a safer and quicker
method of managing internodal data. Through mpBFT, the request process is simplified,
and the network communications cost is minimized through the application of reliability-
based consensus nodes. While mpBFT requires 33.3% of node sacrifice, mpBFT is shown
to only need 16.7%. In terms of network costs, pBFT costs 2N2 while mpBFT requires
N2

3 + γ and 2N
3 + γ. γ is computational cost for frequency of use (α1) and the institution’s

reliability (β1). mpBFT shows to also have superior TPS compared to pBFT.
In order to further solidify the research content proposed in this paper, more in-

depth studies on the number of nodes and accurate evaluation of institutional reliability
are needed.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: http://nakamotoinstitute.org/static/docs/bitcoin.pdf (accessed

on 24 January 2020).
2. Košt’ál, K.; Helebrandt, P.; Belluš, M.; Ries, M.; Kotuliak, I. Management and Monitoring of IoT Devices Using Blockchain. Sensors

2019, 19, 856. [CrossRef] [PubMed]

http://nakamotoinstitute.org/static/docs/bitcoin.pdf
http://doi.org/10.3390/s19040856
http://www.ncbi.nlm.nih.gov/pubmed/30791392

Appl. Sci. 2021, 11, 6313 11 of 11

3. Plato. Available online: https://zephyrnet.com/ko/pwc-%EB%B3%B4%EA%B3%A0%EC%84%9C-%EB%B8%94%EB%A1%9
D-%EC%B2%B4%EC%9D%B8,-1-%EB%85%84%EA%B9%8C%EC%A7%80-%EA%B8%80%EB%A1%9C%EB%B2%8C-GDP-76
-%EC%A1%B0-2030-%EC%A1%B0-%EC%A6%9D%EA%B0%80/ (accessed on 20 March 2021).

4. Jiang, S.; Cao, J.; Wu, H.; Yang, Y. Fairness-based Packing of Industrial IoT Data in Permissioned Blockchains. IEEE Trans. Ind.
Inform. 2020, 1–2. [CrossRef]

5. IEEE. 2144.1-2020—IEEE Standard for Framework of Blockchain-based Internet of Things (IoT) Data Management; Institute of Electrical
and Electronics Engineers Incorporated Report; IEEE: Piscataway, NJ, USA, 2020; ISBN 978-1-5044-7255-5.

6. Chiu, W.-Y.; Meng, W. EdgeTC—A PBFT blockchain-based ETC scheme for smart cities. Peer-to-Peer Netw. Appl. 2021, 1–13.
[CrossRef]

7. BFT Consensus. Available online: https://docs.google.com/presentation/d/10W7gKEvk_6XRIlSdiKwnwP9gVzo5Re5m_24
QzLGaqvk/edit (accessed on 25 January 2020).

8. Yi, Z. Distributed Energy Intelligent Transaction Model and Credit Risk Management Based on Energy Blockchain. J. Inf. Sci. Eng.
2021, 37, 55–66. [CrossRef]

9. Abraham, I.; Gueta, G.G.; Malkhi, D.; Yin, M.; Reiter, M.K. HotStuff: BFT consensus in the lens of blockchain. arXiv 2019,
arXiv:1803.05069.

10. Amir, Y.; Coan, B.; Kirsch, J.; Lane, J. Prime: Byzantine Replication under Attack. IEEE Trans. Dependable Secur. Comput. 2010, 8,
564–577. [CrossRef]

11. Fischer, M.J.; Lynch, N.A.; Paterson, M.S. Impossibility of distributed consensus with one faulty process. J. ACM 1985, 32, 374–382.
[CrossRef]

12. Reddy, B.; Sharma, G.V.V. Scalable Consensus Protocols for PoW based Blockchain and blockDAG. In Computer Science—
Distributed, Parallel, and Cluster Computing; 2020. Available online: http://arxiv.org/abs/2010.05447 (accessed on 8 July 2021).

13. Liu, D.; Alahmadi, A.; Ni, J.; Lin, X.; Shen, X. Anonymous Reputation System for IIoT-Enabled Retail Marketing Atop PoS
Blockchain. IEEE Trans. Ind. Inform. 2019, 15, 3527–3537. [CrossRef]

14. Paper Trail. Available online: https://cosmos.network/resources/whitepaper (accessed on 30 May 2021).
15. Gueta, G.G.; Abraham, I.; Grossman, S.; Malkhi, D.; Pinkas, B.; Reiter, M.; Seredinschi, D.-A.; Tamir, O.; Tomescu, A. SBFT: A

Scalable and Decentralized Trust Infrastructure. In Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Portland, OR, USA, 24–27 June 2019; pp. 568–580.

16. Li, B.; Jiang, J. Security Analysis of Paxos Mechanism Design Based on Game Theory. In Proceedings of the 2020 IEEE International
Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 6–8 November 2020;
pp. 59–66. [CrossRef]

17. Kotla, R.; Alvisi, L.; Dahlin, M.; Clement, A.; Wong, E. ZYZZYVA: Speculative Byzantine fault tolerance. ACM Trans. Comput.
Syst. 2010, 27, 1–39. [CrossRef]

18. Huang, D.; Ma, X.; Zhang, S. Performance Analysis of the Raft Consensus Algorithm for Private Blockchains. IEEE Trans. Syst.
Man Cybern. Syst. 2019, 50, 172–181. [CrossRef]

19. Castro, M.; Liskov, B. Practical Byzantine Fault Tolerance and Proactive Recovery. ACM Trans. Comput. Syst. 2002, 20, 398–461.
[CrossRef]

20. Veronese, G.S.; Correia, M.; Bessani, A.N.; Lung, L.C. Spin One’s Wheels? Byzantine Fault Tolerance with a Spinning Primary. In
Proceedings of the 2009 28th IEEE International Symposium on Reliable Distributed Systems, Niagara Falls, NY, USA, 27–30
September 2009; pp. 135–144.

21. Paper Trail. Available online: https://www.the-paper-trail.org/post/2008-08-13-a-brief-tour-of-flp-impossibility/ (accessed on
16 March 2021).

22. Yim, J.C.; Yoo, H.K.; Kwak, J.Y.; Kim, S.M. Blockchain and Consensus Algorithm. Electron. Telecommun. Trends 2018, 33, 45–56.

https://zephyrnet.com/ko/pwc-%EB%B3%B4%EA%B3%A0%EC%84%9C-%EB%B8%94%EB%A1%9D-%EC%B2%B4%EC%9D%B8,-1-%EB%85%84%EA%B9%8C%EC%A7%80-%EA%B8%80%EB%A1%9C%EB%B2%8C-GDP-76-%EC%A1%B0-2030-%EC%A1%B0-%EC%A6%9D%EA%B0%80/
https://zephyrnet.com/ko/pwc-%EB%B3%B4%EA%B3%A0%EC%84%9C-%EB%B8%94%EB%A1%9D-%EC%B2%B4%EC%9D%B8,-1-%EB%85%84%EA%B9%8C%EC%A7%80-%EA%B8%80%EB%A1%9C%EB%B2%8C-GDP-76-%EC%A1%B0-2030-%EC%A1%B0-%EC%A6%9D%EA%B0%80/
https://zephyrnet.com/ko/pwc-%EB%B3%B4%EA%B3%A0%EC%84%9C-%EB%B8%94%EB%A1%9D-%EC%B2%B4%EC%9D%B8,-1-%EB%85%84%EA%B9%8C%EC%A7%80-%EA%B8%80%EB%A1%9C%EB%B2%8C-GDP-76-%EC%A1%B0-2030-%EC%A1%B0-%EC%A6%9D%EA%B0%80/
http://doi.org/10.1109/tii.2020.3046129
http://doi.org/10.1007/s12083-021-01119-0
https://docs.google.com/presentation/d/10W7gKEvk_6XRIlSdiKwnwP9gVzo5Re5m_24QzLGaqvk/edit
https://docs.google.com/presentation/d/10W7gKEvk_6XRIlSdiKwnwP9gVzo5Re5m_24QzLGaqvk/edit
http://doi.org/10.6688/JISE.202101_37(1).0004
http://doi.org/10.1109/TDSC.2010.70
http://doi.org/10.1145/3149.214121
http://arxiv.org/abs/2010.05447
http://doi.org/10.1109/TII.2019.2898900
https://cosmos.network/resources/whitepaper
http://doi.org/10.1109/ICIBA50161.2020.9277011
http://doi.org/10.1145/1658357.1658358
http://doi.org/10.1109/TSMC.2019.2895471
http://doi.org/10.1145/571637.571640
https://www.the-paper-trail.org/post/2008-08-13-a-brief-tour-of-flp-impossibility/

	Introduction
	Blockchain Consensus Algorithm
	Consensus Algorithm of Public Blockchains
	PoW (Proof of Work)
	PoS (Proof of Stake)

	Consensus Algorithm of Private Blockchains
	Paxos and Raft
	pBFT (Practical Byzantine Fault Tolerance)

	Modification of the pBFT Algorithm
	The Performance of the Consensus Algorithm
	Number of Nodes for Consensus
	The Network Communication Cost within a Consensus Process
	Drawbacks to the pBFT Algorithm Handling

	mpBFT (Modified pBFT)
	Performance Evaluation of mpBFT
	The Superiority of the Consensus Node Ratio
	NCC: Network Communication Cost
	TPS (Transaction Per Second)

	Conclusions
	References

