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Abstract: Machine learning models are built using training data, which is collected from human
experience and is prone to bias. Humans demonstrate a cognitive bias in their thinking and behavior,
which is ultimately reflected in the collected data. From Amazon’s hiring system, which was built
using ten years of human hiring experience, to a judicial system that was trained using human
judging practices, these systems all include some element of bias. The best machine learning models
are said to mimic humans’ cognitive ability, and thus such models are also inclined towards bias.
However, detecting and evaluating bias is a very important step for better explainable models. In this
work, we aim to explain bias in learning models in relation to humans’ cognitive bias and propose a
wrapper technique to detect and evaluate bias in machine learning models using an openly accessible
dataset from UCI Machine Learning Repository. In the deployed dataset, the potentially biased
attributes (PBAs) are gender and race. This study introduces the concept of alternation functions
to swap the values of PBAs, and evaluates the impact on prediction using KL divergence. Results
demonstrate females and Asians to be associated with low wages, placing some open research
questions for the research community to ponder over.

Keywords: machine learning bias; bias detection; bias evaluation; KL divergence; explainable models;
cognitive bias

1. Introduction

Machine learning bias has garnered researchers’ attention lately [1–4]. Researchers are
mostly concerned about the potential bias that machine learning systems may demonstrate
against protected attributes such as: gender, race, age, etc. [5]. The interest in this area was
initiated by a report published by ProPublica.com [1] that examined a judicial risk assess-
ment; researchers found that the system exhibits bias toward black people. Later on, many
other news reports and research papers have raised the concern of bias in data. Another
more recent example of machine learning bias is Amazon’s hiring system. The system did
not like women a Reuters report claims (https://www.reuters.com/article/us-amazon-
com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-
against-women-idUSKCN1MK08G, accessed on 1 February 2021). The report stated that
the hiring system was fed ten years of hiring data experience from the company. However,
the system gave less weight to the CVs that included women indicators.

The aforementioned typical machine learning examples work by extracting patterns
from the training data. Due to the fact that data is collected from historical humans’
practices, the element of bias is prevalent within it. For instance, intelligent hiring systems
learn the behavior from the hiring practices embedded in the training data fed to the model.
It is a natural phenomenon that humans have a cognitive bias naturally existing in their
judgment and decisions. Human cognitive bias is a well-studied fact in the psychology
field [6,7]. In order to make a decision, the enormous amount of information residing in a
human’s brain is filtered, and only relevant information is used for decision-making.

In our quotidian hiring decisions, generally a gender bias is observed, where usually
a male employee is preferred over a female one. For instance, technical positions at
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Amazons are male dominated, as mentioned by the same report. Therefore, the company’s
historical data fed to the intelligent hiring system as training data is biased toward male
candidates. A gender bias is observed in many other disciplines; thus the datasets also
follow a biased pattern in which the data is more inclined toward a certain gender [8–11].
Similarly, the recidivism prediction in the judicial system extracts convicted data from a set
of 137 questions; then, an equation is applied to score the likelihood of a convict to commit
another crime. The equations consist of some parameters that are weighted in association
with each question. The parameters of the equation are either obtained by training the
model using real-world data or chosen by a domain expert. In either case, it contains bias
introduced by humans.

Since the dawn of artificial intelligence, we have deliberated to build machines that
mimic humans’ ability to think and behave [12]. As consequence, we usually set our
intelligence and cognitive abilities as the bar for machine intelligence in spite of the fact
that humans suffer a cognitive bias. The machine learning models are trained using the
data that represents human behavior [13,14]. The data fed to the machine learning models
for training is considered as the ground truth, enabling the model to learn behavior from
this data. Nevertheless, considering the bias in human nature and cognitive thinking,
the training data also depicts such biased characteristics, which ultimately impact the
model’s learning by inducing bias [15]. Objecting to this bias, Amazon shut the hiring
system off to stop it. Machine bias will not stop showing up everywhere until we stop
making it: bias in, bias out.

The question remains: Why do we endure cognitive bias? To answer such a question,
we need to emphasize the decision and judgment attributes considered during the process
of the decision and judgment [16]. The judge knows the defendant’s race during the trial,
which may induce a cognitive bias or even worse, preconceived judgment. Bias against
gender or race in our life is not easy to eliminate due to the presence of the protected
attributes. Therefore, we aim to mitigate it. However, this is inexact in machine learning,
in which we can hide these attributes in the model building process, resulting in a total
elimination of bias. In contrast to human judgment, in machine learning we should not
aim to mitigate bias since it may lead to more unjustifiable human intervention, which may
cause unfairness. We can, in fact, eliminate protected attributes from training data in order
to wipe out bias.

In [17], the authors proposed a solution to eliminate model bias by re-weighting
data samples without changing the class label. This approach gave almost equal learning
performance to the true labels’ classifier. However, in the real-world, we cannot simply
assume the existence of bias without detecting it first. Similarly, Ref. [18] argues that
the bias is introduced from humans who are responsible of labeling training data. Yet,
the authors argue that humans are not the only sources of bias, but algorithms are as well.
For instance, recommender systems that provide humans with their preferred content are
responsible for such issues. The bias generation in this scenario is iterative. They concluded
that the iterative bias negatively impacts the learning performance, with iterated filter
bias having the greatest impact. In addition, Agarwal et al., in [19], defined the unbiased
classifier as the classifier that can predict the class label independently of the protected
attribute. They proposed to two reductions to improve fairness in binary classifiers.

The research community are aiming to propose techniques to mitigate algorithmic
bias. However, there is limited work in detecting and evaluating bias in the first place.
Thus, in this paper, we propose a technique to detect and evaluate machine learning bias.
Our contributions in this paper are three-fold:

• Firstly, we aim to investigate machine learning bias in relation to human cognitive
bias. Some important philosophical arguments will be discussed in this section.

• Secondly, we intend to propose a wrapper bias detection technique based on a novel
alternation function to detect machine learning bias.
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• Lastly, we propose an evaluation method to determine the bias in data using KL
divergence. This may help in creating more reliable and explainable machine learning
models. We will conduct several experiments to validate our contribution.

2. Bias and Unfairness

In the machine learning literature, researchers use the terms bias and unfairness
interchangeably [3,16,17,20–23]. We believe this is a fundamental mistake that may lead to
more human intervention in machine decisions. For example, assume that in an automated
hiring system, males are preferred over females. The system learns the criteria of hiring
automatically from the historical training data we provided. Therefore, the algorithm is
not intrinsically unfair, yet the data has a historical bias due to the fact that in this position,
males are dominant [24,25]. If we want to eliminate or mitigate model bias, we need to
tune the model’s parameters to obey our desires of expected outcomes [26]. Tuning the
parameters is equivalent in this case to changing the hiring criteria to accredit one gender
over another, which is not fair [27,28].

From the aforementioned example, a question arises: Who has the right to distort
the model in real-world application that will impact human lives? How can we rationally
justify the model’s outcomes, if we intentionally tweaked it? Although we might mitigate
bias, this may lead to model unfairness.

Humans tend to deviate from rational decisions or judgments to irrational ones.
This is a known fact called cognitive bias [6,7]. Individuals make their own irrationality
in decision-making due to preconceived beliefs about the topic, usually created from a
cumulative subjective reality, not from the input [29,30]. Cognitive bias is not always bad.
It was found that it may expedite the decision-making process [31]. Regardless of the
benefit of human cognitive bias, machine learning bias is not as desirable and thus impacts
the decision-making ability of the algorithm [32]. This is due to the machines’ nature. First,
machines do not need this kind of expedited decision-making process. They expedite
it by either increasing processing power and/or decreasing algorithmic computational
complexity. Second, machine learning bias cannot be easily distinguished from error unless
the data says otherwise. It is worth mentioning here that human cognitive bias is inherited
in the collected data utilized for training machine learning models. Hence, it will learn bias
from training data. This is the entire concept surrounding machine learning models.

In this paper, we will tackle the bias in machine learning models, not the unfairness.
Therefore, we define machine learning bias as the difference in the underlying distribution
of the model learning outcome with respect to certain group(s) influenced by their affiliation
to the specific group. The group could be gender, race, age, or any other protected attribute.

3. Machine Learning Bias: Detection and Evaluation

In most real-world cases, as we mentioned in the introduction, we humans tend to
decide whether the attribute can be biased or not. Usually, bias attributes are the protected
attributes by law. For instance, gender, race, religion, etc., are protected attributes by law;
thus, these correspond to some ethical implications [33,34]. In our cognitive biases, we
have certain beliefs such as: bias against females in highly paid jobs, bias against black
people in the judicial system, and so forth. These beliefs could be true. They could be
mitigated over time, yet we are still sensitive about them.

The problem is: How can we be sure about the presence of bias until we detect it and
quantify it [35]? In this section, we propose a technique to find out whether an attribute
can be PBA toward the classes or not. Furthermore, we will quantify the amount of bias
in PBA. To prove the concept, we will conduct the experiment in this paper on certain
protected attributes, namely: gender and race.

As we discussed above, we can confidently claim that machine learning bias comes
from the training data, which is inherited from the cognitive bias in our decisions and
judgments [36]. Furthermore, most attributes are unbiased by nature, yet they might
implicitly or indirectly inherit bias. For instance, the degree attribute for job applicants
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might be biased due to the indirect impact of the gender attribute. It is known that fewer
females major in engineering or technology, and even fewer have graduate degrees in these
fields. In this example, we need to find the quantity of the bias that the gender attribute
introduces on the learning model, not the degree attribute.

We believe that bias in the model comes from the statistical priory in the learning data.
As one may notice in the degree–gender example, the prior probability of a specific gender
should not be controlled in the learning model. If we want to mimic human intelligence,
we need to accept bias. Nonetheless, it is a privilege to be able to detect and quantify bias
for better explainable models.

4. Our Contribution

In this section, we propose a novel technique for detecting and evaluating potential
machine learning bias. As we mentioned above, we believe data is biased by nature due
to the cognitive bias of human brains. Therefore, evaluating the potential bias of machine
learning models would be valuable for better model explainability. In other words, if we
understand model bias, we will better justify the model’s behavior. The proposed technique
is explainable. Thus, we will be able to detect biased attributes with a certain confidence
level and determine which category of the attribute is causing the bias against which.

4.1. Notations

We assume we have a dataset D ∈ Rn×m, D = {d1, d2, . . . , di, . . . , dn}, where di is
the ith instance (i.e., data sample) of D. We also represent D as a set of attributes’ vectors.
Thus, D = {a1, a2, . . . , aj, . . . , am}. Since we mainly tackle supervised techniques, we will
be using y to denote the target (i.e., class label), where it is a vector of labels with size n;
hence, y = {y1, y2, . . . , yi, . . . , yn} is the actual class label. The predicted target, which is
obtained from the learning process, is denoted as ŷ. We believe the proposed technique
will generalize well with both discrete and continuous values. Therefore, f (D) → ŷ is
either a regression or a classification model that takes dataset D and assigns each data
sample di to a specific target ŷi.

4.2. Problem Statement

In this paper, we aim to define, evaluate, and detect bias in machine learning models.
Formally, we want to detect a subset of D; aBias ⊂ D that may introduce bias according to
a specific evaluation metric. In this problem, and without loss of generality, we assume all
potentially biased attributes to be categorized, and the class labels are discrete.

Definition 1. Potentially Biased Attribute (PBA). Without loss of generality, we assume that aj is
a categorical attribute. We can say that aj ∈ D is a potentially biased attribute if f (D) 6∼ f (ϕ(D)).

Where ϕ(D) is an alternation function; see Definition 3. We will denote the prediction
of f (ϕ(D)) model as ŷϕ. For the remainder of this paper, we call ŷϕ the alternative
prediction. It is not the actual prediction. Instead, it is the prediction when we change the
PBA’s values using ϕ().

For example, let D be a dataset of n applicants, and aj is a gender attribute, while y
represents whether the applicant is qualified 1 or not qualified applicant 0. The problem in
this scenario is to predict whether an applicant di is qualified for a job or not. If aj is able to
change the prediction by only changing the gender while maintaining the values of the
remaining attributes, then the attribute aj is said to be a potentially biased attribute (PBA).

Bias Evaluation: KL Divergence

Machine learning model is considered biased when the hypothesis prediction diverges
with respect to one or more specific values of PBA. Formally, we can define machine
learning bias as:
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Definition 2. A predictor is considered biased if it is dependent on one or more PBA given the
class label [16,19].

Assume the model, for instance, predicts the wage of a male instance with a specific
amount. Then, we assume the same instance is passed to the model after changing the
gender to a female. If the model’s prediction changes dramatically by changing the gender
only, this can be considered as model bias. We propose to evaluate bias amounts by
quantifying the divergence between the densities of the predicted wages for the two
predictors. We introduce a new concept to evaluate and quantify machine learning bias.
We call this concept “alternation” function.

Definition 3. Alternation is a function that alternates between attributes’ values so the values are
swapped each time.

Alternation takes an attribute and changes the instance’s identity. The purpose is to
test the predictability consistency if the identity changes. If a female instance becomes
male, is there any effect on the prediction? Similarly, if the race of an instance changes,
does the prediction change accordingly? Alternation changes the identity of an instance. In
another word, we aim to check the dependency of the predictor on the attribute.

In this paper, we denote the alternation function as ϕ(·). The function takes a dataset
as an input and returns the alternative dataset, which is the dataset with alternative values
of a specific attribute. ϕ(D) = {a1, a2, . . . ,¬aj, . . . , am}. In this context, ϕ(·) is a function
that switches the protected attribute’s values in a way that aj becomes ¬aj. Thus, the female
values become male, and vice versa.

We need to find the divergence between the distribution of the original class y and the
predicted classes ŷ and ŷϕ. Measuring the variation of information might indicate some
differences between classes. However, bias should not be symmetric. The bias might be
against or with certain attributes’ values. For example, we usually believe that there is
a bias against female or black people in gender and race attributes, respectively. Thus,
the bias is with male and white, for instance. Thus, the measure of bias γ(·, ·) of vectors u
and v should obey the following rule:

γ(u, v) 6= γ(v, u) (1)

Another important property of γ(·, ·) is that the difference between the values from
Equation (1) indicates the amount of bias. The larger the difference is, the larger the bias
with or against a certain value.

In order to satisfy this asymmetric property, we use Kullback–Leibler (KL) divergence
to estimate the distribution difference between the wage prediction for each value in PBA.
We aim to find the impact of the PBA on the model’s prediction using the alternation
function. In the interest of generating different training and testing datasets to build
models that will generalize on real-world situations, we applied a cross-validation (CV)
sampling technique. It is known for its statistical ability of generating less biased datasets,
also known as data folds. In CV, we split the dataset into k-folds where each fold contains
training and testing samples. In this work, we set k = 10. To reduce variability of training
sets, each training fold will consist of 90 percent of the data, while the remaining 10 percent
will be for testing. Each sample of the dataset will be used for testing in just one fold.
Unlike training folds, where each sample will appear in training folds k-1 times. Following
that, the model will be trained and tested on each fold. Thus, after predicting the wage in
each fold, we predict it again using the same instance, but by changing the value of the
PBA. In the gender attribute example, we change the value of female instance to be male,
and vice versa.The KL divergence estimates the difference between the distribution of two
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populations based on its information [37]. Assuming we have the densities p and q, we
calculate the divergence between them using the following equation:

DKL(p||q) =
∫

p(x) log
p(x)
q(x)

dx ≥ 0. (2)

We use Equation (2) to observe the difference between the distribution of the predicted
class label ŷ and the alternative prediction ŷϕ with respect to each PBA’s value. If the
result of DKL is zero, the two distributions are identical. Hence, there is no bias caused
by this attribute. Otherwise, the distributions differ; hence, there is bias. The larger the
result is, the greater the difference between the distributions would be, which indicates
the presence of bias. Nevertheless, the result cannot be negative. The way we avail of
the KL divergence is simply by applying it to the distributions of the wage. For instance,
the distribution of the female wage is denoted as p, while the distribution of female wage
after applying the alternation function is denoted as q. The divergence between the two
distributions (p and q) represents how much the wage changes when changing the gender
only. Since the wage is a continuous random variable, p and q will be probability density
functions (PDFs). The variables of p and q are assumed to be drawn from ∼ N

(
µ1, σ2

1
)

and
∼ N

(
µ2, σ2

2
)
, respectively. From Equation (2), we derive the following equation:

DKL(p||q) = −
∫

p(x) log q(x)dx +
∫

p(x) log p(x)dx

The two terms will be as follows:

−
∫

p(x) log q(x)dx = −
∫

p(x) log
1√

2πσ2
2

exp− (x− µ2)
2

2σ2
2

dx,

and ∫
p(x) log p(x)dx = −1

2
(1 + log 2πσ2

1 ).

After putting the two terms together again, we obtain:

DKL(p||q) = 1
2

log(2πσ2
2 ) +

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1
2
(1 + log(2πσ2

1 ))

Finally, DKL(p||q) is going to be:

DKL(p||q) = log
σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1
2

(3)

The KL divergence is evaluated twice using Equation (3) for each binary protected
attribute (e.g., gender).

5. Methodology

Our empirical evaluation intends to find out if the dependency of the hypothesis on
the protected attribute. If the predictor predicts significantly different labels with different
density if the alternation function is applied, then this is an indicator that the hypothesis
is dependent on that PBA. In contrast, if the hypothesis is independent of the PBA (i.e.,
the two predicted labels densities are similar), the hypothesis is not biased. Figure 1
illustrates the proposed framework to quantify and detect bias. We consider the density
of the predicted class label of the original dataset D to be the original distribution in the
divergence evaluation denoted as p. While the density prediction of the alternated dataset
is the other density denoted as q. DKL quantifies how much p is deviated from q. In other
words, it evaluates the divergence between the density of predicted class label pŷ and the
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density of the predicted class label qy after applying the alternation function with respect
to the PBA’s values.

To evaluate bias in the gender attribute, we should do the following:

1. Train the model f (·) on the dataset D.
2. Predict the class label for each data point in f (D)→ ŷ.
3. Apply the alternation function on the gender attribute ϕ(D)→ Dϕ.
4. Train the model f (·) on the alternative dataset Dϕ.
5. Predict the alternative predicted label f (Dϕ)→ ŷϕ.
6. Using Equation (3), evaluate KL Divergence between the distributions of y and ŷϕ for

each gender distinctively across all folds. That is, DKL(py f ||qŷϕ f ) and DKL(pŷm ||qŷϕm).
7. The difference between the DKL with respect to the gender represents the bias.

The larger DKL is, the larger the bias will be.

Figure 1. KL divergence for bias evaluation.

The proposed methodology to evaluate bias in machine learning models is a wrapper
approach. Thus, it is a model-specific approach and is more expensive in terms of compu-
tational complexity. However, it is known to be more accurate with respect to the model.
On the other hand, the alternation is performed on the PBAs with respect to the number of
values in the attribute |ai|. The number of the sets that would be generated for the PBAs’
attributes is equal to:

1 +
|ai |

∑
j=1

(|ai| − j),

which seems large; yet, usually the PBAs’ number of categories |ai| is small like gender
or race.

6. Experiment Setup

We conducted the experiment to detect and evaluate the bias introduced by different
PBAs to the predicted wage. The PBAs in this experiment are gender and race. We aim to
predict the wage of the instance using the original gender and race. Then, we alternate the
gender and race to see how the predicted wage is changing. As we mentioned above, we
will evaluate the divergence of the mean of the prediction corresponding to each PBA’s
value to detect where bias occurs and to evaluate the amount and direction of bias.

6.1. Dataset

In this experiment, we used a publicly available dataset from UCI Machine Learning
Dataset Repository called: Census-Income Database. It originally consisted of approxi-
mately 300,000 instances representing the US census extracted from the 1994 and 1995
population surveys. The data originally contained more than forty demographic- and
employment-related attributes.
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For the sake of proving the concept of the proposed technique, the data was cleaned
according to some specific criteria. First, a class label was chosen from the list of attributes.
We will be trying to predict the wage for each instance. Therefore, the wage will be the
label and will be denoted with y. Then, we manually selected 10 attributes only, which we
believe is relevant to the class label. Among the selected attributes, we will be measuring
the amount of bias in the learning model with respect to PBAs, namely gender and race.

The instances were further cleansed according to some values in the attributes. For in-
stance, in the Education attributes, we kept five categories only: High School Graduate, Some
College However, No Degree, Bachelor’s Degree, Master’s, and Doctorate Degree. Instances with
missing data were eliminated as well, and after the cleaning process, 14,864 instances from
the dataset were included for this study.

Such data might be helpful in predicting any financial guarantees from banks, insur-
ance companies, and so forth. Therein lies the problem. If the decision makers will be
taking such data as a source of evidence toward any decision that might harm a human,
then we need to make sure that all attributes are not biased toward a specific gender or race.

6.2. Algorithm and Model Selection

Since the label uses continuous values, we are going to use regression to predict it.
A polynomial regression algorithm is applied to build the model throughout the experiment.
Any other machine learning algorithm can be used similarly. Here, we apply one algorithm
since the experiment is not meant to compare algorithms. We want to prove the concept
we are proposing.

To ensure consistency in our results, we apply the 10-fold cross-validation model se-
lection technique. For each fold, we train the model using 90 percent of the data. Then
we predict the target using the model in each fold. After that, we apply the alternation
function and predict the target again for the same folds. It is necessary to point out the fact
that DKL is evaluated for each gender using the gender’s instances which are not the same
instances for the other gender. Thus, the asymmetrical results are not due the asymmetrical
property of DKL.

6.3. Experimental Findings

Figures 2 and 3 illustrate the results of an experiment to predict the wage. We con-
ducted the experiment as explained earlier using the 10-folds cross-validation model
selection. The plots show the results of the average predicted wage for both male and
female beside the average predicted wage when we apply the proposed alternation func-
tion on the gender attribute. The plot on the left, Figure 2, shows the female average
predicted wage in green circle markers. The results show a considerable improvement
in the predicted wage after applying alternation on the gender attribute. This indicates
the prediction of females’ wage increase if their identity changed to male. In other words,
a male instance with the same profile would earn more wage than a female instance. This
indicates the presence of bias against females.

The plot on the right-hand side, Figure 3, shows the average predicted wage for males
in green, which degraded substantially after applying the alternation function. In contrast
to the female results above, this indicates bias with males. In summary, we can say that
the prediction of the wage is obviously influenced by the gender attribute. Both figures
show the bias against females. In other words, one profile for one person could be treated
differently if we only change the gender.

In real-life scenarios, we usually tend to consider this as a kind of bias. In this
experiment, what we have done thus far is simply saying that if this person with the same
profile was a male, the wage would be higher than if the person was a female. To quantify
this bias, we evaluate the KL divergence between the original and the alternative prediction
mean. Figure 4 depicts the KL divergence of the results presented previously. The red line
represents the KL divergence of the results in Figure 2, which is the divergence between
the predicted wage of the original dataset and the predicted wage when changing female
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into male. We can clearly observe bias against females. In contrast, the green line indicates
less bias against males. This is the KL divergence between the predicted wage for females
and the predicted wage for females after applying alternation. The green line, on the other
hand, is the bias against males. The bias against females is significant in these results.

At the moment, we can see the decrease in the wage if the gender is female. Let us
now consider the other controversial attribute (i.e., race). We have five different races in the
dataset; namely: (a) American Indian, Aleut, or Eskimo, (b) Asian or Pacific Islander, (c)
Black, (d) Other, and (c) White. We will use the word Indian and Asian to represent the
races in (a) and (b), respectively.

Figure 2. Female to male alternation. It shows that the female wage (in green) improves when the
gender is changed to male (in blue).

Figure 3. Male to female alternation. The wages of males (in green) decrease when we change the
gender attribute to a female (in blue).

We used the same methodology with the race attribute. The results are demonstrated
in Figures 5–7. Carefully analyzing each plot, we observe interesting results. Based on
Figure 5; plots: Asian/Indian Alternation and White/Indian Alternation, we cannot claim
any kind of bias on or against the American Indian race. In all cases, it gives better wage
prediction when we change the race from or to American Indian. We find this behavior to
be quite confusing; however, this needs further investigation and should be considered
when building a real-world model.

Similarly, we did not notice a clear bias against Asian or Pacific races (see Figure 5;
plots: Asian/Other Alternation and White/Asian Alternation), except with the black race.
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There is a bias against Asians when we change race to black. In other words, when we
change the race of an Asian instance to a black, the wage noticeably gets higher. Likewise,
when we change the race from black to Asian, the wage gets lower. We believe this is a kind
of bias. It is not surprising that the wage in the United States might be higher for black than
Asians. However, the surprising result comes in Figure 5 plot White/Black Alternation.
The results show a clear bias against the white race when it comes to black. If we change
the race from white to black, unexpectedly, the wage gets much higher, and it gets lower
when the race is changed from black to white. This can be taken as evidence to our earlier
claim about bias. In this case, can we call it bias, even if it is against a very advantageous
race? Should we aim here to mitigate bias, so the black race would suffer from reducing
their wages or the white race would get more benefits by increasing their wages?

Figure 4. The KL divergence of male and female shows the bias against females.

Figure 5 plot White/Asian Alternation illustrates the evaluation of bias in the race
attribute. In most cases, the amount of bias is not significant and is inconsistent in all
training folds. There are some folds of the dataset that show some tendency toward more
bias against some races, yet it was not concerning since it was not in all folds. This might
be attributable to some outliers in the fold itself.

These results can be investigated more when we aim to build a real-world model that
would affect people’s lives. In this paper, we intended to detect and evaluate bias, not to
justify the model. In the future, we will aim to interpret the model.

Figure 5. Cont.
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Figure 5. Bias in wages in terms of Race1.
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Figure 6. Cont.
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Figure 6. Bias in wages in terms of Race2.

Figure 7. Cont.
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Figure 7. Bias evaluation between different races using KL-divergence.

7. Discussion

Terminology plays a significant role in understanding the context of the scientific
domains. Since machine learning bias is a relatively contemporary field, it is essential to
inaugurate this section by discussing the terminology.

According to the literature, as we mentioned in Section 2, the terms bias and unfair-
ness are used interchangeably. Nevertheless, we believe bias does not imply unfairness.
Bias, in a machine learning model, can be seen as underlying data characteristics inherited
from human behavior and practice. The learning models expose bias to the decisions by
extracting patterns and hidden relations from the data. While unfairness in a machine
learning model is generated by intentionally and prejudicially tuning the model’s param-
eters to satisfy human beliefs or desires: gender, racial, and/or social equality, in this
context. In the real world, unfairness can be introduced by altering the hiring criteria
to prefer a certain group over another. The criteria in machine learning can be seen as
the algorithmic parameters. Thus, unfairness is introduced to the algorithm, while bias
naturally exists in data. We are not trying to lessen machine learning bias. We believe it is
not desirable, in most cases at least. However, it should be distinguished from unfairness.
While unfairness is a very dangerous characteristic of any algorithm, bias is not necessarily
as dangerous. We definitely need to prevent and fight unfairness. However, we should be
careful when trying to mitigate bias due to the consequences that might appear. We would
like to eliminate bias, not mitigate it.

8. Concluding Remarks and Future Work

In this paper, we have proposed a novel technique for the detection and evaluation
of potential machine learning bias. We argue that data is biased in nature, reflecting the
cognitive bias of human brains, which we have shown by understanding the model’s bias
and the role of training data on it.
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We detect bias by alternating values for PBAs. The attribute that dramatically changes
predicted class values after applying the alternation function is a biased attribute. Then,
we evaluate the amount of bias by calculating the divergence between the original and
the alternated mean of predicted class values with respect to each attribute’s value. We
can consider this step as a necessary preprocessing step in real-world problems for better
model understanding and interpretability. It is worth noting that we need to pay attention
to the curse-of-dimensionality problem in some datasets. This could degrade the efficiency of
the model building.

We conducted an experiment using a publicly available dataset that contains gender
and race attributes, which are considered to be prone to bias. We discovered that there is
a bias against females in terms of income. The average KL-divergence over all folds was
found to be around 0.9, which indicates relatively large divergence. Furthermore, the race
attribute showed some bias from some races to others, as we discussed in the findings
section. The results show considerable variation in terms of predicted wage when it comes
to alternating female to male. The average predicted wage for females, for instance, is
around 900 USD where it becomes 1180 USD when alternating to male. On the contrary,
the male predicted wages average reduced from around 1150 to 850 USD when alternating
male to female. We can conclude that the machine learning model might be biased against
females when predicting wages.

The results obtained by our models open new research questions. For the sake of
argument, assume the results were completely opposite by chance. Thus, if females have
a higher income prediction, can we still call it a bias? Is bias in our minds associated
with inequality, unfairness, or simply when females get less benefits than males in some
circumstances? Are we looking for equal benefits for all groups? Are we trying to minimize
the losses for the least advantaged? Should machine learning algorithms succeed in creating
egalitarianism where humans failed? It is important to understand the nature of bias and
the differences between bias and unfairness. Datasets contain bias because they reflect
human behavior, practice, experience, and actions. Machine learning models are inclined
to be biased due to the bias in the training datasets, yet it is important to detect bias.

In the future, we will investigate machine learning bias in depth and distinguish it from
the relevance attribute. Furthermore, we will build machine learning techniques, including
feature selection, classification, and clustering techniques, that take into consideration
the alternation function and the divergence between attributes’ values. Additionally, it
is important to study the bias from an algorithmic perspective since we might find some
algorithms that prefer bias in some ways. In addition, it is our goal to make interpretable
models that are able to justify any existing bias.
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