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Abstract: The generalized sidelobe canceller (GSC) method is a common algorithm to enhance audio
signals using a microphone array. Distortion of the enhanced audio signal consists of two parts: the
residual acoustic noise and the distortion of the desired audio signal, which means that the desired
audio signal is damaged. This paper proposes a modified GSC method to reduce both kinds of
distortion when the desired audio signal is a non-stationary speech signal. First, the cross-correlation
coefficient between the canceling signal and the error signal of the least mean square (LMS) algorithm
was added to the adaptive process of the GSC method to reduce the distortion of the enhanced
signal while the energy of the desired signal frame was increased suddenly. The sidelobe pattern of
beamforming was then presented to estimate the noise signal in the beamforming output signal of the
GSC method. The noise component of the beamforming output signal was decreased by subtracting
the estimated noise signal to improve the denoising performance of the GSC method. Finally, the
GSC-SN-MCC method was proposed by merging the above two methods. The experiment was
performed in an anechoic chamber to validate the proposed method in various SNR conditions.
Furthermore, the simulated calculation with inaccurate noise directions was conducted based on the
experiment data to inspect the robustness of the proposed method to the error of the estimated noise
direction. The experiment data and calculation results indicated that the proposed method could
reduce the distortion effectively under various SNR conditions and would not cause more distortion
if the estimated noise direction is far from the actual noise direction.

Keywords: microphone array; generalized sidelobe canceller; cross-correlation; sidelobe neutraliza-
tion

1. Introduction

Online meetings are widely used in the current time. The quality of meeting audio
has become increasingly important. Some problems of meeting audio, such as interfering
speech, background noise, and speech reverberation, could be alleviated using several
signal-processing methods with a single-channel microphone. These problems are all
related to the spatial direction. Therefore, a multichannel microphone array is used to
extract the desired signal by analyzing the spatial information of signals.

The primary method of a microphone array is the delay-and-sum beamforming
(DSB) method presented by Flanagan et al. [1]. The multichannel signals are aligned
at the look direction by compensation with the proper delay. The aligned signals are
summed to ensure that the gain of the look direction is maximized. In other words, the
signals from other directions are suppressed. More microphones should be employed to
suppress the non-look direction signal more effectively. Capon [2] proposed the minimum
variance distortionless response (MVDR) method in 1969 to achieve better denoising
performance without increasing the number of microphones. The weight coefficients of
different channels were adjusted to preserve the gain of the look direction and decrease the
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total power of the final output signal. Frost [3] developed the MVDR method that extended
the constraint in the MVDR method to linear equations. Therefore, the weight coefficients
could be adjusted adaptively based on the constraints. This method is referred to as the
linearly constrained minimum variance (LCMV) method.

The constraints could be independent of the LCMV method to simplify the algorithm.
Griffiths and Jim [4] proposed the generalized sidelobe canceller (GSC) method in 1982.
The GSC method consisted of three parts. The first part is the same as a conventional
beamforming method to reduce the noise roughly. The second part is a block matrix
to generate a reference noise signal by removing the desired signal from the original
multichannel signals. The third part is an adaptive filter to estimate the noise component
of the first part’s output signal. Then, the estimated noise is subtracted from the output
signal of the first part to obtain a cleaner desired signal. The GSC method converts the
optimization goal of the LCMV method from the optimal weights with constraints to the
optimal weights without constraints. Therefore, the simple adaptive algorithm could be
adopted to reduce the residual noise in the final output signal.

The three parts of the GSC method could be optimized individually to improve the
aggregate denoising performance of the adaptive algorithm. Hoshuyama et al. [5] and
Lee et al. [6] modified the block matrix to decrease the sensitivity of the GSC method to
a mismatch between the estimated and actual direction of arrival (DOA) of the desired
signal. The robustness of the GSC method was increased by reducing the leakage of
the desired signal into the reference noise signal [7]. Gannot et al. [8] considered the
complicated acoustic environments and proposed a transfer function GSC (TF-GSC). The
block matrix of the TF-GSC method was modified with the transfer function ratio (between
different microphones in an array) to adapt the GSC method to reverberation conditions.
Reuven et al. [9] combined the TF-GSC with an acoustic echo cancellation to improve the
performance of the algorithm in noisy and reverberant environments. Reuven et al. [10] also
extended the TF-GSC method to the DFT-GSC method for double talk scenarios to cancel
the nonstationary interferences signal. Rombouts et al. [11] estimated a room impulse
response and a desired speech signal model jointly to reduce the computational complexity
dramatically for specific applications. Krueger et al. [12] estimated the acoustical transfer
function ratios in the presence of stationary noise and tracked the eigenvector adaptively
to obtain better noise and interference reduction. The GSC method also could be optimized
by using efficient complex value arithmetic to reduce the calculation complexity [13] and
by introducing the external microphones into the local microphone array to improve the
performance of the speech estimate [14].

The least mean square (LMS) algorithm is a common adaptive algorithm for the GSC
method to estimate the noise signal. The LMS algorithm adjusts the filter coefficients
to make the mean square of the error signal (difference between the canceling signal
and the received noise signal) lowest [15,16]. The stochastic gradient descent method
has been used to ensure that the error signal can be decreased iteratively in real-time,
which was derived by Widrow and Hoff [17] in 1960. Several modified LMS algorithms
were proposed for some practical consideration. Nagumo and Noda [18] introduced the
normalized LMS (NLMS) algorithm to make the algorithm convergence speed independent
of the reference signal power, because the step size of the filter coefficient updating was
inversely proportional to the reference signal power. Shan and Kailath [19] proposed the
correlation LMS algorithm, which adjusted the step size of the filter coefficient updating
to be proportional to the cross-correlation coefficient between the reference signal and the
error signal. This means that when the reference signal and the error signal are uncorrelated,
the step size will be too small to update the weight coefficients of the adaptive filter. This
step size control scheme makes the adaptive algorithm more robust to disturbances, such as
the system-measured noise. Gitlin et al. [20] proposed the leaky LMS algorithm, in which a
leakage factor was added to the adaptive weight update path. The leakage factor could
avoid the overflow of the unconstrained weight to increase the stability of the algorithm.
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Some studies [21–23] introduced post-filtering methods to the microphone array for
additional noise reduction to the beamforming output signal. Some studies [24–26] decom-
posed the multichannel signal into two subspace domains, the desired signal subspace
domain and noise signal subspace domain, based on statistic features (like the singular
value decomposition of the covariance matrix of the multichannel signal). The signal in the
noise subspace domain was removed or suppressed, and the desired signal was restored
from the desired signal subspace domain. Some researchers [27,28] attempted to extract the
desired signal that had been contaminated by noise without a signal model or transmission
model, which can be referred to as blind source separation or independent component
analysis, most of which were based on the statistic features or a neural network. This
research is mainly in the laboratory stage because of the complexity of calculation and the
feasibility in actual environments.

The distortion of the enhanced signal consists of two parts: the residual noise and the
distortion of the desired signal, which means that the desired signal is damaged. Most
researchers attempted to reduce the residual noise of the output of the microphone array.
In contrast, the desired signal is sometimes a nonstationary signal, as in speech application.
The varying speech signal may damage the desired signal and degrade the denoising
performance of the adaptive algorithm. Some researchers [29] employed the voice activity
detection (VAD) method to make the algorithms only to be adjusted in speech-absent
frames and avoid the affection of a varying speech signal. On the other hand, the VAD
method is not always practical, especially when the background noise is heavy or the
sound field is complex.

In this study, the conventional GSC method was modified to reduce the enhanced
speech distortion without the VAD method. The step size of the adaptive algorithm in
the GSC method was controlled by the cross-correlation coefficient between the cancelling
signal and the error signal to reduce the distortion that occurred by the change of the
speech energy. Furthermore, based on the excess mean-square error (MSE) of the LMS
algorithm [30,31] and the theoretical limits of the noise reduction performance [32], the
sidelobe neutralization (SN) method was presented to reduce the noise component in the
beamforming output signal of the GSC method to improve the denoising performance.

This paper is organized as follows. Section 1 introduces the research background
and reviews the relative academic achievements. Section 2 proposes the GSC method
with the sidelobe neutralization method and the GSC method with the cross-correlation
coefficient method. The modified GSC algorithm is given by combining them. Section 3
presents the implementation of the experiment and the result analysis. Section 4 provides
the conclusions of this study.

2. The Proposed Method
2.1. The Conventional GSC Method

The GSC algorithm can be separated into two transmission paths: the primary path
and auxiliary path, as shown in Figure 1. The primary path generates a denoising signal
with residual noise by the fixed beamforming method. The auxiliary path estimates the
noise component in the output signal of the primary path. ωm is the weight vector to
make the microphone array signal x(n) aligned in the look direction to suppress noise from
the other direction. ym(n) is the sum of the aligned signals as the beamforming output
signal of the primary path. The auxiliary path estimates the noise component yb(n) in the
beamforming output signal of the primary path as the cancelling signal. The cancelling
signal will be removed from the beamforming output signal. Hence, the enhanced signal
yout(n) consists of the desired signal, and the residual noise signal is obtained.

The block matrix (BM) is adopted to generate the reference noise signal, excluding
the desired signal from the noisy signal, in the auxiliary path for estimating the noise
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component of the beamforming output signal. Various methods can be used to design the
block matrix for different purposes. The typical block matrix is as follows:

BM = [1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0 0

. . .
0 0 0 0 . . . 1 −1](M−1)*M

where M is the number of microphones in the microphone array. This matrix can block
the desired signal completely in theory and introduce a low calculation complexity. The
output zb(n) of the block matrix is offered to the adaptive filter as the reference noise signal
to estimate the noise component of the beamforming output signal. The LMS algorithm
is commonly used as an adaptive filter to adjust the filter coefficients ωf. Thus, the error
signal of the LMS algorithm yout(n), which is also the output signal of the GSC method, is
obtained by removing the estimated noise signal from the beamforming output signal. The
filter coefficient ωf is then updated based on the reference noise signal and error signal.
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2.2. GSC Method with Cross-Correlation Coefficient

In practice, the error signal of the GSC method consists of a residual noise signal
and an enhanced desired signal. In speech application, the desired signal is often a non-
stationary speech signal. When the amplitude of the speech signal increases suddenly, the
amplitude of the error signal should also be increased synchronously, while the amplitude
of the residual noise signal may remain stable. Hence, over-subtraction may be caused
in the subsequent frames. This problem can be solved using the GSC method with the
cross-correlation coefficient (GSC-CC). In this method, the cross-correlation coefficient
is introduced to the weight updating path, as shown in Figure 2. Because the speech
signal usually is uncorrelated with noise signal in practical situations, the cross-correlation
coefficient between the estimated noise yb(n) and the error signal yout(n) is used to control
the step size of the adaptive filter weight update process, as expressed in the following
equations.

w f (n + 1) = w f (n) + |ρ(k− 1)|µx(n)e(n) (1)

ρ(k) = E(yb(k)yout(k)) = E
(

yb(k)
(

sspeech(k) + nresidual(k)
))

= E
(

yb(k)sspeech(k)
)
+ E(yb(k)nresidual(k))

(2)

If yb(k) ≈ nbeam f orm(k), thus E
(

yb(k)sspeech(k)
)
≈ 0, (3)

Finally, ρ(k) ≈ E(yb(k)nresidual(k)), (4)

where ρ(k) is the cross-correlation coefficient of the kth frame between the estimated
noise yb(k) and the error signal yout(k). sspeech(k) represents the clean desired speech signal,
and nresidual(k) is the residual noise component of the output signal. Because the speech
signal is commonly assumed to be uncorrelated with the noise signal, the cross-correlation
coefficient between the estimated noise and the speech signal is close to zero and can be
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neglected. Therefore, ρ(k) is equal to the cross-correlation coefficient between the estimated
noise signal yb(k) and the residual noise signal nresidual(k) as expressed in Equation (4).
This means that if the ρ(k) is small, the residual noise is nearly uncorrelated with the
estimated noise, so the weight coefficient will be changed only slightly. Otherwise, the
weight coefficient will be changed considerably to reduce the residual noise rapidly.
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Figures 3 and 4 illustrate the influence of the varying speech signal on the esti-
mated noise signal. The input original of a speech signal was extracted from the TIMIT
database [33], and the noise signal was the white noise obtained from the NOISEX-92
database [34]. Figure 3a shows the original speech and noise signal, in which the signal-to-
noise ratio (SNR) was equal to −5 dB (the ratio of the energy of the whole speech signal
and the energy of the noise signal during the same time). Detailed information about the ex-
periment implementation is depicted in Section 3. Figure 3b presents the cross-correlation
coefficient between the estimated noise signal and the output signal with the conventional
GSC method and the GSC-CC method. The negative peak of the cross-correlation coeffi-
cient with the conventional GSC method was generated when the amplitude of the speech
signal increased suddenly (Figure 3b), which implies the phenomenon of over-subtraction.

Figure 4 compares the energy of the estimated noise frame with different methods.
Figure 4b displays the partially enlarged view of Figure 4a from the 50th to the 100th frame.
The energy of the estimated noise frame with the conventional GSC method would increase
when the energy of the speech frame was much more than the actual noise frame. The
GSC-CC method could flatten the energy curve of the estimated noise frame, which is
consistent with the trend of the energy curve of the original white noise signal. This means
that the distortion of the enhanced speech signal was reduced for the desired signal, and it
was damaged less when the amplitude of the speech signal changed.
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The GSC-CC method could decrease the overestimation of the noise efficiently when
the desired speech signal amplitude was increased suddenly (Figure 4). On the other hand,
the figures also show that the energy curve of the estimated noise frames with the GSC-CC
method was lower than the conventional GSC method. As the correlation coefficient was
less than or equal to one, the step size of the adaptive filter of the GSC-CC method was
smaller than the GSC method. Consequently, the energy of the residual noise signal with
the GSC-CC method was higher than the conventional GSC method.

The GSC method with the minimum cross-correlation coefficient (GSC-MCC) method
was proposed by combining the conventional GSC method and the GSC-CC method
to utilize the advantages of the two methods. The conventional GSC method and the
GSC-CC method ran synchronously. The output signal frame, which had the smaller cross-
correlation coefficient (between the estimated noise signal and the corresponding output
signal) of the two methods, was adopted to synthesize the final output signal. Considering
the overlap of speech frames and the nonstationary nature of a speech signal, the principle
of the GSC-MCC method to choose the frame to synthesize the final output signal was
modified using Equation (5).

yout− f inal(k) =

 yout−corr(k),
k+1
∑

i=k−1
sign(|ρconν(i)| − |ρcorr(i)|) ≥ 2

yout−conν(k), otherwise
, (5)

where yout-corr(k) and yout-conv(k) represent the output signal frame of the GSC-CC method
and the conventional GSC-CC method, respectively.

2.3. GSC Method with Sidelobe Neutralization
2.3.1. Beamforming Pattern

In this study, the microphone array was assumed to be a uniform circle array (UCA),
with M microphones deployed uniformly on a circle with a radius of r. The sound source
and the microphone array were assumed to be on the same horizontal plane for convenience.
That is, the incident elevation angle of the desired signal and the noise signal both were
0◦. The sound source direction vector ν was obtained as shown Equation (8), based on the
angle interval αm and relative distance xr between microphones.

αm = 2π(m− 1)/M (6)

xr = r· cos(φ− αm) (7)

ν =
[
ej(kxr1), ej(kxr2), . . . , ej(kxrM)

]T
(8)
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Thus, the beamforming pattern could be derived using the following equations [35]:

B(φs, φi) =
M

∑
m=1

ω∗(s,m)ν(i,m) =
1
M

M

∑
m=1

ej2kr sin( φs−φi
2 ) sin( φs+φi

2 −αm) =
1
M

M

∑
m=1

exp(−jz sin(β− αm)), (9)

where
z = 2kr sin(

φs − φi
2

), β =
φs + φi

2
, (10)

and ω(s,m) is the weight of the microphone channel to adjust the look direction Φs of the
microphone array. Φi represents the actual incident direction of the sound source.

Based the Jacobi–Anger identity,

exp(jz sin(α)) =
∞

∑
n=−∞

Jn(z) exp(jnα) (11)

where Jn is the nth-order Bessel function; let b = n/M,

Final : B(φs, φi) =
∞

∑
b=−∞

JbM(z) exp(−jbMβ), (12)

If M is even : B(φs, φi) = J0(z) + 2
∞

∑
b=1

JbM(z) cos(bMβ), (13)

Consequently, the beamforming pattern could be formed by the Bessel functions. Con-
sidering the property of the Bessel function, the value of the second item of Equation (13)
will be close to zero and can be neglected with an increasing number of microphones. Thus,
the beamforming pattern could be approximated as a zero-order Bessel function.

2.3.2. Beamforming Sidelobe Neutralization

When the configuration of the microphone array was determined, the sidelobe of
the beamforming pattern could be calculated as in Equation (13). If there are two sound
sources, s1 and s2, deployed in the direction vector ν1 and ν2, respectively, in the sound
field, the sidelobe neutralization method could be derived using the following equations:

S = [s1, s2], ν = [ν1, ν2]; (14)

the received signal of microphones xm could be written as:

xm = Sν = s1ν(1,m) + s2ν(2,m) (15)

The output signal of the beamforming function to the corresponding direction is:

yν1 =
M

∑
m=1

ω∗(s1,m)xm =
M

∑
m=1

ν∗(1,m)s1ν(1,m) + ν∗(1,m)s2ν(2,m) = s1 +
M

∑
m=1

ν∗(1,m)s2ν(2,m) (16)

yν2 =
M

∑
m=1

ω∗(s2,m)xm =
M

∑
m=1

ν∗(2,m)s1ν(1,m) + ν∗(2,m)s2ν(2,m) = s2 +
M

∑
m=1

ν∗(2,m)s1ν(1,m) (17)

Let uab =
M

∑
m=1

ν∗(a,m)ν(b,m) = B(φa, φb), (18)

yν1s2 = yν1 − u12yν2 = s1 + u12s2 − u12s2 − u12u21s1 = s1(1− u12u21) = s1

(
1− |u12|2

)
(19)

where uab represents the attenuation coefficient of the sidelobe when the sound source is
placed at direction b and beamformed to direction a. Moreover, the attenuation coefficient
will be the conjugate of uab when the cast direction is inverse.
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Hence, Equation (19) could be used for direction ν1 to reduce the noise received from
direction ν2. This equation proves that the noise signal from the interference direction can
theoretically be removed entirely from the beamforming output signal of the look direction.
When the attenuation coefficient is not equal to one, the signal amplitude from the look
direction could be maintained by multiplying a proper scale factor. On the other hand, if
the attenuation coefficient of the frequency is equal to one, this frequency signal would be
lost completely and could not be compensated.

Therefore, the sidelobe neutralization method could be modified as in Equations (20)
and (21). The desired signal component in the noise direction was calculated and subtracted
from the beamforming output of the noise direction as in Equation (20). Hence, the
estimated noise signal becomes the pure noise without the desired signal. The output
of the sidelobe neutralization method was calculated using Equation (21). This equation
proves that the sidelobe neutralization method would not miss the frequency signal with
an attenuation coefficient of even one. Because most of the time, uab is less than 1, the cube
of uab is less than itself. Combining Equations (16) and (21), it means that (u12)3 should be
less than u12 most of the time. Thus, the beamforming output with less noise is obtained.

yν2s1 = yν2 − u21yν1 = s2 + u21s1 − u21s1 − u21u12s2 = s2(1− u21u12) = s2

(
1− |u21|2

)
(20)

yν1s2s1 = yν1 − u12yν2s1 = s1 + u12s2 − u12s2

(
1− |u21|2

)
= s1 + s2(u12)

3 (21)

However, the estimated noise direction is often inaccurate in practice. The error of
the estimated noise direction would affect the performance of the sidelobe neutralization
method. ν3 is assumed to be the inaccurately estimated noise direction, and Equations (20)
and (21) can be modified as follows:

yν3 =
M

∑
m=1

ω∗(s3,m)xm =
M

∑
m=1

ν∗(3,m)s1ν(1,m) + ν∗(3,m)s2ν(2,m) = u31s1 + u32s2 (22)

yν3s1 = yν3 − u31yν1 = u31s1 + u32s2 − u31s1 − u31u12s2 = s2(u32 − u31u12) (23)

yν1s3s1 = yν1 − u13yν3s1 = s1 + u12s2 − u13s2(u32 − u31u12) = s1 + s2[u12 − u13(u32 − u31u12)] (24)

Let rν3 =

∣∣∣∣u12 − u13(u32 − u31u12)

u12

∣∣∣∣, (25)

where rν3 is the ratio of the noise signal processed by the sidelobe neutralization method
with the inaccurate noise direction to that by the beamforming method. rν3 can be analyzed
qualitatively as follows:

If u12 is small or near to zero, thus,

yν1s3s1 = s1 + s2[u12 − u13(u32 − u31u12)] = s1 + s2(−u13u32) (26)

Therefore, rν3 may be extremely big.
If u12 is big, there are roughly two cases:

(1) ν3 is near ν2; thus, rν3 =

∣∣∣∣1− u13u32

u12
+ u2

13

∣∣∣∣ ≈ ∣∣∣∣1− u12u22

u12
+ u2

13

∣∣∣∣ = u2
13 ≤ 1, (27)

(2) ν3 is far from ν2; thus, u32 is small, rν3 =

∣∣∣∣1− u13u32

u12
+ u2

13

∣∣∣∣ ≤ ∣∣∣1 + u2
13

∣∣∣+ ∣∣∣∣u32

u12

∣∣∣∣ ≤ 3 (28)

Assume an instance, in which ν1 is 0◦ and ν2 is 60◦, to illustrate the affection of the
inaccurately estimated noise direction for the residual noise. According to Equation (25),
Figure 5 shows rν3 with different estimated noise direction (ν3 from −180◦ to +180◦).



Appl. Sci. 2021, 11, 6288 9 of 17
Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 17 
 

  
(a) (b) 

Figure 5. (a) Ratio of the noise processed using the sidelobe neutralization method with the different estimated noise 
direction: (b) Sidelobe attenuation coefficient of actual noise direction. 

The blue gap near 60° in Figure 5a shows that the noise signal processed by the side-
lobe neutralization method with an inaccurate noise direction was less than that by the 
original beamforming method in a relatively wide direction range near the actual noise 
direction. The ratio in the frequency band between 1000 to 1500 Hz in all directions was 
high, because the sidelobe attenuation coefficient of the actual noise direction in this fre-
quency range was close to zero (u12, as shown in Figure 5b). 

When the estimated noise direction was far away from the actual noise direction, the 
ratio was close to one at the greatest portion of the figure, which means that the energy of 
the noise signal processed by the sidelobe neutralization method was almost equal to that 
by the beamforming method, except in the high-frequency band in several directions. 
Even in these areas, the ratio was still less than two. 

Therefore, the conclusion could be derived that the sidelobe neutralization method 
could work effectively when the estimated noise direction was near the actual noise di-
rection. When the estimated noise direction was far away from the actual noise direction, 
the denoising performance of the sidelobe neutralization method was similar to the beam-
forming method, except in the frequency range, in which the sidelobe attenuation of the 
actual noise direction was strong. 

2.3.3. The GSC Method with Sidelobe Neutralization 
In LMS theory, the denoising performance of the algorithm is relative to the energy 

of the received noise signal [30]. Therefore, the GSC-SN method was proposed by adding 
the sidelobe neutralization method to the primary path of the conventional GSC method. 
The sidelobe neutralization method was used to reduce the received noise to improve the 
performance of the GSC method. When the noise weight vector was estimated to be ωn, 
the noise signal yn(n) in the noise direction could be estimated using Equation (17). The 
desired signal in the noise direction ynm(n) was calculated and subtracted from the esti-
mated noise signal as in Equation (20). Therefore, the pure estimated noise signal ynsm(n) 
was obtained without the desired signal. The pure estimated noise signal was subtracted 
from the beamforming output signal of the desired signal direction ym(n). Thus, the beam-
forming output of the primary path with less noise was obtained as Equation (21). The 
denoising performance of the GSC method could be improved by the beamforming out-
put signal with less noise. 

2.4. The Proposed GSC-SN-MCC Method 
Finally, the GSC-SN-MCC method was proposed by combining the GSC-MCC 

method and the GSC-SN method to improve the performance of the GSC method. The 
GSC-MCC method was used to reduce the distortion of the enhanced signal caused by the 
varying desired signal. The sidelobe neutralization method was placed in the primary 

Figure 5. (a) Ratio of the noise processed using the sidelobe neutralization method with the different estimated noise
direction: (b) Sidelobe attenuation coefficient of actual noise direction.

The blue gap near 60◦ in Figure 5a shows that the noise signal processed by the
sidelobe neutralization method with an inaccurate noise direction was less than that by
the original beamforming method in a relatively wide direction range near the actual
noise direction. The ratio in the frequency band between 1000 to 1500 Hz in all directions
was high, because the sidelobe attenuation coefficient of the actual noise direction in this
frequency range was close to zero (u12, as shown in Figure 5b).

When the estimated noise direction was far away from the actual noise direction, the
ratio was close to one at the greatest portion of the figure, which means that the energy of
the noise signal processed by the sidelobe neutralization method was almost equal to that
by the beamforming method, except in the high-frequency band in several directions. Even
in these areas, the ratio was still less than two.

Therefore, the conclusion could be derived that the sidelobe neutralization method
could work effectively when the estimated noise direction was near the actual noise direc-
tion. When the estimated noise direction was far away from the actual noise direction, the
denoising performance of the sidelobe neutralization method was similar to the beamform-
ing method, except in the frequency range, in which the sidelobe attenuation of the actual
noise direction was strong.

2.3.3. The GSC Method with Sidelobe Neutralization

In LMS theory, the denoising performance of the algorithm is relative to the energy
of the received noise signal [30]. Therefore, the GSC-SN method was proposed by adding
the sidelobe neutralization method to the primary path of the conventional GSC method.
The sidelobe neutralization method was used to reduce the received noise to improve
the performance of the GSC method. When the noise weight vector was estimated to be
ωn, the noise signal yn(n) in the noise direction could be estimated using Equation (17).
The desired signal in the noise direction ynm(n) was calculated and subtracted from the
estimated noise signal as in Equation (20). Therefore, the pure estimated noise signal
ynsm(n) was obtained without the desired signal. The pure estimated noise signal was
subtracted from the beamforming output signal of the desired signal direction ym(n). Thus,
the beamforming output of the primary path with less noise was obtained as Equation (21).
The denoising performance of the GSC method could be improved by the beamforming
output signal with less noise.

2.4. The Proposed GSC-SN-MCC Method

Finally, the GSC-SN-MCC method was proposed by combining the GSC-MCC method
and the GSC-SN method to improve the performance of the GSC method. The GSC-MCC
method was used to reduce the distortion of the enhanced signal caused by the varying
desired signal. The sidelobe neutralization method was placed in the primary path of the
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GSC-MCC method to generate the beamforming output signal with less noise to improve
the denoising ability of the proposed method.

As shown in Figure 6, the received signal of the microphone array was beamformed
in the desired signal direction ωm and the noise signal direction ωn, respectively. Based
on Equations (16), (17), (20) and (21), the beamforming output signal with less noise than
the original beamforming method was obtained. Then, the system was run as the usual
GSC method until updating the adaptive filter coefficient. The cross-correlation coefficient
ρ (between the estimated noise signal and the corresponding output signal) was added to
the adaptive filter coefficient updated equation to control the overestimating of the noise
component, as in Equation (1).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17 
 

path of the GSC-MCC method to generate the beamforming output signal with less noise 
to improve the denoising ability of the proposed method. 

As shown in Figure 6, the received signal of the microphone array was beamformed 
in the desired signal direction ωm and the noise signal direction ωn, respectively. Based on 
Equations (16), (17), (20), (21), the beamforming output signal with less noise than the 
original beamforming method was obtained. Then, the system was run as the usual GSC 
method until updating the adaptive filter coefficient. The cross-correlation coefficient ρ 
(between the estimated noise signal and the corresponding output signal) was added to 
the adaptive filter coefficient updated equation to control the overestimating of the noise 
component, as in Equation (1). 

 
Figure 6. Block diagram of the GSC-SN-MCC method. 

3. Experiment and Analysis 
3.1. Experiment Implementation 

The laboratory experiments were conducted in the anechoic chamber to validate the 
proposed method. The experimental layout is shown in Figure 7. The laptop was the con-
trol center to manage the audio system for simulating a real environment. Two omnidi-
rectional speakers were connected to the laptop as the speech and noise sources, respec-
tively, using an INTERM L-2400 power amplifier. The microphone array consisted of 6 
MEMS microphones, distributed uniformly in a circle with a radius of 0.1 m. The printed 
circuit board (PCB) of the SCIEN company was connected to the microphones to realize 
the signal amplification function, the A/D conversion function, and transfer the digital 
signal to the laptop for recording. The signal was processed by the MATLAB software. To 
simplify the experiment, the speakers and the microphone array were deployed in the 
same horizontal plane. This means that the elevation angles of the incident signals (de-
sired signal and noise signal) were 90°. 

Based on the common far-field equation, expressed as in Equation (29), the minimum 
distance between the microphone array and the sound source was calculated to ensure 
that the position of the speakers satisfied the far-field condition. Assuming that the sound 
speed c is 343 m/s, the maximum frequency f was 4000 Hz, and the diameter of micro-
phone array L was 0.2 m. Hence, the minimum distance d was approximately 0.933 m. 
Thus, the speakers were deployed about 2.5 m away from the microphone array, consid-
ering the space of the anechoic chamber and the minimum distance d. The azimuth angles 
of the speech signal source and the noise signal source were 0° and 90°, respectively. 

2 22 / 2 /d L L f cλ= ∗ = ∗ ∗  (29)

Figure 6. Block diagram of the GSC-SN-MCC method.

3. Experiment and Analysis
3.1. Experiment Implementation

The laboratory experiments were conducted in the anechoic chamber to validate
the proposed method. The experimental layout is shown in Figure 7. The laptop was
the control center to manage the audio system for simulating a real environment. Two
omnidirectional speakers were connected to the laptop as the speech and noise sources,
respectively, using an INTERM L-2400 power amplifier. The microphone array consisted of
6 MEMS microphones, distributed uniformly in a circle with a radius of 0.1 m. The printed
circuit board (PCB) of the SCIEN company was connected to the microphones to realize
the signal amplification function, the A/D conversion function, and transfer the digital
signal to the laptop for recording. The signal was processed by the MATLAB software.
To simplify the experiment, the speakers and the microphone array were deployed in the
same horizontal plane. This means that the elevation angles of the incident signals (desired
signal and noise signal) were 90◦.

Based on the common far-field equation, expressed as in Equation (29), the minimum
distance between the microphone array and the sound source was calculated to ensure that
the position of the speakers satisfied the far-field condition. Assuming that the sound speed
c is 343 m/s, the maximum frequency f was 4000 Hz, and the diameter of microphone
array L was 0.2 m. Hence, the minimum distance d was approximately 0.933 m. Thus, the
speakers were deployed about 2.5 m away from the microphone array, considering the
space of the anechoic chamber and the minimum distance d. The azimuth angles of the
speech signal source and the noise signal source were 0◦ and 90◦, respectively.

d = 2 ∗ L2/λ = 2 ∗ L2 ∗ f /c (29)
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of distortion of the enhanced signal. 
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The speech of a female was selected randomly from the TIMIT database [32] as the
desired signal. White noise in the NOISE-92 database [33] was chosen as the noise signal.
The power of the noise signal was adjusted to simulate different SNR conditions. The
sampling rate of the microphone array was 16,000 Hz, and the received signal was filtered
using a lowpass filter, of which the cutoff frequency was 4000 Hz. The high sampling rate
could increase the time resolution of the system and exhibit the phase difference between
microphones more obviously. Because most of the energy of speech is concentrated in
the low and medium frequency bands, the received signal was filtered by a lowpass filter
to reduce the calculation burden of the hardware, while most of the speech information
was preserved.

3.2. Experiment Result Analysis
3.2.1. Effect of the Various SNR Conditions

Figure 8 compares the distortion–noise ratio of frames with different methods while
SNR is −5 dB. The distortion of the enhanced speech signal was calculated using Equa-
tion (30), where k represents the kth frame and l is the length of the frame. yout(n) and
sspeech(n) represent the output signal of the method and the clean desired speech signal
without noise, respectively. Less distortion means better denoising performance of the
method. Equation (31) calculates the distortion–noise ratio as the distortion divided by the
pure noise energy.

distortion(k) =
(k+1)∗l

∑
n=k∗l

[
yout(n)− sspeech(n)

]2
(30)

p(k) =
∣∣∣∣distortion(k)

noise(k)

∣∣∣∣ = (k+1)∗l

∑
n=k∗l

[
yout(n)− sspeech(n)

]2

[snoise(n)]
2 (31)

Figure 8b presents an enlarged view of Figure 8a from the 50th to 100th frames, which
included two peaks of the speech frame energy. The figure shows that peaks of the signal
distortion were generated using the GSC method when the energy of the speech frame
was increased suddenly. The GSC-CC method could alleviate this problem, while the
residual noise would increase at other frames where the speech energy is stable. The
GSC-SN method could reduce the distortion of most frames caused by the residual noise,
but the above-mentioned distortion problem with damage to the desired signal exists. The
GSC-SN-MCC method could take advantage of the above methods to decrease both kinds
of distortion of the enhanced signal.
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The maximum distortion occurred at the 83rd frame in this case, as shown in Figure 8.
Figure 9 presents the spectrum of signal distortion of the 83rd frame where the fast Fourier
transform was utilized. For convenience, the amplitude of the spectrum was normalized.
Figure 9a shows the spectrum of signal distortion of the 83rd frame over the entire fre-
quency band with different methods. When a different method was employed, there were
apparent differences in the amplitude from 500 Hz to 2000 Hz, where the speech energy was
concentrated. Figure 9b shows the enlarged view of this frequency band. The distortion
spectrum with the GSC-SN-MCC method was smaller and flatter than the conventional
GSC method. Hence, the distortion of the enhanced signal caused by damaging the desired
signal was reduced successfully using the proposed method.
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Tables 1 and 2 list the denoising performance of different methods under various SNR
conditions. Table 1 lists the average of the distortion–noise ratio, and Table 2 presents the
distortion value of the 83rd frame (maximum distortion frame) under various conditions.
For comparison, the average value of the distortion–noise ratio and the distortion value
of the 83rd frame was normalized to the result of the GSC method, which was one, as
shown in Equations (32) and (33). Table 2 indicates that the GSC-CC method could reduce
the peak value of the enhanced signal distortion effectively under most SNR conditions,
except that the noise was too heavy that the speech energy barely affected the estimation
of the residual noise. The GSC-SN method showed better performance under low SNR
conditions (Table 1). The proposed GSC-SN-MCC method was a combination of the above
two methods. The tables show that the proposed method could work effectively under
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both high and low SNR conditions. The best performance of the proposed method occurred
when the energy of speech was almost equal to the energy of noise.

rp =
aνg(∑ pmethod(k))
aνg(∑ pGSC(k))

(32)

rd(k) =
distortionmethod(k)
distortionGSC(k)

(33)

Table 1. Average of the distortion–noise ratio with different methods under various SNR conditions.

SNR/dB GSC GSC-CC GSC-SN GSC-SN-MCC

20 100% 65.98% 104.03% 75.75%
10 100% 57.93% 100.99% 46.29%
5 100% 54.46% 97.92% 38.51%
0 100% 72.66% 89.87% 44.14%
−5 100% 105.34% 83.98% 59.01%
−10 100% 134.85% 80.22% 72.41%
−20 100% 157.90% 77.21% 78.84%

Normalized to result of the GSC method.

Table 2. Distortion of the 83rd frame with different methods under various SNR conditions.

SNR/dB GSC GSC-CC GSC-SN GSC-SN-MCC

20 100% 54.09% 109.34% 82.73%
10 100% 39.69% 110.58% 40.31%
5 100% 20.91% 106.16% 20.94%
0 100% 17.68% 96.88% 17.11%
−5 100% 22.38% 93.10% 18.44%
−10 100% 38.14% 90.32% 27.24%
−20 100% 124.24% 80.42% 72.87%

Normalized to result of the GSC method.

3.2.2. Effect of the Inaccurate Estimated Noise Direction

The simulation calculation was conducted based on the previous experiment data to
show the influence on the performance of the proposed method when the estimated noise
direction was not accurate. Therefore, the incident direction of the desired signal was 0◦,
and the actual noise direction was 90◦ in this section. The SNR condition was performed at
−5 dB. Twelve angles were chosen as the inaccurately estimated noise directions, which
were distributed uniformly in a circle. The meaning of the coordinate axes in the figures
and the calculation equations of the result were the same as in the previous subsection.

Figure 10 presents the distortion–noise ratio of the frames with different methods
when the estimated noise direction was 60◦. Figure 10b is the enlarged view of Figure 10a
from the 50th to 100th frame. Figure 11 shows the spectrum of signal distortion of the
83rd frame on the entire frequency band using different methods. Figure 11b displays the
enlarged view of Figure 11a from 500 Hz to 2000 Hz.

The figures indicate that even with an error angle between the actual noise direction
and the estimated noise direction of 30◦, the proposed method could effectively reduce
both the peak value and the average value of the signal distortion in this case.
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Tables 3 and 4 compare the performance of the different methods in various estimated
noise directions. Table 3 shows that the performance of the GSC-SN method would decrease
with the estimated noise direction far away from the actual noise direction. The GSC-SN
method would reduce to the conventional GSC method when the estimated noise direction
was identical to the desired signal direction. When the estimated noise direction was
identical to the actual noise signal direction, the GSC-SN method would achieve the best
denoising performance. The trend of the performance of the proposed GSC-SN-MCC
method was similar to the GSC-SN method. Better performance of the proposed method
could be attained if the estimated noise direction was closer to the actual noise direction.
Even when the estimated noise direction was the opposite of the actual noise direction,
the performance of the proposed method was still not worse than the conventional GSC
method. Table 4 lists the GSC-CC method that could reduce the peak value of the signal
distortion, which was independent of the estimated noise direction. The ability to decrease
the peak of the enhanced signal distortion by the proposed method was similar to the
GSC-CC method.

The tables show that the proposed method could work effectively when the estimated
noise direction was near the actual noise direction. When the estimated noise direction
was far from the actual noise direction, the proposed method could still reduce the peak
value of the enhanced signal distortion effectively, and the average of the enhanced signal
distortion using the proposed method was similar to the conventional GSC method.
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Table 3. Average of the distortion–noise ratio with different methods in various estimated noise
directions.

Estimated Noise Direction/Degree GSC GSC-CC GSC-SN GSC-SN-MCC

−60 100% 105.34% 112.55% 100.87%
−30 100% 105.34% 106.33% 91.93%

0 100% 105.34% 100% 88.07%
30 100% 105.34% 92.92% 76.27%
60 100% 105.34% 92.80% 68.32%
90 100% 105.34% 83.98% 59.01%

120 100% 105.34% 95.71% 80.68%
150 100% 105.34% 90.56% 76.15%
180 100% 105.34% 97.76% 82.98%
−150 100% 105.34% 94.29% 79.13%
−120 100% 105.34% 105.59% 93.54%
−90 100% 105.34% 102.98% 88.94%

Normalized to result of the GSC method.

Table 4. Distortion of the 83rd frame with different methods in various estimated noise directions.

Estimated Noise Direction/Degree GSC GSC-CC GSC-SN GSC-SN-MCC

−60 100% 22.38% 105.90% 24.68%
−30 100% 22.38% 97.81% 23.04%

0 100% 22.38% 100% 22.38%
30 100% 22.38% 94.42% 21.15%
60 100% 22.38% 103.73% 20.55%
90 100% 22.38% 93.10% 18.44%

120 100% 22.38% 103.00% 23.60%
150 100% 22.38% 89.81% 21.52%
180 100% 22.38% 98.23% 23.62%
−150 100% 22.38% 93.95% 22.44%
−120 100% 22.38% 102.58% 25.06%
−90 100% 22.38% 96.50% 23.57%

Normalized to result of the GSC method.

4. Conclusions

This paper proposed a modified GSC method to reduce the distortion of the enhanced
signal using cross-correlation and sidelobe neutralization. The GSC-MCC method was
proposed first by adding the cross-correlation coefficient between the cancelling signal and
the error signal to the filter weight update path to control the distortion of the enhanced
desired signal when the energy of the desired signal was increased suddenly. The beam-
forming sidelobe pattern was presented and combined with the conventional GSC method
(refer to the GSC-SN method) to improve the denoising performance of the GSC method
by reducing the noise component in the beamforming output signal of the GSC method.
Finally, the GSC-SN-MCC method was proposed by combining the two methods to take
advantage of them.

The experiment was performed in the anechoic chamber, and the experimental data
showed that the proposed method could reduce the enhanced signal distortion effectivity
on different noise levels (the SNR range was between −20 and 20 dB). The performance
of the proposed method was better when the SNR condition was almost 0 dB. The simu-
lated calculation was conducted to reveal the influence of the inaccurate estimated noise
directions on the denoising performance of the proposed method. The calculation results
showed that the proposed method could work effectively when the estimated noise direc-
tion was near the actual noise direction. Even if the estimated noise direction was far from
the actual noise direction, the peak of the enhanced signal distortion would be decreased
successfully, while the average of the enhanced signal distortion would still be similar
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to the conventional GSC method, which indicates the feasibility of the proposed method
in practice.
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