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Abstract: Modern communication systems require high bandwidth to meet the needs of the huge
number of sensors and the growing amount of data consumed, and an exponential growth is expected
in the future with the integration of internet of things networks. Spectrum regions in the millimeter
waves have aroused new interests, mainly because of the contiguous bands available to meet these
needs. In return, and to combat the high losses of propagation in these frequencies, higher gain
antennas are needed. This paper describes the use of a logarithmic architecture in the design of
microstrip antenna arrays, creating structures with high gain and ultra-wide bandwidth. Three
different solutions are presented with five, seven, and nine elements, reaching about 25%, 30%,
and 44% of bandwidth, achieving ultra-wideband behavior, efficient and with a compact structure
operating at frequencies in around 28 GHz.
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1. Introduction

The growing evolution of communication systems, culminating with the current de-
ployment of the 5G system, connects the world and its people, being a powerful weapon to
reduce inequalities and spread knowledge. Whether 5G or beyond 5G, new challenges are
demanded of communication networks to integrate the immensity of users and connected
sensors and to share information.

The need to deal with this large amount of data was the decisive factor for the
scientific community to look for solutions that would provide free broadband spectrum
for the establishment of these networks, which are in the millimeter wave band. These
networks that allow people and thousands of sensors dispersed and connected to the
Internet, sharing information, interconnected, are today commonly known as Internet of
Things (IoT).

Therefore, it is essential that these mobile devices have the ability to handle (transmit
and receive) large bandwidths of information, with antennas playing an important role in
this context [1].

Antennas are a fundamental component of wireless systems, transmitting and re-
ceiving the electromagnetic waves. Microstrip antennas are very popular structures with
features that fit modern communications, enabling compact, efficient, and versatile radiat-
ing elements with reduced costs. However, in its elementary format, microstrip antennas
have features that do not meet the requirements of future communication networks and
that must overcome, such as low gain and narrow bandwidth.

New architectures need to be explored so that it is possible to improve their per-
formance, increasing the operating bandwidth, as well as boosting the gain. Microstrip
antenna arrays with broadband characteristics have been investigated to address these
needs, as well as being integrated into sensors/mobile terminals.
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In the literature some works have been developed over the years to improve the
bandwidth of an antenna array, some of the most relevant using log-periodic structures [2,3],
differentiating in the elements used. Antenna arrays designed with the log-periodic
principle present the ability to have wide bandwidth, as well as high directivity and gain.
In [4–10] dipole antenna arrays are identified. For operating frequencies up to 6 GHz,
planar structures with several dipoles printed on a dielectric substrate are proposed [4–6],
typically with one of the dipole arms printed on the top of dielectric surface and the
other on the bottom. Variants of this structure, allowing greater bandwidth and operating
up to 18 GHz, are proposed in [7,8]. For high frequencies, in [9] an array of microstrip
dipoles resonant at 28 GHz and with a compact structure is presented, with about 9 dBi of
gain, while in [10] also with a structure printed on substrate, an array of dipoles covering
frequencies between 10–40 GHz, with an average gain of 7 dBi, which features a soldered
coaxial cable in the antenna structure. An array using bow-tie elements is proposed in [11]
also printed on dielectric substrate, for C-band, operating between 6.12–6.58 GHz; however,
the results of the radiation pattern and gain obtained were not mentioned.

With a different structure, but using a log-periodic architecture, arrays of printed
monopoles are also proposed in [12–14]. In [12] authors propose a compact array oper-
ating between 8.4–14.6 GHz, with a gain between 6.5 dBi and 9.5 dBi. An array with
15 monopoles, also in a log-periodic structure, is presented in [13], with multiband char-
acteristics, and using a low-cost dielectric substrate. This array covers a frequency band
between 1.58–15 GHz with a maximum gain of 9.12 dBi. In [14] the proposed monopole
array has an end-fire radiation operating in a band between 6–18 GHz with a gain that
varies between 2 and 8 dBi. This antenna shows, however, considerable ground plane
dimensions, when compared to the size of the radiating part. Some physical modifications
to the typical array of dipoles with log-periodic architecture are presented in [15,16]. In [15]
a Koch fractal structure is used in the development of the dipole array, allowing for an
increase in the bandwidth and reduction of dimensions. This array was designed for the C
and S bands, operating between 2.8 and 6.9 GHz, enabling a gain of up to 8 dBi. In [16] a
new configuration is presented, using a helical structure in the design of the dipole arms,
allowing the authors to reduce the size of the array about 40%, while still maintaining
a broad band operation between 1.87–5.89 GHz with a gain ranging between 5.73 and
7.63 dBi.

These logarithmic structures can also be applied to microstrip patch elements [17–20].
In [17], a theoretical approach is presented for application of the transmission line model
for the design of series fed arrays with log-periodic structure. The authors in [18] propose
an array of five microstrip patches designed for a central frequency of 11 GHz, achieving
only 11% of bandwidth despite the gain being around 12 dBi. In [19] two forms of feeding
are presented, coplanar and microstrip, and two structures of arrays of five elements are
compared using these methods and showing that microstrip feeding has a lower bandwidth
when compared to the coplanar structure. Additionally, with five elements, an array of
microstrip patches is proposed [20], operating between 3.3–4.5 GHz. This structure has the
particularity of being reconfigurable, turning ON and OFF each element of the array using
PIN diodes, and with that it can change between a broadband operation or tuning between
four more restricted bands within this frequency range. The array gain varies between
3 and 6 dBi.

Other approaches have also been presented with application to series-fed arrays in
order to increase bandwidth. In [21], a 4-element waveguide slot array for band X is
presented, whose bandwidth reaches 12.3%. A series array using eight dielectric resonator
elements is proposed in [22] designed to operate at 7.5 GHz. This array has a bandwidth of
38.1%, and a gain of 15.7 dBi, however it incorporates a more complex and bulky structure,
using reflector plane. Using slow wave transmission lines, a series-fed architecture for a
10-element array is proposed in [23], achieving 10% bandwidth. A 12-element center-fed
series antenna array using a novel coaxial feeding is proposed in [24], designed to operate at
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4.9 GHz, for 5G applications. A maximum gain of 19 dBi is achieved, within an impedance
bandwidth of 20.5%.

In [25], a patch antenna with symmetrical slits to operate at higher frequency, and then
integrated into a 2 × 16 array is presented. Simulated results show that the array operates
between 14.7–17.9 GHz, corresponding to an impedance bandwidth of 19.6%. A series-fed
mm-wave microstrip array is proposed in [26] for 5G applications, by introducing a series
of short stubs to one edge of a microstrip line. A 4 linear has been designed, presenting
an impedance bandwidth of 21.40%, with a gain of 12.80 dBi. A 4 × 4 planar array has
been also presented with a measured bandwidth of 19.15% and a gain of 18.30 dBi. A
novel series-fed array working operating at 5.8 GHz has been proposed in [27] using a
dual-band patch resulting from the superposition of two tapered patches with different
lengths, specifically designed to solve the problems of reduced bandwidth. The designed
antenna shows a fractional bandwidth of 5.92%.

There are other proposed non-series configurations [28,29] for 5G applications, which
offer large bandwidths. In [28] a square patch designed for 27.5 GHz is proposed, inserted
in metasurface that allows reaching 23.4% of bandwidth with a compact structure. In [29] a
Fabry–Perot antenna using a half-wavelength spaced superstrate having a half-wavelength
thickness, employed as a partially reflecting surface for high gain and wide impedance
bandwidth is presented. Simulated and measured results show that the proposed antennas
have a 27.6% bandwidth with a maximum gain of 14.1 dBi.

According to the reported works, it can be seen that log-periodic structures are oc-
casionally used, using different radiating elements. However, they are rarely applied at
high frequencies and appropriately designed to allow for high bandwidths, ensuring high
gains and compact dimensions, which enable solutions suitable for the present and future
of communications, namely in IoT networks.

In this paper three different log-periodic microstrip antenna arrays are designed to
operate at a central frequency of 28 GHz but with wideband characteristics and with high
gain. Besides the combination of these two properties, these solutions also have reduced
dimensions, allowing them to be considered when integrating sensors in IoT networks.

This paper is divided into four sections. In Section 1, the work done in this paper is in-
troduced. Section 2 explains the approaches and methods used in the design of the antenna
arrays according to the proposed objectives. Section 3 presents the characterization of the
designed structures, in terms of simulation and measured results. Lastly Sections 4 and 5
present the discussion of the obtained results and reports the main conclusions, respectively.

2. Materials and Methods

In this section the design of the antenna array is explained. Microstrip technology
consists of a dielectric material covered in both surfaces by a conductive layer, normally
of copper. In one side, typically fully covered, working as a ground plane, while in the
other, only partially filled, where the transmission lines and other structures are designed.
Microstrip structures were used in this work, because of their low cost of manufacturing
and high versatility, and because the antennas built in such technology are compact,
lightweight, and highly compatible with simple printed circuit boards [30].

The substrate used was the Rogers RO4350B, with a dielectric constant εr of 3.48, loss
tangent of tan δ = 0.0026 and thickness of h = 0.762 mm.

2.1. Design of the Antenna Element

The radiating element chosen is a rectangular microstrip patch for its simplicity of
design, and because its resonant frequency is easily controllable by varying its length,
L. In this work, in fact, it is a particular case of the rectangular patch, which is a square
structure, i.e., W = L, as shown in Figure 1. Another advantage is that it allows the use of
inset feeding technique [31], allowing the radiating element to be easily matched to any
input impedance, changing the point (yn) where the microstrip line (wline) connects the
patch, which will be a huge benefit in this work.
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The different parameters that influence the operation of the microstrip patch are
identified in Figure 1. They were determined based on theoretical concepts [30], optimized
through simulation, and will be detailed later. The characteristic impedance Z0 = 90 Ω for
the feeding line (of width wline) was chosen.

2.2. Log Periodic Antenna Arrays

The microstrip antenna elements in essence are not very directive, presenting low
gain and very small bandwidth. In order to increase the gain, several microstrip elements
were associated in arrays using a series feeding structure as it allows greater compactness.
Additionally, a log-periodic configuration was applied in the construction of the array to
greatly increase the bandwidth [32].

Antennas with a log-periodic configuration belong to the class of frequency-independent
antennas, which theoretically have no bandwidth limitations [32]. In practice the behavior
is not independent of the operating frequency, but rather dependent on the logarithm of
the frequency. These structures can be seen as a set of adjacent cells, whose dimensions are
progressively changed, scaled by a fixed scalability factor, τ.

Taking that into consideration the dimensions of the elementary patch antenna, namely
its length (Ln), the width (Wn), the inset feed line and the reentrance (In and yn), the
different sizes of the various elements of the array can be estimated through the scalability
factor τ as:

τ =
Ln+1

Ln
=

Wn+1

Wn
=

In+1

In
(1)

These properties imply that the factor of τ relates all operating frequencies

fm+1 = τ fm = τ2 fm−1 (2)

Considering f 1 as a starting frequency, the relationship is as follows, proving the
existence of a logarithmic relationship between frequencies.

f2 = τ × f1 . . . f3 = τ2 × f1 ⇔ ln
f2

f1
= ln τ . . . ln

f3

f1
= 2× ln τ (3)

2.3. Design of the Antenna Array

Using the microstrip element before designed, shown in Figure 1, and using the
principles stated above about antenna arrays with log-periodic structure, the dimensions
for a group of elements were estimated, for a central band of 28 GHz. In this sense, the
crucial parameter to find was the scalability factor τ, to ensure a good relationship among
the functionality of the antenna, the bandwidth obtained, and the overall size. In this work,
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bandwidth and size are of special importance, as already mentioned, because they are
crucial aspects in emerging communication systems. The scalability factor obtained after
some simulations was τ = 1.04. That said, the various dimensions Ln, Wn, In and yn were
calculated, as well as the respective resonant frequencies.

Nine elements were considered (i.e., n = 1...9), of which the first four are resonant
below 28 GHz, one exactly at this frequency, while the remaining four operate at above
frequencies, in such a way that respect the relationship (2). The list of frequencies using
this scalability factor is displayed in the second column of Table 1.

Table 1. Inset-fed microstrip antenna design parameters for a log-periodic structure with τ = 1.04.

n fn (GHz) Ln = Wn (mm) yn (mm) In (mm) Ln = Wn (mm) yn (mm) fn (GHz)
1 23.93 2.93 0.89 1.92 3.03 1.25 23.92
2 24.89 2.83 0.83 1.84 2.90 1.18 24.89
3 25.88 2.70 0.79 1.77 2.78 1.11 25.88
4 26.92 2.58 0.76 1.70 2.67 1.04 26.84
5 28 2.46 0.73 1.63 2.56 0.98 28.03
6 29.12 2.34 0.71 1.56 2.46 0.93 29.13
7 30.28 2.23 0.68 1.50 2.36 0.88 30.24
8 31.49 2.13 0.65 1.44 2.27 0.84 31.49
9 32.75 2.03 0.61 1.38 2.18 0.8 32.81

theoretical practical/CST

In the remaining columns of Table 1, the estimates of the various parameters for each
element to operate at each referred frequency are presented, always respecting the relation
in (1), and starting from the sizes of the element estimated to operate at 28 GHz (n = 5).
Additionally, these dimensions were corrected through simulation and are also shown so
that the respective element is resonant at that frequency, as well as the obtained fn.

Figure 2 shows the simulated S11 for each of the resonant elements present in Table 1,
where it is possible to identify the respective operating frequency for each patch.
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Figure 2. Reflection coefficients of the optimized microstrip patch antennas using practical design parameters in Table 1,
and frequency zones defined by 5, 7, and 9 elements.

Considering the various elements identified above, designed according to a log-
periodic structure, they were grouped into sets of 5, 7, and 9 elements, centered on (and
including) patch 5 (fc = 28 GHz), and using them, three series-fed microstrip arrays were
created. In Figure 2, it is possible to distinguish different areas shaded with different colors,
theoretically limited by the elements that make up each of the three arrays.

Hanging on a transmission line with characteristic impedance identical to the re-
spective impedances of each element (Z0 = 90 Ω), the various patches were arranged
and intercalated on each side of the line. This characteristic impedance corresponds to
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a compromise between the dimensions of the microstrip line, and the impedances of all
patches, in order to ensure the structure is small and efficient, as intended.

Regarding the different dimensions of the patches, In corresponds to a quarter-
wavelength, the spacing of the gn feeding line does not follow any formula, but requires a
minimum aperture that guarantees the proper functioning of the feeding structure. In this
sense, it is usually adopted a value half of the feedline width wline.

The only non-periodic parameter is the distance between patches, Dn, illustrated in
Figure 3a, and these separations were obtained through an optimization process so that all
input impedances are properly associated along the central microstrip line, to obtain an
input impedance equal to Z0.
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Figure 3. Designed microstrip antenna arrays using a log periodic structure with (a) n = 5 elements
(b) n = 7 elements and (c) n = 9 elements.

To complete the design of the antenna array, and since the characteristic impedance of
the main line is different from the standard 50 Ω, a quarter wavelength microstrip line was
added to transform the 90 Ω characteristic impedance to 50 Ω. Although this matching
step is essential, this solution in a wideband array is not ideal because only one frequency
is fully adapted, instead of the entire band of frequencies. Nevertheless, the use of a quarter
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wavelength transformer is essential, and since this array has central frequency of operation
of 28 GHz, it was designed for that frequency, as shown in Figure 3b.

The different arrays with five, seven, and nine elements were designed following the
above conditions, and their final layouts are shown in Figure 3a–c, respectively.

The entire design, simulation and optimization process of the array was performed
using the Computer Simulation Technology (CST) software, and the final dimensions of
the three arrays are provided into Tables 1 and 2.

Table 2. Final optimized distances Dn between elements in the array with 5, 7, and 9 elements.

Dn (mm) D1 D2 D3 D4 D5 D6 D7 D8 D9

Array 5 2.44 1.95 2.59 2.27 2.63
Array 7 2.14 1.94 1.86 2.40 2.14 1.86 1.52
Array 9 3.08 2.66 2.23 1.98 2.99 2.52 2.20 2.05 1.98

3. Results

The three arrays were fabricated, and the images of the prototypes are shown in
Figure 4. In this section their measurement results are presented and compared with simulations.
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Figure 4. Fabricated prototypes of the log-periodic microstrip arrays: (a) 5 elements, (b) 7 elements, and (c) 9 elements.

3.1. Five Elements Array

The five-element microstrip array with log-periodic configuration, shown in Figure 4a
has global dimensions of 14 × 25.5 mm2, and was characterized in regarding to its main
operating parameters, reflection coefficient and radiation pattern.

Figure 5 shows the comparison between the simulated and measured curves of the
reflection coefficient (parameter S11). Assuming the common rule of S11 < −10 dB for a
good impedance matching, and consequently for considering the operation bandwidth, it
is possible to observe that the antenna is well adapted in a 6.91 GHz band, from 24.52 GHz
to 31.43 GHz, a little higher than the simulated value (6.1 GHz).
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Figure 6 shows the different radiation patterns of the antenna array, simulated and
measured, for the two main and orthogonal planes, at three different frequencies within the
band, 27 GHz, 28 GHz, and 29 GHz. Despite the reduced size of the antenna, which makes
its connector relevant in this type of measurements (and impossible to be removed from
them), it is possible to verify that both simulated and measured curves present a similar
behavior, practically coincident, allowing to prove the correct functioning of the array in
terms of radiation.
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Figure 6. Radiation pattern of the 5-element log-periodic microstrip antenna array in the two main planes φ = 0◦ and
φ = 90◦ for different frequencies: (a) f = 27 GHz, (b) f = 28 GHz, and (c) f = 29 GHz.

The evolution of the simulated gain of the antenna as well as its total efficiency, along
the frequency are shown in Figure 7. Regarding the gain, it is possible to verify that it is
always higher than 8 dBi in the entire operating band of the antenna, although there is a
band from 25.5 GHz to 29.5 GHz where the gain is always greater than 10 dBi, reaching
its maximum point around 11 dBi. In terms of efficiency, the antenna has a total efficiency
always above 70% in its operating band, mostly between 80% and 90% in the band, which
demonstrates that the structure is well designed to operate at these frequencies.
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3.2. Seven Elements Array

The seven-element array shown in Figure 4b has total dimensions of 14 × 30.5 mm2,
and was also subjected to a set of measurements, with the results being shown below.

The comparison between the simulated and measured S11 curves is shown in Figure 8.
It is possible to verify that the array has a measured bandwidth (S11< −10 dB) of approxi-
mately 8.3 GHz, from 24.48 GHz to 32.48 GHz, slightly lower than the simulation, centered
in the 28 GHz region. In this respect, both curves are similar, and practically across the
entire band it is possible to find a value of S11 below −15 dB.
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Figure 8. Simulated and measured reflection coefficient of the 7 elements antenna array.

Regarding the radiation patterns, these are shown in Figure 9, for different frequencies.
It is possible to verify that in the φ = 0◦ plane, both curves are very close, allowing to clearly
identify the main radiation lobe, whereas in the φ = 90◦ plane there are more differences,
but it is still possible to define the main lobe clearly on two of the three frequencies.
Possibly the impact of the connector on this structure is more evident, functioning as a
reflector element.

Figure 10 shows the evolution of both gain and total efficiency over frequency for
the seven-element array. It is possible to verify that in terms of the efficiency, it remains
relatively stable throughout the band, with a value slightly higher than 80%. Concerning
the gain, it already presents more visible variations over the frequency, however being
around 9 dBi, in some points rising a little almost reaching 11 dBi, and in others falling
slightly; however, in general, results are good, given the reduced dimensions and high
operating frequencies.
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Figure 9. Radiation pattern of the 7-element log-periodic microstrip antenna array in the two main planes φ = 0◦ and
φ = 90◦ for different frequencies: (a) f = 27 GHz, (b) f = 28 GHz, and (c) f = 29 GHz.
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3.3. Nine Elements Array

In this part, the nine-element array shown in Figure 4c, will be characterized according
to its main properties. This array features total dimensions of 14 × 38.5 mm2.

A comparison between simulation and measurements of the reflection coefficient of
this antenna is presented in Figure 11. In this figure both curves have a good agreement,
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and assuming the already defined convention of S11 < −10 dB, this array has an operating
bandwidth of 12.2 GHz, from 21.71 GHz to 33.91 GHz, corresponding to almost 44% of the
design center frequency.
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Figure 11. Simulated and measured reflection coefficient of the 9 elements antenna array.

The radiation pattern at different frequencies, 27 GHz, 28 GHz and 29 GHz is shown in
Figure 12. As with the other structures, it maintains a good agreement between simulations
and measurements, clearly identifying and defining the main radiation lobe.
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φ = 90◦, for different frequencies: (a) f = 27 GHz; (b) f = 28 GHz; and (c) f = 29 GHz.
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Regarding the evolution of gain and efficiency with frequency, the curves are shown
in Figure 13. Efficiency has a well-defined and stable behavior between approximately
22 GHz and 33 GHz, always with values above 75%, in some zones on the way to 90%.
Relating to the gain, it presents a minimum of 6 dBi in the beginning of the band, but
mostly it is better than 9 dBi, reaching very close to 12 dBi around 28 GHz.
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4. Discussion

The main results taken from the previous section are compiled in Table 3, for the
three developed microstrip arrays with log-periodic structure with five, seven, and nine
elements. Regarding the total efficiency parameter, provided at three different frequencies,
it is possible to conclude that all arrays are properly designed, using materials with good
behavior at high frequencies, since it is possible to observe always high efficiency values,
well above the 80%. Likewise, the gain is presented at the same three frequencies. It
is possible to observe that the developed antennas have gains mostly in the 10–12 dBi
range, which are values considerably higher than those of the typical known elementary
antennas; therefore, allowing us to combat propagation issues typical in these frequency
bands, improving communications.

Table 3. Comparison between the main results from the three designed arrays.

Bandwidth
(GHz)

Fractional
BW Bw/fc Gain (27 GHz) Gain (28 GHz) Gain (29 GHz) Efficiency

(27 GHz)
Efficiency
(28 GHz)

Efficiency
(29 GHz)

Array 5 6.91 24.7% 11.0 dBi 10.6 dBi 10.1 dBi 88.8% 87.7% 87.0%
Array 7 8.30 29.6% 10.3 dBi 10.7 dBi 9.40 dBi 83.3% 82.7% 82.0%
Array 9 12.2 43.6% 11.3 dBi 11.7 dBi 11.6 dBi 84.1% 86.8% 86.6%

Finally, the results regarding bandwidth are shown, as absolute values and also as
a fractional value using the fc of 28 GHz considered in the design. The results reveal
that with the increase of the number of elements in the array, the bandwidth obtained
also increases, reaching almost 44% of bandwidth for the nine-elements prototype. Both
antennas, according to [33] are considered ultra-wideband structures.

Table 4 compiles a set of characteristics from a group of selected state-of-the-art papers,
which better represent different approaches proposed to enable wider bandwidths using
antenna arrays with series configurations. Although it is not possible to make a linear
comparison, as they are all distinct and composed of different number of elements, it is
possible to find out that the nine-element array proposed in this paper is clearly the solution
with the greatest bandwidth, keeping a compact structure.
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Table 4. Comparison between the different series-fed array approaches.

Ref. N◦ Elements Frequency (GHz) Bandwidth (%) Gain (dBi) Size(in wavelengths)

[21] 4 × 4 9.5 12.3% 20.0 3.8 λ0 × 3.52 λ0
[22] 1 × 8 7.5 38.1% 15.7 Not mentioned
[23] 1 × 10 4.5 10.0% 11.0 3.15 λ0 × 0.6 λ0
[24] 1 × 12 4.9 20.5% 19.0 9.1 λ0 × 1.3 λ0
[25] 2 × 16 16.5 19.6% 20.3 11 λ0 × 1.76 λ0
[26] 1 × 4 27.0 21.4% 12.8 2.7 λ0 × 0.9 λ0
[27] 1 × 6 5.8 5.9% 14.3 Not mentioned

This work 1 × 9 28 44.0% 12.0 3.59 λ0 × 1.3 λ0

Lastly, it is also important comparing the results in terms of bandwidth of the pro-
posed arrays with typical series-fed patch antenna arrays. In [34] a 4× 4 array of microstrip
patches operating at 28 GHz is presented, composed of four-element patch series-fed arrays
which have an approximate bandwidth of 1.5 GHz, corresponding to 5.35%. In both solu-
tions proposed in this article using log-periodic architecture, it is possible to substantially
exceed these values, allowing to achieve bandwidths of 25%, 30% and 44%, respectively,
evidencing the advantage of this approach when compared to conventional techniques.

5. Conclusions

In this paper three ultra-wideband log-periodic antenna arrays are presented for IoT
communications, combining high gain and efficiencies to the ultra-wideband. The array
uses microstrip technology and log-periodic structures, scaled from a central 28 GHz
inset-fed patch element. The bandwidths obtained are 6.91 GHz, 8.3 GHz and 12.2 GHz
for the five, seven, and nine elements, respectively. The simulated and measured values
of the array were compared, and overall, they present a good agreement. Their small and
compact structures together with the high gains and efficiencies, makes these arrays good
solutions to be incorporated in IoT sensors.
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