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Abstract: The impact of the SARS-CoV-2 (COVID-19) on the world has been partially controlled
through different measures of social isolation and prophylaxis. Two new SEIR (Susceptible-Exposed-
Infected-Recovered) models are proposed in order to describe this spread through different countries
of Europe. In both models the infectivity of the asymptomatic period during the exposed stage of the
disease will be taken into account. The different transmission rates of the SEIR models are calculated
by considering the different locations and, more importantly, the lockdown measures implemented
in each region. A new classification of these intervention measures will be set and their influence on
the values of the transmission rates will be estimated through regression analysis.
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1. Introduction

Although prediction of outbreaks such as the one provoked by SARS-CoV-2 (COVID-
19), declared a Public Health Emergency of International Concern by the WHO on early
2020, had been made numerous times [1,2], the unexpected spread of this one affected the
lives of millions of people as it spread around the world. The rise of diagnosis requiring
intensive care and hospitalization had a shocking impact in the healthcare infrastruc-
ture in many countries as the numbers went up [3–7]. In March the outbreak, spanning
112 countries and regions, was declared a Pandemic by WHO, who recommended taking
action to change the course of the epidemic. The prevention of the propagation of the
virus required a method for describing and predicting the apparition of newly infected
individuals. Thus, while the main research focused on finding better treatments to the
illness and/or boosting the immunity of the individuals through new vaccines, the general
mechanism of contagion should also be understood quantitatively, in order to help in the
decisions over the taken actions [8–10]. Many mathematical models have been proposed
in order to understand the dynamic associated to the affected population and their inter-
action with the virus [11–20]. There are many different compartmental models that we
can apply to the current epidemic [21,22]. The individuals are separated into subpopula-
tions depending on their state regarding the infection, such as the SI (susceptible-infected)
model [23], the SIR model (susceptible-infected-recovered) [24], or more complex models
when considering more sophisticated reactions to the disease [25]. In this case, the special
properties in the propagation of this disease, in which the large incubation (infectious
and asymptomatic) time is fundamental to the spread of the disease, can be adjusted to
a SEIR model, with two different groups of infected individuals: asymptomatic exposed
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(E) and the symptomatic infectious (I) apart from the susceptible (S) and recovered (R).
There is data being gathered at the time of writing this paper to estimate the number of
exposed individuals from the infectious population, as the incubation and recovery time
have been properly studied. The parameters associated to the new SEIR model and the
the dynamics of social interactions at the affected subpopulations will be then the main
objects of study. The transmission mechanism and the role played by asymptomatic indi-
viduals in the spread of the disease imply that social-distancing control measures applied
in society are effective to fight against the epidemic. In addition, the popularization of
diverse non-pharmaceutical interventions (NPI) programs have greatly contributed over
time to the awareness of infection-risk behavior which can be possibly averted [26,27]. This
subject as well as the different levels of self isolation are studied in this paper. Regrettably,
the methods for gathering the data over the different affected countries and regions are
not standardized, and the testing capabilities of COVID-19 have not increased at the same
rate over different regions and countries. The data describing the impact of the epidemic
has shown a great variation depending on the different methods of diagnostics, treatment
and surveillance of the affected population [28]. Even the politics may play a part in the
transparency of the provided data [29–31]. We have chosen to focus our study in regions of
the European Union, as we consider that they share similar health infrastructures compared
to other parts of the world [32,33], and thus, their vigilance of the epidemic spread will
be similar. The set of European countries where the available information is consistent
enough to allow us to extract the data required to use in a SEIR model is composed of
Spain [34], Italy [35], France [36], the UK [37], Germany [38], Portugal [39], Norway [40]
and Sweden [41]. We have created a new classification method regarding the way the
NPI are implemented in different regions, so that all countries observe the same stan-
dardized levels of isolation and NPI. Thus, all countries can be compared in order to find
common patterns on the impact of the control strategies. The network of interactions that
define the spread of an infectious disease is usually modeled with differential and discrete
equations [42,43]. It involves different types of infected subpopulations, or susceptible
to be infected [44–47], as well as the transitions between them. Although, traditionally,
the biggest determinant of the virality of a disease is the Reproduction Number [45,48],
which in this case summarizes the impact of the different infectivity rates of the disease, we
have chosen to separate these parameters and study them individually. The Reproduction
Number does an excellent job at describing the advance of the disease in a population
but does not give a direct insight of the causes of contagion (i.e., the contact rate between
the different individuals). This will give us the opportunity to focus on the parts that can
be directly controlled by the NPI and emphasize the impact of the interaction between
individuals on the prevention of the disease. Two different discrete SEIR models, each one
describing a different transition from the exposed to the infectious subpopulation, will be
introduced. The data of regions of Europe at different organization entity levels (Provinces,
Regions or Autonomous Communities and Countries as a whole) will be processed, taking
into account the different time intervals depending on the NPI-stages in which they are
classified. While the possibility of different strains of the virus spreading at the same time
is high, the general assumption will be that most differences regarding the average time of
incubation of the virus or the average recovery of an infectious individual will be negligible.
Then, the only controllable parameter through NPI control measures and comparable
between different regions and stages of social distancing will be the infectivity rate, and it
will be calculated given these two models. This paper is structured as follows: in the
first two sections, we have performed this brief introduction and present the SEIR models
which we will use during our analysis. In Section 3 we will further study theoretical
boundaries required to guarantee the model used is adequate to describe correctly the
disease spreading through the population. Section 4 will discuss the available data and the
extraction of the information necessary to obtain the parameters of the transmission of the
disease at the selected intervals and regions. Finally, the results and conclusions derived
from them will be presented in Sections 5 and 6.
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2. The µ-SEIR Model

We will explore the dynamics of a compartmental model with four classes to separate
the population, corresponding to the subpopulation susceptible to be infected (S) and
the infected, which is composed of the subpopulation of individuals which have been
exposed (E) with the disease but have not shown the symptoms yet, the symptomatic
subpopulation of infected individuals (I) diagnosed with the disease and/or showing
symptoms and the recovered subpopulation (R), which presents an immunity which can
or cannot be temporary and where individuals are presumed fully immune. The dynamics
of the subpopulations can be visualized in the Figure 1:

Figure 1. Scheme of the SIR Model.

The model dynamics may be rewritten with the following equations:

Si+1 = (1− β I Ii − βEEi)Si (1)

Ei+1 = (β I Ii + βEEi)Si + (1− µ)Ei (2)

Ii+1 = µEi + (1− γ)Ii (3)

Ri+1 = γIi + Ri (4)

for any integer i ∈ Z0+ = Z+ ∪ {0} and any given initial non-negative conditions S0 ≥ 0,
E0 ≥ 0, I0 ≥ 0 and R0 ≥ 0. The infectivity rates β I and βE are defined through the force
of infection λi, which is the rate at which susceptible individuals contract the infection
per capita. The value of new infected individuals would be λiSi, being Si the susceptible
subpopulation at that moment. The number of infectious individuals will directly influence
the force, so the infectivity rates β I and βE will be introduced in the definition of the force
of infection as λi = β I Ii + βEEi. These rates will depend on multiple factors, such as
the average number of contacts any individual of the susceptible subpopulation encoun-
ters during certain time with individuals of the exposed and infectious subpopulations,
respectively, and the probability of transmission of the disease in a contact between a sus-
ceptible individual and an infectious or exposed one [45]. The parameter µ will represent
the average transition rate from the a non-asymptomatic infected subpopulation to the
diagnosed/symptomatic one. It is assumed that all exposed individuals recover after ex-
perimenting observable symptoms, so the transition to recovered comes uniquely from the
infected subpopulation at an average rate γ. The model will be discrete as the information
regarding the spread of the disease is taken and published periodically. Note that (a) the
rationale of the sampling period interpretation is that it is unity, typically one day or one
week for a correct practical use of the model. (b) the exposed along the incubation period
are asymptomatic, including those who then become symptomatic. (c) both the exposed
and the infectious produce contagions on the Susceptible which reflects what, in fact,
happens with the COVID-19 disease transmission mechanism. The model parameters
should be expressed in values of dimensionality being the inverse of the sampling period
units. We have chosen the daily period because the available data in the countries we
intend to study is released at that rate. It is argued that this model may be of interest for
the evaluation of the COVID-19 disease propagation in its blowing-up phase because of
the following reasons:
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• It is of simple structure and of a discrete nature. Furthermore, it does not need
the incorporation of a discretization modulation parameter to guarantee the non-
negativity of the sequence solution as other epidemic discrete models usually need.
See, for instance, References [24,25] and some references therein.

• It has two potentially distinct coefficient transmission rates (βE and β I) which allow
to consider infectivity of the susceptible subpopulation from both infective subpopu-
lations: the exposed and infectious subpopulations. This might be potentially advan-
tageous for its use for description of COVID-19 since it is now known that this disease
has an infective period at the end of the incubation period and another one along the
first days of the symptomatic infectious period.

• It is not very relevant for the current studies related to COVID-19 to evaluate the
possible existence of an endemic steady state since the disease is now spreading in
very fast phases, to which follows the different social distancing and prophylactic
measures taking place in most countries.

• It is later seen from the mathematical study of this model that the susceptible subpop-
ulation is a decreasing sequence and that the exposed and infectious subpopulations
increase for consecutive samples under certain conditions of the disease parameters
and upper bounds for the susceptible subpopulation. This behavior is also of interest
for the use of the model to describe the infection evolution as the disease blows up
along a transient period of time.

Boundaries

The subsequent two results are direct from the combination of Equations (1)–(4) and
they are respectively concerned with the fact that the total population is constant and the
infection spreads, strictly increasing along consecutive samples, under certain constraints
of the parameters and the susceptible subpopulation:

Proposition 1. The total population Ni = Si + Ei + Ii + Ri is constant for any integer i ∈ Z0+ .

Proof. When summing up Equations (1)–(4), one gets directly that

Ni+1 = Ni = N0

for any integer i ∈ Z0+ .

The subsequent result gives explicit conditions for the infection to expand at each two
consecutive samples provided that the susceptible exceed a certain minimum threshold.
This fact intuitively agrees with the known property of the significant verified pandemic
spreading in its initial phase when the susceptible levels were very high.

Proposition 2. Assume that Si > max{ µ
βE

, γ(1−γ)
µβ I
}. Then Ei+1 > Ei and Ii+1 > Ii ∀i > 1.

Proof. Define ∆Ei = Ei+1 − Ei and ∆Ii = Ii+1 − Ii. From Equation (2) we obtain that
∆Ei = β I IiSi + (βESi − µ)Ei ≥ β I IiSi + (βESi − µ)Ei which, being Si >

µ
βE

implies that
∆Ei > 0 and Ei+1 > Ei. Now, from (3) we obtain that ∆Ii = µEi − γIi. Then ∆Ii+1 =
µEi+1 − γIi+1 = µ(Ei + ∆Ei)− γ(Ii + ∆Ii) = (1− γ)∆Ii + µ∆Ei Which would be positive
for all i+1 if ∆Ei > 0, which it has already be proven, and ∆Ii ≥ 0. If ∆Ii < 0, ∆Ii+1 > 0
would be true only if ∆Ei >

γ−1
µ ∆Ii. From Equations (2) and (3) we get that

β ISi Ii + Ei(βESi − µ) >
γ− 1

µ
(µEi − γIi) (5)

Ei(βESi + 1− γ− µ) > Ii

(
γ(1− γ)

µ
− β ISi

)
(6)
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Given that Ei > 0, Ii > 0 ∀i ∈ Z0+, these inequalities will be always true if{
Si > γ+µ−1

βE

Si > γ(1−γ)
µβ I

(7)

Then, if Si > max{ γ(1−γ)
µβ I

, µ+γ−1
βE

, µ
βE
} = max{ γ(1−γ)

µβ I
, µ

βE
} the proposition holds.

The vector sequence solution of dimension four is non-negative for all samples for
any given non-negative initial conditions of all the subpopulations under some reasonable
extra constraints on the initial conditions and parameters (so as to keep jointly both stability
and non-negativity of the solution) as proved in the subsequent result:

Theorem 1. Assume that µ, γ ∈ (0, 1], and β I/βE ≤ γ/µ with β I > 0 and βE > 0. Assume
also that the initial conditions (S0, E0, I0, R0) are subject to

0 ≤ S0 ≤ µ
2βE

0 ≤ E0 ≤ 1
2βE

0 ≤ I0 ≤ 1
2β I

0 ≤ R0

(8)

Then, the vector sequence solution is non-negative for all samples. In addition, the sequences of all
the subpopulations and that of the total population are bounded.

Proof. The proof follows by complete induction. Assume that there exists an integer k ≥ 0
such that min(Si, Ei, Ii, Ri) ≥ 0, 0 ≤ Si ≤

µ
2βE

, 0 ≤ Ei ≤ 1
2βE

and 0 ≤ Ii ≤ 1
2β I

for any
i = 0, 1, 2, . . . , k. Such an integer k ≥ 0 always exists since above constraints hold from
the given hypotheses on the initial conditions (at least), i.e., for k = 0. It has to be proved
that the constraints still hold for k + 1. First note that, since Ek ≤ 1

2βE
, Ik ≤ 1

2β I
and 0 ≤ Sk,

one has:
Sk+1 = (1− β I Ik − βEEk)Sk ≥ 0 (9)

and, since Ek ≥ 0 and Ik ≥ 0, one has that

Ik+1 = (1− γ)Ik + µEk ≥ 0 (10)

On the other hand, since Ek ≤ 1
2βE

, Ik ≤ 1
2β I

, 0 ≤ Sk ≤
µ

2βE
, γ ∈ (0, 1] and β I/βE ≤ γ/µ,

one has that:

0 ≤ Ek+1 = (1− µ)Ek + (β I Ik + βEEk)Sk

≤ 1− µ

2βE
+ Sk ≤

1− µ

2βE
+

µ

2βE

=
1

2βE

and

0 ≤ Ik+1 = (1− γ)Ik + µ Ek

≤ 1− γ

2β I
+

µ

2βE
≤ 1− γ

2β I
+

γ

2β I

=
1

2β I

In addition, since Sk ≤
µ

2βE
and 0 ≤ (1− β I Ik − βEEk) since 0 ≤ Ek ≤ 1

2βE
; 0 ≤ Ik ≤ 1

2β I
, it

follows that
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0 ≤ Sk+1 = (1− β I Ik − βEEk)Sk ≤ Sk ≤
µ

2βE

Finally, since Rk ≥ 0, Ik ≥ 0 and γ ≥ 0 then Rk+1 ≥ 0. It has been proved that
(min(Si, Ei, Ii, Ri) ≥ 0; i = 0, 1, 2, . . . , k) implies (min(Si, Ei, Ii, Ri) ≥ 0; i = 0, 1, 2, . . . , k + 1),
and

(
Si ≤

µ
2βE

, Ei ≤ 1
2βE

, Ii ≤ 1
2β I

; i = 0, 1, . . . , k
)

implies (Si ≤
µ

2βE
, Ei ≤ 1

2βE
, Ii ≤ 1

2β I
;

i = 0, 1, . . . , k + 1). As a result the proof is complete since min(S0, I0, E0, R0) ≥ 0 im-
plies min(Si, Ei, Ii, Ri) ≥ 0; ∀i ∈ Z+ and

(
S0 ≤ µ

2βE
, E0 ≤ 1

2βE
, I0 ≤ 1

2β I

)
→ Si ≤

µ
2βE

,

Ei ≤ 1
2βE

, Ii ≤ 1
2β I

; ∀i ∈ Z+ which implies also that the sequences of all the subpopulations
and that of the total population are bounded.

Remark 1. The given constraints on the upper bounds of the subpopulations which guarantee that
Theorem 1 holds are reasonable since the disease transmission rates are typically small in normalized
models and much smaller in un-normalized ones. Typically, the normalized disease transmission
rate is normalized by the total population in true-mass action epidemic models. On the other hand,
the constraint β I/βE ≤ γ/µ is reasonable, since typically γ < µ and the transmission rate of the
infectious individuals are on average less than that of the exposed ones since the strongest infective
period happens at the end period of the disease incubation. In addition, note that if β I = βE = β then
the constraints Ei ≤ 1

2βE
, Ii ≤ 1

2β I
of Theorem 1 become a single constraint Ei + Ii ≤ 1

β ; ∀i ∈ Z0+

and Theorem 1 remains valid. It also remains valid if max(Ei, Ii) <
1

β I+βE
; ∀i ∈ Z0+.

The subsequent technical result is useful later on:

Proposition 3. Assume that the hypotheses of Theorem 1 hold. Thus, if lim
i→∞

Ei = 0 then

lim
i→∞

Ii = 0 and, conversely, if lim
i→∞

Ii = 0 then lim
i→∞

Ei = 0.

Proof. One gets from Equation (3) via recursive calculations that

Ii+1 = (1− γ)i+1 I0 + µ
i

∑
j=0

(1− γ)i−jEj

so that lim
i→∞

Ei = 0 implies that for any given arbitrary real constant ε > 0, there exists a

non-negative integer m0 = m(ε) such that sup
∞>j≥m0

Ej ≤ ε and lim sup
i→∞

(
sup

i−m0≤j≤i
Ej

)
≤ ε

then one has for any integer m ≥ m0 that

Ii+1 = (1− γ)m+1 Ii−m + µ
i

∑
j=i−m

(1− γ)i−jEj

≤ (1− γ)m+1 Ii−m + µε
i

∑
j=i−m

(1− γ)i−j

≤ (1− γ)m+1 Ii−m +
µε

γ

so that lim
m→∞

i→∞

(i−m)→∞

Ii+1 = µε/γ for any integer m ≥ m0. Since ε > 0 may be chosen arbitrarily

small then m0 = lim
ε→0

m0(ε) = ∞ and so m(≥ m0) → ∞, then lim
i→∞

Ii = 0. The first

implication has been proved. It remains to be proved that, if lim
i→∞

Ii = 0, then lim
i→∞

Ei = 0.

One has from Equation (2) that:

Ei+1 = (1− µ + βESi)Ei + β ISi Ii
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Since lim
i→∞

Ii = 0 and {Si}∞
i=0 is a bounded sequence then lim

i→∞
β I IiSi = 0, and then

lim
i→∞

(Ei+1 − (1− µ + βESi)Ei) = 0. Two cases can arise, namely:

1. lim
i→∞

Ei = 0 and the proof finishes,

2. lim
i→∞

Ei 6= 0. Then lim inf
i→∞

Ei > 0 so that, from Equation (1), and since lim
i→∞

Ii = 0 and
1

2βE
≥ Ei ≥ 0 ∀i ≥ 0 from Theorem 1, one has that

lim sup
i→∞

(1− β I Ii − βEEi) = lim sup
i→∞

(1− βEEi) =

(
1− βE lim inf

i→∞
Ei

)
= a

with a ∈ [ 1
2 , 1), which implies from Equation (1) and Theorem 1 that

0 = lim sup
i→∞

(
Si+1 − ai+1S0

)
= lim sup

i→∞
Si+1 so that there exist

lim
i→∞

Si+1 = lim sup
i→∞

Si+1 = 0

Then, using again Ei+1 = (1− µ + βESi)Ei + β ISi Ii, with lim
i→∞

Ii = 0 and lim
i→∞

Si = 0

yields lim
i→∞

(Ei+1 − (1− µ)Ei) = 0 which, in turn, implies that:

(a) Either lim
i→∞

Ei = 0 and the result is proved,

(b) or lim
i→∞

Ei = E∗ 6= 0 which implies that 1 = 1− µ, so µ = 0, which contradicts

µ ∈ (0, 1] and thus, this case cannot occur
(c) or Ei+1

Ei
→ 1− µ ∈ [0, 1). Then, there is a subsequence {Ei}∞

i=N of {Ei}∞
i=0,

for some finite integer N, which is non-negative and strictly decreasing so that
lim
i→∞

Ei = 0 and the result is proved.

The proposition has been fully proved.

By inspection of Equations (1)–(4), it follows the existence of a, in general, non-unique
disease-free equilibrium point. Thus,

Proposition 4. There is a disease-free equilibrium point xd f e = (Sd f e, 0, 0, Rd f e = N0 − Sd f e)
T

with Sd f e, and then Nd f e, being dependent on the initial conditions.

The demonstration is trivial from Equations (1)–(4) by writing Ei+1 = Ei = Ii+1 =
Ii = 0 = Ed f e = Id f e and Nd f e = Sd f e + Rd f e The following result is concerned with
the convergence of the vector sequence solution to the disease-free equilibrium point if
the transmission rate of the exposed (E) exceeds that of the infected (I) under a certain
minimum lower-bound constraint. This is a reasonable consideration since the exposed
subpopulation in the model is also infective and the infectivity along the incubation period
is normally of the same magnitude of the infectious subpopulation [49,50]. Basically, if the
constraint βE/β I ≥ µ/γ of Theorem 1 for γ ∈ (0, 1), then the properties of non-negativity
of the solution and its asymptotic convergence to the disease-free equilibrium point are
jointly guaranteed under the constraints for the initial conditions of Theorem 1.

Theorem 2. Assume that µ ∈ (0, 1], γ ∈ (0, 1], β I > 0 and βE > 0 and that conditions
of Theorem 1 hold. Assume also that the initial conditions are subject to 0 ≤ S0 ≤ µ

2βE
≤

γµ
µβ I+γβE

, 0 ≤ E0 ≤ 1
2βE

, 0 ≤ I0 ≤ 1
2β I

, and 0 ≤ R0. Then, the vector sequence solution is non-
negative and bounded for all samples and converges asymptotically to the disease-free equilibrium at
exponential rate.
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Proof. Equations (2) and (3) can jointly be expressed as follows:[
Ei+1
Ii+1

]
=

[
1− βESi − µ β ISi

µ 1− γ

][
Ei
Ii

]
(11)

The characteristic equation of the discrete system from Equation (11) for the case when
Si is constant, that is, assuming that the system (11) is time-invariant is

qi(z) = qi(z, Si) = (z− 1 + µ + βESi)(z + γ− 1)− µβ ISi (12)

= z2 + (µ + γ + βESi − 2)z + (γ− 1)(µ− 1 + βESi)− µβ ISi

The system Equation (11), provided invariant, is stable if its modes are in |z| < 1. The
conditions can be discussed by using the bilinear transformation z = 1+s

1−s which is a com-
fortable transformation (except for s = 1, z = +∞) which transforms the complex region
|z| ≤ 1 into the continuous complex region Re(s) ≤ 0. This transformation allows one to
apply comformable the Routh–Hurwitz stability criterion to the transformed characteristic
equation which is simpler to apply, especially for this simple second-order system, than dis-
crete Jury’s stability criterion. Thus, one defines q̂si(s) = qi

(
z = 1+s

1−s

)
so that its zeros

being the solution of q̂si(s) = 0 are equivalent, after reducing to the common denominator,
to the zeros of

qsi(s) = (1 + s)2 + (µ + γ + βESi − 2)(1− s2)

+[(γ− 1)(µ− 1)− Si(µβ I − βE(γ− 1))](1− s)2

= a(Si)s2 + b(Si)s + c(Si) (13)

where

ai = a(Si) = (2− γ)(2− µ)− Si((2− γ)βE + µβ I)
bi = b(Si) = 2[γ + µ− γµ + Si(µβ I + (1− γ)βE)]
ci = c(Si) = γµ + Si(γβE − µβ I)

(14)

It is now seen that the above three coefficients are positive for any i ∈ Z0+ provided that
the constraints of Theorem 1 hold, that is, (8), β I/βE ≤ γ/µ, with µ ∈ (0, 1], and γ ∈ (0, 1].
Note that it is guaranteed from Equations (14) that:

1. ci ≥ 0; ∀i ∈ Z0+ if γβE − µβ I ≥ 0. Since the non-negativity conditions from
Theorem 1 requires that β I/βE ≤ γ/µ it follows that ci > 0.

2. bi > 0 always, as the conditions γ ∈ (0, 1) and µ ∈ (0, 1) implies that bi = 2[γ +
µ(1− γ) + Siµβ I + Si(1− γ)βE] ≥ 0, as it is a sum of positive terms.

3. ai > 0; ∀i ∈ Z0+ iff (2−γ)(2−µ)
(2−γ)βE+µβ I

> Si. Since the condition of non-negativity from

Theorem 1 β I
βE
≤ γ

µ , or equivalently, βE/β I ≥ µ/γ, has to hold then

(2− γ)(2− µ)

(2− γ)βE + µβ I
≥ (2− γ)(2− µ)

(2− γ)βE + γβE
=

(2− γ)(2− µ)

2βE
>

µ

2βE
≥ Si

so that ai > 0.

It has been proved that the three coefficients of equations in (14) are positive for any
i ∈ Z0+. This implies that all the polynomials of qsi(s) Equation (13) satisfy the Hurwitz’s
test for any i ∈ Z0+. Since all those polynomials are of second order then all of them are
from Routh–Hurwitz criterion (i.e., with both zeros in the open left-hand-side complex
plane Re s < 0). Then, all the discrete polynomials qi(z) of Equation (12) for any i ∈ Z0+
are stable (i.e., with both zeros in the open unit circle centered at zero, that is |z| < 1). As a
result, all the time-invariant second-order discrete systems of Equation (11) (each for an
assumed constant Si), for any i ∈ Z0+ are exponentially stable. Thus, each norm of matrix
of dynamics:
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Ai = A(Si) =

[
1 + βESi − µ β ISi

µ 1− γ

]
(15)

whose eigenvalues are the zeros of their corresponding polynomial qi(z) for each i ∈ Z0+,
satisfies ||Ai||k ≤ Kiρ

k
i for some real constant ∞ > Ki ≥ 1, which is norm dependent,

and ρi ∈ (0, 1) which is the spectral radius of Ai: That is the maximum absolute value of
its two eigenvalues. Now define the real numbers:

K = lim sup
n→∞

(
sup

0≤i≤n
Ki

)
∈ [1, ∞); ρ = lim sup

n→∞

(
sup

0≤i≤n
ρi

)
∈ (0, 1) (16)

As a result, one gets from Equation (11) that:∥∥∥∥ Ei
Ii

∥∥∥∥ ≤ ‖Ai−1‖
∥∥∥∥ Ei−1

Ii−1

∥∥∥∥
≤ ‖Ai−1‖‖Ai−2‖

∥∥∥∥ Ei−2
Ii−2

∥∥∥∥
≤ max

(
‖Ai−1‖2, ‖Ai−2‖2)∥∥∥∥ Ei−2

Ii−2

∥∥∥∥
≤ sup

0≤j≤i−1

(
‖Aj‖i

)∥∥∥∥( E0
I0

)∥∥∥∥
≤ Kρi

∥∥∥∥( E0
I0

)∥∥∥∥ = 0 (17)

Then, lim
i→∞

Ei = lim
i→∞

Ii = 0 asymptomatically at exponential rate and the solution sequences

{Ei}∞
i=0, {Ii}∞

i=0, {Si}∞
i=0, {Ri}∞

i=0 of Equation (1)–(4) are non-negative and bounded from
Theorem 1 for any given finite initial conditions which satisfy Equation (8). In addition,
the map of

[
0, µ

2βE

]
to itself defined by Equation (1) is non-expansive so that it has a

fixed point which is the first component Sd f e of the disease-free equilibrium point and
lim
i→∞

Si = Sd f e. Finally, lim
i→∞

Ri = Rd f e = N0 − Sd f e since lim
i→∞

Ei = lim
i→∞

Ii = 0 and the proof

is complete.

Note that the given model is claimed for its usefulness for short-term predictions in the
evolution phase when the disease is blowing up. It is neither considered that vaccination
is available for use or that there is immunity loss allowing for the increase again of the
susceptible numbers after a certain delay. Therefore, the susceptible subpopulation is given
by a decreasing sequence. It is now proved that the proposed model does not have an
endemic equilibrium point.

Theorem 3. Assume that µ, γ ∈ (0, 1]. Then the delay-free model Equations (1)–(4) has no
endemic equilibrium point xend = (Send, Eend, Iend, Rend = N0 − (Send + Eend + Iend))

T .

Proof. Assume that there is an endemic equilibrium point with Send > 0. Then, from
Equation (1), one gets β I Iend + βEEend = 0 so that Eend = Iend = 0 which concludes
that the eventual equilibrium point is the disease-free one. Thus, in order to the endemic
equilibrium to exist, Send = 0 and β I Iend + βEEend = c > 0. From Send = 0 and Equation (2),
one has that 0 = Sendc − µEend = −µEend. Then, from Equation (3), one gets Iend =
(1− γ)Iend + µEend = (1− γ)Iend, which implies that Iend = 0 if γ ∈ (0, 1) and Iend > 0 is
arbitrary if γ = 1. As a result, Eend = Iend = 0 if γ ∈ (0, 1) and the equilibrium point is
the disease-free one. Assume then that γ = 1, Eend = 0 and Iend > 0 is arbitrary. Thus,
one gets from Equation (4) that Rend = Rend + Iend, which implies that Iend = 0, a direct
contradiction to Iend > 0.

As a result, it is concluded that the endemic equilibrium point does not exist.
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The subsequent remark discusses the fact that under proportional linear feedback
vaccination with a rather weaker condition on the control gain, the disease-free susceptible
level can be zeroed so that all the population results asymptotically recovered in the
disease-free equilibrium.

Remark 2. Note that the given model does not guarantee the convergence to zero of the susceptible
subpopulation, that is, it does not guarantee that Sd f e = 0 which would imply as a result that
Rd f e = N0; namely, it is not guaranteed that all the population would become asymptotically
recovered. The reason is that the coefficient sequence in parenthesis in Equation (1) converges
asymptotically to one when i→ ∞ as the infection vanishes so that the solution sequence converges
asymptotically to the disease-free equilibrium point. This is not very surprising since former
studies indicate that a small residual permanent nonzero susceptible population can exist even if the
infection asymptotically extinguishes, implying that not all the population becomes asymptotically
recovered. See, for instance, [51,52]. The reason is that the coefficient sequence of Equation (1)
of general term ai = 1− (β I Ii + βEEi); i ∈ Z0+, leading to Si+1 = aiSi verifies ai ∈ (0, 1) for
i ∈ Z0+ provided that min(E0, I0) > 0 with {ai}∞

0 → 1 since {Ei}∞
i=0 → 0 and {Ii}∞

i=0 → 0.
However, if a feedback vaccination law proportional to the susceptible of the form Vi = kiSi is
incorporated to the dynamic Equations (1)–(4), so that kiSi are removed from the right-hand side
of Equation (1) and added to the right-hand side of Equation (4), then the model becomes modified
as follows:

Si+1 = (1− (ki + β I Ii + βEEi))Si (18)

Ei+1 = (1− µ)Ei + (β I Ii + βEEI)Si (19)

Ii+1 = (1− γ)Ii + µEi (20)

Ri+1 = Ri + γIi + kiSi (21)

Now, if the sequence of control gains {ki}∞
i=0 is positive and it satisfies furthermore the rather weak

constraint lim sup
i→∞

(ki + β I Ii + βEEi) < 1 then Sd f e = 0 and Rd f e = N0. Note that in order that

lim sup
i→∞

(ki + β I Ii + βEEi) < 1, it suffices that some prefixed finite

N ∈ Z0+, ki < 1− (β I Ii + βEEi); ∀i(≥ N) ∈ Z0+

Note also that the last sufficiency-type condition does not require that the control gain converges to
a limit but, if it is the case, such limit has to be less than one.

The vaccination law discussed in the above Remark 2 can be even weakened by certain
vaccination laws whose gains asymptotically vanish at smaller rates than exponential ones.
The subsequent result discusses a more general vaccination law which includes that of
Remark 2 and allows the equilibrium susceptible subpopulation to reach a zero value
under an asymptotically vanishing vaccination gain at lower rate than exponential:

Theorem 4. Assume that the following hypotheses hold:

1. The sequence of control gains {ki}∞
i=0 of the linear feedback vaccination law Vi = kiSi; i ∈ Z0+

is generated with k0 < 1− (β I I0 + βEE0) and a general term ki =
εi
iθi

; ∀i ∈ Z+ being subject
to the following constraints:

• {θi}∞
i=0 ⊂ [0, 1), with θi ∈

(
max

(
0,

ln
(

εi
1−(βI Ii+βEEi)

)
ln(i)

)
, 1

)
; ∀i ∈ Z+ and

• {εi}∞
i=0 ⊂ (0, 1), with εi ∈ (0, 1− (β I I0 + βEE0)); ∀i ∈ Z0+, having a sub-sequence

{εi}∞
i=N ⊂

(
iθi−1, 1− (β I I0 + βEE0)

)
for some finite N ∈ Z0+.

2. all the hypotheses of Theorem 1 hold with the further restrictions for E0 and I0 that 0 ≤ E0 ≤
(1− k̄)/2βE and 0 ≤ I0 ≤ (1− k̄)/2β I , where k̄ = supi∈Z0+

ki.
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Then, ∑∞
i=0 Si < +∞ and lim

i→∞
Si = Sd f e = 0.

Proof. First, note that ki = εi
iθi

< 1 − (β I Ii + βEEi), since εi < iθi (1 − (β I Ii + βEEi))

;∀i ∈ Z+ (as θi >
ln
(

εi
1−(βI Ii+βEEi)

)
ln(i) ) and, together with k0 < 1 − (β I I0 + βEE0) yields

ki < (1− (β I Ii + βEEi)); ∀i ∈ Z0+ (see Remark 2) so that one concludes that {Si}∞
i=0 ⊂ R0+.

Note also that the stronger constraints 0 ≤ E0 ≤ 1−k̄
2βE

and 0 ≤ I0 ≤ 1−k̄
2β I

over the parallel
ones of Theorem 1 imply the non-negativity of all the subpopulation sequences by a direct
extension of the proof of Theorem 1 with those further constraints. In addition, note that
since εi ∈ (0, 1− (β I Ii + βEEi)) then the subsequence {εi}∞

i=N ⊂ (iθi−1, 1− (β I Ii + βEEi))
of {εi}∞

i=0 exists since θi < 1 implies that the sequence {iθi−1}∞
i=0 is strictly decreasing

at a smaller convergence rate than exponential leading to lim
i→∞

iθi−1 = 0. Furthermore,

since lim
i→∞

(Ei, Ii) = 0 at exponential rate, then lim
i→∞

(1− (β I Ii + βEEi)) = 1 and then there

exists some finite N ∈ Z0+ such that iθi−1 < 1− (β I Ii + βEEi); ∀i(≥ N) ∈ Z0+. Thus,
the sequence of nonempty real intervals {

(
iθi−1, 1− (β I Ii + βEEi)

)
}∞

i=N exists, and the
claimed subsequence {ε}∞

i=N ⊂ (iθi−1, 1− (β I Ii + βEEi)) exists as well. Now, note that(
1− Si+1

Si

)
= 1− 1 + ki + β I Ii + βEEi =

εi

iθi
+ β I Ii + βEEi

so that, since {εi}∞
i=N ⊂

(
iθi−1, 1

)
one has for any i(≥ N) ∈ Z0+ that

1− Si+1

Si
− β I Ii − βEEi =

εi

iθi
>

iθi−1

iθi
=

1
i

; ∀i(≥ N) ∈ Z0+

which implies that

1− Si+1

Si
− β I Ii − βEEi −

1
i
> 0; ∀i(≥ N) ∈ Z0+

which implies, in turn, that

i
(

1− Si+1

Si
− β I Ii − βEEi

)
− 1 > 0

and, since lim
i→∞ (β I Ii + βEEi) = 0, one gets:

lim inf
i→∞

[
i
(

1− β I Ii − βEEi −
Si+1

Si

)]
− 1 = lim inf

i→∞

[
i
(

1− Si+1

Si

)]
− 1 > 0

which is equivalent to lim
i→∞ inf

[
i
(

1− Si+1
Si

)]
− 1 > 0 and, from well known Raabe’s criterion

for the convergence of series of positive terms, one concludes that ∑∞
i=0 Si < ∞, which

means that lim
i→∞

Si = Sd f e = 0. Note that in Theorem 4, k0 < 1− (β I I0 + βEE0) is given

separately from the general term for the vaccination gain ki =
εi
iθi

defined for i > 0 since
the gain formula is infinity for i = 0.

3. Extended Discrete SEIR Epidemic Model with Delays

An extension of the SEIR model, which includes a finite set of commensurate discrete
delays in contrast to the delay-free infection model from Equations (1)–(4), is now discussed.
Such a model is the following one:
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Si+1 = (1− β I Ii − βEEi)Si (22)

Ei+1 = (β I Ii + βEEi)Si + Ei −
i−d1

∑
j=jd

(µjEj) (23)

Ii+1 = (1− γ)Ii +
i−d1

∑
j=jd

(µjEj) (24)

Ri+1 = γIi + Ri (25)

for any integer i ∈ Z0+ and any given initial conditions S0 ≥ 0, E0 ≥ 0, I0 ≥ 0 and R0 ≥ 0,
jd = max(i− d− d1, 0) with d ∈ Z+, d1 ∈ Z0+. The above model has d + 2 delays, namely,
the one-step-delay of the discretization dynamics from Ei+1 to Ei plus the contributions of
d + 1(≥ 0) more extra delays from the sample i− d1 to the sample i− d− d1. The integer
d1 ∈ Z0+ reflects a potential extra delay if d1 > 0, to start to account for extra former
delays distinct than the discretization one in the delayed dynamics. If d1 = 0 then the
delayed dynamics starts to influence directly immediately after the one-step discretization
step. It becomes technically easier for discussion the mixed normalization and the solution
sequence non- negativity to initialize values over d + 1 consecutive samples, instead for a
point initialization for i = 0 and then to run the model for successive samples. Therefore,
the model from Equations (22)–(25) is modified as follows with d1 = 0, i.e., such that the
delayed dynamics starts in the previous sample to the current one and it is affected by a
total of d consecutive previous delayed samples with d ≥ 1:

Si+1 = (1− (β I Ii + βEEi))Si (26)

Ei+1 = (β I Ii + βEEi)Si + Ei −
i

∑
j=i−d

(µjEj) (27)

Ii+1 = (1− γ)Ii +
i

∑
j=i−d

(µjEj) (28)

Ri+1 = γIi + Ri (29)

for any integer i(≥ d) ∈ Z+ and given d + 1 sets of initial conditions Si ≥ 0, Ei ≥ 0,
Ii ≥ 0 and Ri ≥ 0; i = 0, 1, . . . , d. In the above scheme, the total number of delays is d + 1 in-
cluding that of the natural discretization. To distinguish this model from Equations (1)–(4),
it is claimed that there is at least one extra delay than the discretization one, i.e., the total
minimum number of delays d + 1 is two since d ≥ 1. If d = 0 then the model reduces to
Equations (1)–(4) where the only delay is the discretization one. The normalized model
from Equations (26)–(29) has a non-negative sequence vector solution provided that all the
punctual initial conditions for i = 0, 1, . . . , d are normalized as addressed in the next result.
Such a result incorporates also some boundedness initial conditions for the infectious and
the exposed subpopulations along the relevant number of consecutive delays to fix such
initial conditions. Those constraints remember tightly those given in Theorems 1 and 2
for the simpler model from Equations (1)–(4) which possesses just the single one-step
discretization delay.

Theorem 5. Assume that d1 = 0, β I > 0, βE > 0, γ ≥ ∑d
j=0 µj ≥ β I + βE, γ ∈ (0, 1] and

µi ∈ (0, 1], 0 ≤ Ei ≤ 1
2βE

and 0 ≤ Ii ≤ 1
2β I

; ∀i ∈ [1, d]. Assume also that the initial conditions
are non-negative and normalized (N0 = 1) so that they fulfill the constraints:{

min(Si, Ei, Ii, 1− (Si + Ei + Ii)) ≥ 0
max(Si, Ei, Ii, 1− (Si + Ei + Ii)) ≤ 1

; ∀i ∈ [1, d] (30)
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Then the solution is non-negative since:

min(Si, Ei, Ii, Ri) ≥ 0, max(Si, Ei, Ii, Ri) ≤ 1; i ∈ Z0+

Proof. First, note that the constraint γ ≥ ∑d
j=0 µj ≥ β I + βE implies that 1−∑d

j=0 µj + β I +
βE ≤ 1.

Note also that from Equations (26)–(29) and the non-negativity/normalization con-
straints of the initial conditions for j = 1, one has, since ∑d

j=0 µj ≤ γ ≤ 1, that :

0 ≤
(

1− (β I + βE) max
0≤i≤d+j−1

(max(Ii, Ei)

)
min

0≤i≤d+j−1
Si

≤ Sd+j ≤
(

1− (β I + βE) min
0≤i≤d+j−1

(min(Ii, Ei))

)
max

0≤i≤d+j−1
Si ≤ 1

(31)

0 ≤ (1−
j+d−1

∑
i=j−1

µi) min
i∈[j−1,d+j−1]

Ei

+ (β I + βE) min
i∈[j−1,d+j−1]

(min(Ei, Ii)) min
i∈[j−1,d+j−1]

Si ≤ Ed+j

≤ Ed+j−1 −
(

j+d−1

∑
i=j−1

µi

)
min

i∈[j−1,d+j−1]
Ei

+ (βE + β I) max
i∈[j−1,d+j−1]

(max(Ii, Ei)) max
i∈[j−1,d+j−1]

Si ≤ 1 (32)

0 ≤ Id+j ≤ 1− γ +
j+d−1

∑
i=j−1

µi ≤ 1 (33)

0 ≤ Rd+j = 1− (Sd+j + Ed+j + id+j) = Rd+j−1 + γId+j−1 (34)

and by summing up all the subpopulations, one gets that, for j = 1, Nd+j = Nd+1 = Nd =
N0 = 1. However, the above constraints also hold via recursive calculations for all j ∈ Z0+
starting from the above equations for j = 0. The proof of non-negativity is complete.

Equations (27) and (28) can be jointly described as evolution sequence vectors defined
by sets of d + 1 consecutive samples by a real vector

zi = (Ei, Ei−1, . . . , Ei−d, Ii, Ii−1, . . . , Ii−d)
T

through the discrete dynamic system as follows:

zi+1 = Azi + Bui; ∀i(≥ d) ∈ Z0+ (35)

subject to a point vector initial condition zd ∈ R2(d+1) built from the given d sets of initial
conditions from Equations (27) and (28), whose partitioned parametrization is defined
as follows:

A =

[
A11 0(d+1)×(d+1)
A21 A22

]
∈ R2(d+1)×2(d+1); B =

[
B1

0d+1,1

]
∈ R2(d+1);

ui =

[
(β I Ii + βEEi)Si

02d+1,1

]
(36)

with
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A11 =

[
1− µi ... −µi−d+1 −µi − d

Id 0d×1

]
∈ R(d+1)×(d+1); B1 =

[
1

0d×1

]
∈ Rd+1

A21 =

[
µi ... µi−d

0d×(d+1)

]
∈ R(d+1)×(d+1); A22 =

[
1− γ ... 01×d
Id 0d×1

]
Id is the n identity matrix and 0n,m ∈ Rn×m is a zero matrix of order n×m. The recursive
solution of Equation (35) becomes:

zi = Adzi−d +
i−1

∑
j=i−d

Ai−j−1B uj (37)

Note that, because of the triangular structure of the matrix A, its 2(d + 1) eigenvalues
are those of A22, i.e., 1− γ plus d zero eigenvalues, and those of A11 which, since it is a
companion matrix, are the roots of the subsequent discrete polynomial:

η(z) = zd+1 + (µi − 1)zd +
i−1

∑
j=i−d

µjzj−i+d (38)

whose stability property (i.e., its zeros lie in the open unit circle of the complex plane
|z| < 1) can be investigated through the Jury criterion or via the bilinear transformation
z = 1+s

1−s , which transforms the open unit circle of the complex plane into the open left-
hand-side of the complex plane. Thus, the application of the Routh–Hurwitz criterion
is useful to investigate if all the zeros of the transformed polynomial η(s) = η(z = 1+s

1−s )
belong to the open left-hand-side plane Re(s) < 0 or not (see Theorem 2). The next result
relies on the convergence of the solution to the disease-free equilibrium point.

Theorem 6. Assume that η(z) is a strictly stable polynomial and that all the hypotheses of
Theorem 5 hold. Then lim

i→∞
(1− (β I Ii + βEEi) ≤ 1, {Si}∞

i=0 → Sd f e ∈ [0, 1], {Ri}∞
i=0 → Rd f e =

(1− Sd f e) ∈ [0, 1] and {Ei}∞
i=0 → 0, {Ii}∞

i=0 → 0. If lim
i→∞

(1− β I Ii − βEEi) < 1 then Sd f e = 0

and lim inf mini→∞(Ei, Ii) ≥ 0.

Proof. First note from Theorem 5 that the solution sequence vector is non-negative. Now,
note from Equation (26) that {Si}∞

i=0 → Sd f e ∈ [0, 1] with 1− β I Ii − βEEi ≤ 1; ∀i ∈ Z0+and
lim
i→∞

(1− βIi − βEEi) ≤ 1, since otherwise, the susceptible subpopulation solution sequence

would violate the non-negativity property of Theorem 5. On the other hand, note that:

• If such limit is equal to unity then Sd f e ∈ [0, 1] and {Ei}∞
i=0 → 0, {Ii}∞

i=0 → 0 so that
{Ri}∞

i=0 → Rd f e = 1− Sd f e

• If the limit is less than unity then Sd f e = 0 and lim inf mini→∞(Ei, Ii) ≥ 0. If
both {Ei}∞

i=0 → 0, {Ii}∞
i=0 → 0, the proof follows directly. Otherwise, assume

that lim inf mini→∞(Ei, Ii) ≥ 0. Then, since {Si}∞
i=0 → Sd f e = 0 one has from

Equation (27) that

lim
i→∞

(
Ei+1 − Ei +

i

∑
j=i−d

µjEj

)
= 0

Thus, since η(z) is strictly stable, then {Ei}∞
i=0 → 0. From Equation (28), it follows that

{Ii}∞
i=0 → 0 since {Ei}∞

i=0 → 0 and γ < 1. Also {Ri}∞
i=0 → Rd f e = 1. Furthermore,

{Si}∞
i=0 → Sd f e ∈ [0, 1]; {Ri}∞

i=0 → Rd f e = 1− Sd f e and {Ei}∞
i=0 → 0, {Ii}∞

i=0 → 0 so
that the solution sequence converges to the disease-free equilibrium point.
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The subsequent result specifies further Theorem 6 in the sense that it relies on the
monotonic convergence to zero levels of the infection in the case that the transmission rates
are sufficiently small. In such a way, the levels of the exposed and infectious are strictly
decreasing along the transient.

Theorem 7. Assume that all the hypotheses of Theorem 6 hold. Then lim
i→∞
||zi|| ≤

K(β I+βE)
1−ρ(A)

where

ρ(A) ∈ (0, 1) is the spectral radius of A which is max(1− γ, ηM), where ηM is the maximum
absolute value of the zeros of η(z) and K ≥ 1 is some norm-dependent real constant. Furthermore,
if ρ(A) is sufficiently small and β I + βE is sufficiently small related to ρ(A) then the sequence{

max
i−d−1≤j≤i

max (Ej, Ij)

}∞

i=0
converges monotonically to zero.

Proof. It follows from Equation (26) and the non-negativity of the solution sequences given
in Equation (37) that one has, for any vector norm ‖ui‖ = (β I Ii + βEEi)Si ≤ (β I + βE)||zi||,
the following inequality:

‖zi‖ ≤ ‖Ad‖‖zi−d‖+
i−1

∑
j=i−d

‖Ai−j−1‖‖uj‖

≤ ‖Ad‖‖zi−d‖+
(

i−1

∑
j=i−d

‖Ai−j−1‖
)

sup
j∈[i−d,i−1]

‖uj‖

≤
[
‖Ad‖+ sup

j∈[i−d,i−1]
‖zj‖(β I + βE)

(
i−1

∑
j=d
‖Ai−j−1‖

)]
sup

j∈[i−d,i−1]
‖zj‖

≤

Kρ(Ad) + sup
j∈[i−d,i−1]

‖zj‖
K
(

1− ρi−d(A)
)

1− ρ(A)
(β I + βE)

 sup
j∈[i−d,i−1]

‖zj‖

≤ Kρ(A)i−d sup
j∈[i−d,i−1]

‖zj‖+
K

1− ρ(A)
(β I + βE) sup

j∈[i−d,i−1]
‖zj‖2 (39)

since ‖A‖ ≤ Kρ(A) and the fact that the model is normalized implies from the definition
of ui in Equation (36) that:

K
1− ρ(A)

(β I + βE) sup
d≤j≤i−1

‖zj‖2 ≤ K
1− ρ(A)

(β I + βE) (40)

Now, one gets from Equation (39) that lim
i→∞
‖zi‖ ≤

K(β I+βE)
1−ρ(A)

since lim
i→∞

ρ(A)i−d = 0.

Furthermore, one has from Equations (35) and (36) that

‖zi+1‖ ≤ ‖A‖‖zi‖+ ‖B‖‖ui‖ ≤ Kρ(A)‖zi‖+ (β I + βE)Si max(Ei, Ii) (41)

Assume that the infinity vector and vector-matrix induced norms are used in the
above formula so that

max
i−d≤j≤i

max
(
Ej+1, Ij+1

)
≤ (Kρ(A) + (β I + βE)) max

i−d≤j≤i
max(Ej, Ij) (42)

if β I + βE < 1− Kρ(A), then the sequence
{

maxi−d≤j≤i max(Ej, Ij)
}

converges monotoni-
cally to zero.

It is of interest to have some testing tool to exclude eventual non-trivial oscillations of
the solutions of the above model under certain model parametrizations [53]. One sees from
Equations (22)–(29) that {Si}∞

i=0 converges asymptotically to a limit S∗ ≥ 0 and {Ri}∞
i=0

can only converge to a limit oscillation if {Ii}∞
i=0 converges asymptotically to an oscillation.
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Therefore, the whole system (22)–(25) converges to a limit cycle if and only if {Ei}∞
i=0 and

{Ii}∞
i=0 converge to limit oscillations. Thus for S ≡ S∗ the limit subsystem (22)–(25) can

be described through the following auxiliary discrete system got “ad hoc” for this case
from (27)–(28):

zi+1 = Azi + S∗(β I Ii + βEEi)e1; ∀i(≥ d) ∈ Z0+ (43)

where e1 ∈ R2(d+1) is the unity Euclidean vector of first component unity and, if there

is a non-trivial limit oscillation solution of Equation (43) then lim
i→∞

zi = z∗ =
[

λ∗

ω∗

]
6=

0
(
∈ R2(d+1)

)
which satisfies from (43) the following constraint:[

I2(d+1) −A− S∗e1(β IeT
1 + βEeT

d+2)
]
z∗ = 0 (44)

so that z∗ ∈ Ker
[
I2(d+1) −A− S∗e1(β IeT

1 + βEeT
d+2)

]
and then there is no non-trivial limit

cycle if [
I2(d+1) −A− S∗e1(β IeT

1 + βEeT
d+2)

]
is non-singular since then z∗ = 0

(
∈ R2(d+1)

)
. Since {Si}∞

i=0 is non-increasing then

S∗ = S0 − S̃∗ for some S̃∗ = S̃∗(S0). Then, from Banach’s Perturbation Lemma [54],
one gets [

I2(d+1) −A− S∗e1(β IeT
1 + βEeT

d+2)
]

=
[
I2(d+1) −A− (S0 − S̃∗)e1(β IeT

1 + βEeT
d+2)

]
(45)

is non-singular if
[
I2(d+1) −A− S0e1(β IeT

1 + βEeT
d+2)

]
is non-singular and S̃∗(β I + βE) <∥∥∥∥[I2(d+1) −A− S0e1(β IeT

1 + βEeT
d+2

]−1
∥∥∥∥

1
since then ‖S̃∗e1(β IeT

1 + βEeT
d+2)‖1 ≤ S̃∗(β I +

βE) <

∥∥∥∥[I2(d+1) −A− S0e1(β IeT
1 + βEeT

d+2)
]−1
∥∥∥∥

1
.

4. Data Processing

We will now proceed to determine the values of the transmission rates β I and βE for
the SEIR models using the available data in the cited countries.

4.1. Classification of Control Strategies

Except for Sweden [41], the countries presented in this paper (i.e., Spain [34], Italy [35],
France [36], Portugal [39], United Kingdom [37], Germany [38] and Norway [40]) have
implemented different strategies in order to change the course of the epidemic at all levels.
There are many different ambient conditions that may affect the value of both infectivity
rates, such as the weather conditions or social awareness to the disease, but we will assume
that the greater the level of lockdown that the country submits itself to will mean more
influence over the transmission rates. Thus, with the purpose of having the same criteria
independently of the politics of each country, the following classification of the diverse
isolation measures applied to the population is made:

• Stage 1: Total lockdown (Blue background in the graphics) People must stay at home
unless necessary. Going out for vital activities such as work, groceries and exercise
may be allowed.

• Stage 2: Outdoor lockdown (Red background in the graphics) Necessary tasks and
outdoor contact allowed. Going out is permitted with established schedules. In ad-
dition, schools are open, family visits allowed, etc. Activities in closed spaces with
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moderate risk of transmission (bars, restaurants, museums, gyms, cinemas, etc.) are
shut down.

• Stage 3: Indoor lockdown (Yellow background in the graphics) Public indoor events
allowed. Activities in closed spaces are opened with certain restrictions, such as a
reduction in the schedules and/or the maximum capacity of the locations.

• Stage 4: New normality (White background in the graphics) All services are available
although they may require basic hygiene and prophylactic measures. Borders are
re-opened with routine health check-ups applied to migrants.

As we can see, the social distancing measurements adopted at each phase present a relax-
ation of those of the previous ones gradually loosening the isolation up to a normal situation.

4.2. Processing the Available Data

In order to calculate the transmission rates we will make some assumptions:

• During the lockdown stages adopted in the different studied countries, the social
interaction of an exposed individual is similar to a diagnosed infectious one.

• The exposed transition rate during the lockdown stage will be equal to the infectious
transition rate βE0 = β I0 .

• The diagnosis methods and the prophylactic measures around these diagnosed infec-
tious individuals will improve after the beginning of the epidemic.

• The value of β I will be reduced partially as the awareness of the disease and the risk
around infected individuals are reduced because of the social distancing strategies
adopted in the country.

• The value of the transmission rate of the diagnosed infectious β I after the initial
lockdown will remain constant as the official approach to a diagnosed individual will
remain the same independently of the lockdown stage.

• The bias in the influence of the non-measured infected individuals will be constant
through all the time.

The β I and βE will be calculated then in two steps. First, we will take the available
data from the lockdown stages applied on a population, considering equal the initial
transmission rates βE0 = β I0 . The value of the total cumulative cases, which will include
all the infected subpopulations, is the same independently of the SEIR model chosen from
Equations (1)–(4) or (26)–(29), namely, it is CCi = Ei + Ii + Ri. We obtain that

∆CCi = ∆Ei + ∆Ii + ∆Ri = Si(β I Ii + βEEi) = β I0 Si(Ii + Ei) (46)

Since βE = β I in this first step Then, as the value for the susceptible at any day i
would be Si = 1− CCi, we will get the equation for β I and βE for the lockdown time

βE0 = β I0 =
∆CCi

(Ii + Ei)(1− CCi)
(47)

A linear regression will be used to obtain the β I0 at the initial total lockdown stage.
Then, the transmission rate for the infectious at the next stages of the lockdown β I will be
reduced to a fraction of the original value as the prophylactic measures and the awareness
of the disease increases. Then, the β I for the rest of the lockdown stages will be β I = kβ I0

with the factor k ∈ [0, 1] set to a point as the transmission rate of the exposed βE is
calculated. The βE will be obtained applying this k to the rest of the stages and calculating
again through linear regression using the data of the days of each stage as

βE =
∆CCi

Ei(1− CCi)
− β I Ii

EI
(48)

Different k will be studied in order to fit the most appropriate βE.
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4.2.1. Estimation of the Exposed Subpopulation

As we can see in Equations (46)–(48) and Equations (1)–(4) and (26)–(29) respectively,
when calculating the values of β I and βE, the value of the exposed subpopulation is as
important as the infectious one. However, using only the official repositories, in which the
different authorities share their data related to COVID-19, we cannot obtain the number of
individuals incubating the virus at any given time, as it is obviously something which is
not directly observed and thus not registered. In order to extrapolate such number from
the available data for the extended model, we will assume:

• That each infected individual comes from a exposed individual.
• That each exposed individual will eventually be registered as infected. This assumes

that they will be tested due to developing symptoms or being in close contact to
someone who has.

• That each exposed individual will become infected individual in a range of days from
k0 to k1, with a probability of transition based on a normal distribution around a
central value [55].

• The density function of the probability of transition will be defined from experimental
observations [56,57] by the mean value (4 days) an the variance (3 days), as seen as
in [58].

The estimation of the exposed subpopulation will be done for all dates in a single step,
using the known values of new cases of all dates. Now, let Ek and Ck be the number of
exposed individuals and the new infected cases at the day k, respectively. Then, the new
infected individuals at day k will depend on the probability of transition and the number
of exposed individuals on previous days. In this case, as:

Ck = gk0 Ek−k0 + . . . + gk1 Ek−k1 =
k1

∑
m=k0

gmEk−m (49)

with the fraction of individuals that transient to the infected individuals gi =
ϕµ,σ(i)

∑
j=k1
j=k0

ϕµ,σ(j)
,

being ϕµ,σ(x) the value of the probability density function of a normal distribution with
mean µ and standard deviation σ at specific values i ∈ [k0, k0 + 1, . . . , k1]. Observe that
these values of gk correspond to a special case of the extended model in which ∑ µi = 1.
Then we will build a database with n data and a (n− k0)× (n− k0) matrix A with the
values gk0 , . . . , gk1 that multiplying the vector of historical exposed E = (E1, . . . , En−k0)

T

we would obtain the vector of new cases with a delay of k0 days, C = (Ck0+1, . . . , Cn)T . As
the known vector is C we will invert the matrix A, so that multiplying its inverse to the
right to the vector C, we get the desired vector E as described in the following equation

Ck0+1
...

Cn−1
Cn

 = A


E1
E2
...

En−k0

 =⇒


E1
E2
...

En−k0

 = A−1


Ck0+1

...
Cn−1

Cn

 (50)

In this approximation, we will assume that there is no exposed individuals before day
1, so the infected individuals for the first days must come from these initial transitions.
This assumption is reasonable because the number of cases at these moments is relatively
low, so the value of exposed individuals must also be low. Consequently, the transitions of
the first rows from 1 to k1 − k0 will be normalized, so that every row in A equals to 1. This
way, we define the matrix A =< ai,j > with:
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ai,j =


i ≤ (k1 − k0) + 1 :

 j ≤ i :
gk0+i−j

∑i
l0

gk0+l

j > i : 0

i > (k1 − k0) + 1 :
{

j ∈ (0, i + k0 − k1) ∪ (i, n− k0] : 0
j ∈ [i, i + k0 − k1] : gk0+i−j

(51)

As matrix A is lower triangular, A−1 will be lower triangular too. Finally, the curve of
the values of the exposed individuals over time will be smoothed through weighted moving
average [59], in order to filter out the possible noises in measurements and bureaucratic
errors when publishing the results. We can see that for the model from (1)–(4), that
the extrapolation of the exposed population is trivial, as it can be easily extracted from
Ei = Ci/µ, being Ci the daily value of the new cases.

4.2.2. Estimation of the Recovered Subpopulation

The recovered subpopulation (R), however, will be obtained from the average ratio
of recovery from the disease [56,57], as shown in the transition of Equations (3) and (4).
Observe that, due to share a similar dynamics in their non-interaction with the susceptible
or infected population, the recovered individuals and the individuals that die from the
disease are both considered as recovered.

4.2.3. Summer Phase

Observe that the process of infection is an stochastic process, which is specially relevant
during the summer period, as during this season the percentage of daily cases of new
infected over the total population is quite small. The calculation about such a variability
in the value of new infected individuals over such small time cannot be used in a useful
way. The transmission rate obtained during the initial stage and during the summer period
shown in the figures will not present the required minimum of new infections per number
of individuals that belong to the population. Thus the rates β I and βE will vary too much
in a very small period of time, so the average value will not be reliable. These stages will
be shown at the figures in a grey background in contrast to the other stages.

5. Numerical Results of the SEIR Model

In this section we will calculate the parameters β I and βE of different countries in
Europe via multiple linear regression, adjusted to the SEIR model from Equations (1)–(4)
and (26)–(29) respectively. Data from the official health-care institutions from countries
of Spain, Italy, United Kingdom, Germany, Portugal, France, Norway and Sweden will
be used. The figures are completed with the new daily cases per 100,000 inhabitants in
such a way the reader can observe its evolution. In every case, the curves describing
the cumulative and direct values of the infected and exposed individuals are smoothed
through weighted moving average [59], in order to filter out the bureaucratic errors when
publishing the results and other possible noises in measurement. The analysis period will
be from the beginning of March 2020 to the end of February 2021. Each background color
of the graphs represents a different stage of the social distancing measures adopted by the
territorial government.

5.1. Procedure to Calculate βE and β I

First the different NPI measures of control of COVID-19 at different time intervals will
be set, and the average β I and βE of the different countries, with the two SEIR models will
be calculated as described in Section 4.2. The average values will be calculated globally for
each country, and then at a lower level of territorial organization (i.e., provinces, regions or
counties), when the data is available.
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5.2. Determination of the k Factor

We will first determinate the factor k from the equation for the reduction of the
infectious transmission constant after the initial lockdown β I = kβ I0 . This factor will
take into account the general change of attitude when acting towards a person diagnosed
with COVID-19, as the initial prophylactic measures and prevention methods, such as
the face masks, were not sufficiently popularized on the society compared to the actual
implementations, which have their positive impact [60–62]. We have chosen first France in
order to calibrate the best k that fits the results for the expected value of βE, and then we
use this value of k in the rest of the countries.

5.3. France

Data from the official health-care institutions of France is used to calculate the average
transition rates during the first lockdown. In this case, the available data did not contain
the COVID-19 cases distributed regionally, so only the figures showing the data in the
whole country are displayed. In Table 1 it can be seen the numbers of cases in France at
the days the different intervals start and end, as well as different indicators of infection
and number of deaths related to COVID-19. The total CFR (Case fatality rate) for France,
i.e., the percentage of death individuals per diagnosis is 2.58%.

Table 1. Data for France: Total cases, Cases per 100,000 inhabitants in the last 14 days, rate of Cases
in the last 14 days and the previous 14 days interval, Death related to COVID-19.

Date Total Cases I Ii
Ii−14

Death

17 March 2020 7730 11.2 37.6 225
11 May 2020 139,519 16.7 0.5 26,643
1 August 2020 189,547 20.7 1.9 30,251
11 September 2020 363,350 143.5 1.9 30,893
30 October 2020 1,331,984 741.4 2.2 36,565
28 November 2020 2,208,699 378.9 0.5 52,127
12 February 2021 3,427,386 408.4 1.0 81,448

5.3.1. Extended SEIR Model

We can see in Figure 2 the average βE calculated through the lockdown stages in
France. The transmission rate related to the individuals diagnosed as Infected, β I0 will
be, as said in Section 4.2 the same as the βE0 during the lockdown stage. The exposed
subpopulation will be obtained from the extrapolation of the newly infected as described
in Equations (27), (28), (49) and (50). Then, due to the popularization of diverse NPI,
the infectious transmission rate will be reduced by a factor k, for the relation β I = kβ I0 ,
which we will estimate through calibration. A sweep of k between values 0.5 to 1 is made
and the average βE calculated through lineal regression from Equation (48).

5.3.2. µ-SEIR Model

Again, we will extrapolate the exposed subpopulation from the model Equations (1)–(4),
and recalculate βE0 and β I0 of the first lockdown Stage. Then, as in the previous figure, βE
will be calculated given different stages.

We estimate that the different possible values of βE, from Figures 2 and 3 , obtained
by using a k-factor k = 0.7, as it presents a behavior more adequate to the expected value
of βE. Once this value is established, it will be used in the rest of the countries in Europe,
as the improvement on the treatment of infected individuals once the first wave passed is
assumed the same.
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Figure 2. Value of βE for the different levels of lockdown. Different k-values for reducing the β I are
tried. Blue background will correspond to Stage 1, red to Stage 2, yellow to Stage 3 and white to
Stage 4. A green dotted line corresponds to the value of new cases per 100,000 hab.

Figure 3. Value of βE for the different levels of lockdown. Blue background will correspond to Stage
1, red to Stage 2, yellow to Stage 3 and white to Stage 4. A green dotted line corresponds to the value
of new cases per 100,000 hab.

5.4. Norway

Information about the impact of the disease in Norway at the points of transition from
the different stages can be seen in Table 2. The total case fatality rate of Norway is 0.9%.

Table 2. Data for Norway: Total cases, Cases per 100,000 inhabitants in the last 14 days, rate of Cases
in the last 14 days and the previous 14 days interval, Death related to COVID-19.

Date Total Cases I Ii
Ii−14

Death

12 March 2020 860 15.9 15.9 0
20 April 2020 7106 25.1 0.4 154
8 September 2020 11,448 20.9 1.8 264
5 November 2020 22,467 104.2 3.2 284
12 February 2021 65,457 65.6 0.9 592

5.4.1. Extended SEIR Model

As in the SEIR model with normal distribution for France, we calculate the exposed
subpopulation as said in Section 4.2 and calculate the transmission rates β I and βE, shown
in Figure 4.
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Figure 4. Value of βE for the different levels of lockdown. Blue background will correspond to Stage
1, red to Stage 2, yellow to Stage 3 and white to Stage 4. A green dotted line corresponds to the value
of new cases per 100,000 hab.

5.4.2. µ-SEIR Model

Again, the transmission rates β I and βE are calculated for the SEIR model from
Equations (1)–(4) and shown in Figure 5.

Figure 5. Value of βE for the different levels of lockdown. Blue background will correspond to Stage
1, red to Stage 2, yellow to Stage 3 and white to Stage 4. A green dotted line corresponds to the value
of new cases per 100,000 hab.

5.5. Sweden

Sweden is a special case in Europe, as they did not consider until the beginning
of November that any special lockdown were needed, so the first wave of COVID-19
presented an incidence much higher than their neighboring country Norway, as we see in
Tables 2 and 3 comparing the incidence rates (green dotted line) and the infectious rates.
The data regarding CFR of Sweden was 2.19%.

Table 3. Data for Sweden: Total cases, Cases per 100,000 inhabitants in the last 14 days, rate of Cases
in the last 14 days and the previous 14 days interval, Death related to COVID-19.

Date Total Cases I Ii
Ii−14

Death

23 March 2020 2169 17.8 5.7 33
21 July 2020 74,766 35.1 0.4 5670
5 September 2020 85,500 24.4 0.7 5848
10 November 2020 166,956 470.7 1.6 6092
12 February 2021 609,306 400.1 1.0 12,449
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5.5.1. Extended SEIR Model

The β I from the Norway normal distribution model is used due to the similar social
structures and interaction frequency [63]. We proceed as in previous countries in order to
calculate the βE during the first wave and the late social distancing measures. Figure 6
displays the results.

Figure 6. Value of βE for the different levels of lockdown. Yellow background corresponds to a
mild social distancing measure classified as Stage 3 and white background to “normality”, with no
substantial self-isolation measures adopted. A green dotted line corresponds to the value of new
cases per 100,000 hab.

5.5.2. µ-SEIR Model

The β I from the Norway in the µ-SEIR model is used as in the previous section due to
the same reasons, and the βE is calculated again for the first wave of the disease and the
late social distancing measures. The results are displayed in Figure 7

Figure 7. Value of βE for the different levels of lockdown. Yellow backgrounds correspond to a
mild social distancing measure classified as Stage 3 and white background to “normality”, with no
substantial self-isolation measures adopted. A green dotted line corresponds to the value of new
cases per 100,000 hab.

5.6. Portugal

In the case of Portugal, the data of incidence on the affected population at the starting
point of the lockdown stages is presented in Table 4. The total case fatality rate of Portugal
up to February 2021 is 2.5%.
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Table 4. Data for Portugal: Total cases, Cases per 100,000 inhabitants in the last 14 days, rate of Cases
in the last 14 days and the previous 14 days interval, Death related to COVID-19.

Date Total Cases I Ii
Ii−14

Death

23 March 2020 642 6.2 106 1
4 May 2020 25,524 45.3 0.6 1063
1 July 2020 42,523 47.1 1.2 1579
15 September 2020 65,021 65.8 1.9 1875
15 January 2021 528,469 1047.4 2.2 8543
12 February 2021 781,223 802.6 0.5 15,034

5.6.1. Extended SEIR Model

As in previous countries the βE is calculated for the different stages of the disease and
shown in Figure 8. Observe that after the “new normality” the transmission rate for the
exposed rises unexpectedly.

Figure 8. Value of βE for the different levels of lockdown. Blue background will correspond to
Stage 1, red to Stage 2, yellow to Stage 3 and white to Stage 4. A green dotted line corresponds to the
value of new cases per 100,000 hab.

5.6.2. µ-SEIR Model

The transmission rate for the exposed population in this model is similar to the
previous one as seen in Figure 9, in that the second lockdown measures do not seem to
affect as much as the first one.

Figure 9. Value of βE for the different levels of lockdown. Blue background will correspond to Stage
1, red to Stage 2, yellow to Stage 3 and white to Stage 4. A green dotted line corresponds to the value
of new cases per 100,000 hab.
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5.7. United Kingdom

The United Kingdom had the second worst case fatality rate of all the countries here
shown, with a value of 3.2%. The strategy adopted by the country up to February 2021 is
to implement full lockdown measures The incidence data at the beginning of the different
lockdown stages are presented in Table 5.

Table 5. Data for the UK: Total cases, Cases per 100,000 inhabitants in the last 14 days, rate of change
of I in 14 days, Death related to COVID-19.

Date Total Cases I Ii
Ii−14

Death

23 March 2020 12,639 18 19.9 938
1 June2020 257,702 37.9 0.7 38,294
20 August 2020 325,468 22.37 1.4 41,494
5 November 2020 1,183,510 464.9 1.3 49,271
2 December 2020 1,696,375 317.5 0.7 61,050
4 January 2021 2,880,767 1042.7 1.8 79,323
12 February 2021 4,040,037 328.2 0.6 118,097

5.7.1. Extended SEIR Model

We calculate βE as in the previous countries. Observe in Figure 10 the drop of the
values at the closed lockdown stages (Blue background zone).

Figure 10. Value of βE for the different levels of lockdown. Blue will correspond to Stage 1, yellow
to Stage 3 and white to Stage 4. A green dotted line corresponds to the value of new cases per
100,000 hab.

In this case, we can also use the linear regression technique for the individual 64 differ-
ent counties that constitute the UK. A series of histograms related to each stage can be seen
at Figure 11 and their associated statistical data at Table 6. There, the mean value of the
βEs, their variance and the confident interval are displayed, as well as the p-value between
histograms to show the notable impact of the strategies on the different stages.

Table 6. Histogram for the mean values of βE at the different stages of lockdown in the UK.

Phase Mean Variance CI 95% p

Lockdown 0.08 10× 10−4 (80.7, 82.5) × 10−3

Indoor contact 0.46 12 × 10−4 (452.6, 469.5) × 10−3 0
Second lockdown 0.22 134 × 10−4 (192.0, 248.6) × 10−3 0
Indoor contact 0.47 80 × 10−4 (452.0, 495.7) × 10−3 0
Third lockdown 0.17 69 × 10−4 (144.8, 185.4) × 10−3 0
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Figure 11. Histogram of the 64 different counties of United Kingdom. The value of βE at the different
levels of lockdown registered in 2020.

5.7.2. µ-SEIR Model

Again, the transmission rate for the exposed subpopulation βE is calculated and
shown in Figure 12.

Figure 12. Value of βE for the different levels of lockdown. Blue will correspond to Stage 1, yellow
to Stage 3 and white to Stage 4. A green dotted line corresponds to the value of new cases per
100,000 hab.

The histograms of the different stages describing the βEs of the different counties of
the UK are presented in Figure 13, slightly different to the previous one.

Figure 13. Histogram of 64 different counties of United Kingdom. The value of βE at the different
levels of lockdown registered in 2020.

In Table 7, the statistical data associated to the histograms is seen.

Table 7. Histogram for the mean values of βE at the different stages of lockdown in the UK.

Phase Mean Variance CI 95% p

Lockdown 64.8× 10−3 10× 10−4 (64, 66) × 10−3

Indoor contact 169× 10−3 3.2× 10−4 (164, 173) × 10−3 0
Second lockdown 83× 10−3 14.3× 10−4 (74, 93) × 10−3 0
Indoor contact 186× 10−3 10.2× 10−4 (178, 194) × 10−3 0
Third lockdown 5.3× 10−3 5.4× 10−4 (48, 59) × 10−3 0
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5.8. Germany

For Germany, the case fatality rate is 3.1%. The incidence of COVID-19 at the different
starting points of the stages of lockdown can be seen in Table 8.

Table 8. Data for Germany: Total cases, Cases per 100,000 inhabitants in the last 14 days, rate of Cases
in the last 14 days and the previous 14 days interval, Death related to COVID-19.

Date Total Cases I Ii
Ii−14

Death

23 March 2020 35,985 40.8 16.3 708
20 April 2020 146,504 50.5 0.6 7537
14 September 2020 264,405 23.1 1.2 9593
2 November 2020 579,340 234.8 2.7 13,417
24 December 2020 1,614,002 397.52 1.3 43,701
10 January 2021 1,933,486 315.9 0.9 55,945
12 February 2021 2,326,814 147.8 0.7 69,327

5.8.1. Extended SEIR Model

A calculation of the βE is made at the different lockdown stages. Observe in Figure 14
a diminishing of the value of βE in the Stage 2 after the second Stage 1 lockdown, whose
value is almost identical to the initial value of βE at the first Stage 1 of lockdown in the
spring of 2020.

Figure 14. Value of βE for the different levels of lockdown. Blue background will correspond to Stage
1, red to Stage 2, yellow to Stage 3 and white to Stage 4. A green dotted line corresponds to the value
of new cases per 100,000 hab.

The impact of the lockdown stages on the 33 different regions of Germany can be
easily seen at the histograms of Figure 15.

Figure 15. Histogram of the 33 different regions of Germany. The value of βE at the different levels
of lockdown registered in 2020.

The data and the significant statistical differences between the stages shown with the
p-test are displayed at Table 9.
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Table 9. Histogram for the mean values of βE at the different stages of lockdown in Germany.

Phase Mean Variance CI 95% p

Lockdown 7.9× 10−2 3.0× 10−3 (78, 79) × 10−3

Indoor contact 56.8× 10−2 1.0× 10−3 (557, 579) × 10−3 0
Outdoor contact 38.1× 10−2 5.8× 10−3 (355, 407) × 10−3 0
Second Lockdown 21.4× 10−2 12.5× 10−3 (176, 252) × 10−3 <10−6

Outdoor contact 8.2× 10−2 7.3× 10−3 (53, 111) × 10−3 <10−6

5.8.2. µ-SEIR Model

A second calculation of the transmission rate βE is made for the SEIR model from
Equations (1)–(4). As in the previous model we can see in Figure 16 how the βE decreases
as the lockdown intensifies, except for the final Stage.

Figure 16. Value of βE for the different levels of lockdown. Blue background will correspond to Stage
1, red to Stage 2, yellow to Stage 3 and white to Stage 4. A green dotted line corresponds to the value
of new cases per 100,000 hab.

The histograms shown at Figure 17 and their related data shown in Table 10 prove a
clear impact and a significant statistical difference on the βE between the lockdown stages.

Figure 17. Histogram of the 33 different regions of Germany. The value of βE at the different levels
of lockdown registered in 2020.

Table 10. Histogram for the mean values of βE at the different stages of lockdown in Germany.

Phase Mean Variance CI 95% p

Lockdown 6.0× 10−2 0.4× 10−4 (5.9, 6.0) × 10−2

Indoor contact 22.2× 10−2 1.6× 10−4 (21.7, 22.6) × 10−2 0
Outdoor contact 13.7× 10−2 6.1× 10−4 (12.8, 14.5) × 10−2 0
Second Lockdown 9.9× 10−2 10.1× 10−4 (8.8, 11.0) × 10−2 <10−8

Outdoor contact 5.2× 10−2 6.6× 10−4 (4.3, 6.1) × 10−2 <10−8
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5.9. Spain

For Spain, the data shows that the case fatality rate is 2.3%. The incidence of COVID-19
at the different starting points of the stages of lockdown can be seen in Table 11.

Table 11. Data for Spain: Total cases, Cases per 100,000 inhabitants in the last 14 days, rate of Cases
in the last 14 days and the previous 14 days interval, Death related to COVID-19.

Date Total Cases I Ii
Ii−14

Death

15 March 2020 12,874 26.9 108.9 508
4 May 2020 228,788 44.9 0.5 26,878
10 July 2020 266,181 16.6 1.8 29,796
15 August 2020 383,287 145.6 1.9 30,245
6 November 2020 1,453,433 619.4 1.4 41,167
4 December 2020 1,781,385 246.2 0.6 48,580
12 February 2021 3,106,326 471.2 0.5 66,858

5.9.1. Extended SEIR Model

A calculation of the βE is made at the different lockdown stages as described in
Section 4.2. The values of the transmission parameter βE are shown at Figure 18.

Figure 18. Value of βE for the different levels of lockdown. Blue background will correspond to Stage
1, red to Stage 2, yellow to Stage 3 and white to Stage 4. A green dotted line corresponds to the value
of new cases per 100,000 hab.

A series of histograms related to the transmission rates of the exposed individually
calculated at the 50 provinces of Spain at the different stages of the lockdown is shown at
Figure 19.

Figure 19. Histogram of the 50 different provinces of Spain. The value of βE at the different levels of
lockdown registered in 2020.

The data regarding the histograms is displayed in Table 12, showing the mean value
of the βEs, their variance, the confident interval and the p-test done between the stages of
lockdown to check their statistical differences.
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Table 12. Histogram for the mean values of βE at the different stages of lockdown in Spain.

Phase Mean Variance CI 95% p

Lockdown 7.8× 10−2 0.2× 10−4 (7.6, 7.9) × 10−2

New normality 57.1× 10−2 37.1× 10−4 (55.5, 58.9) × 10−2 0
Indoor contact 43.3× 10−2 29.1× 10−4 (41.8, 44.8) × 10−2 0
Outdoor contact 15.7× 10−2 201.1× 10−4 (11.7, 19.6) × 10−2 0
Indoor contact 45.4× 10−2 174.7× 10−4 (41.7, 49.0) × 10−2 0

5.9.2. µ-SEIR Model

As in the previous SEIR model, the transmission rates for the exposed is calculated at
the different lockdown stages as shown in Figure 20.

Figure 20. Value of βE for the different levels of lockdown in Spain. Blue background will correspond
to Stage 1, red to Stage 2, yellow to Stage 3 and white to Stage 4. A green dotted line corresponds to
the value of new cases per 100,000 hab.

Again, a series of histograms is made for the βEs of the 50 provinces of Spain (we have
taken out city provinces Ceuta and Melilla) to check for the impact of the lockdown and
social distancing measures on the transmission rates as seen in Figure 21.

Figure 21. Histogram of the 50 different provinces of Spain. The value of βE at the different levels of
lockdown registered in 2020.

The data regarding their mean values, their variance, confidence intervals and the
p-test between the histograms can be seen at Table 13.

Table 13. Histogram for the mean values of βE at the different stages of lockdown in Spain.

Phase Mean Variance CI 95% p

Lockdown 6.1× 10−2 0.1× 10−4 (6.0, 6.1) × 10−2

New normality 24.5× 10−2 27.6× 10−4 (23.0, 25.9) × 10−2 0
Indoor contact 15.4× 10−2 4.4× 10−4 (14.9, 16.0) × 10−2 0
Outdoor contact 5.1× 10−2 16.6× 10−4 (4.0, 6.2) × 10−2 0
Indoor contact 17.3× 10−2 39.2× 10−4 (15.6, 19.0) × 10−2 0
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5.10. Italy

Italy shows the greatest case fatality rate of all the countries studied in this paper:
3.7 deaths per 100 cases on average. The incidence of COVID-19 at the different starting
points of the stages of lockdown can be seen in Table 14.

Table 14. Data for Italy: Total cases, Cases per 100,000 inhabitants in the last 14 days, rate of Cases in
the last 14 days and the previous 14 days interval, Death related to COVID-19.

Date Total Cases I Ii
Ii−14

Death

10 March 2020 10,149 16.3 31.1 631
4 May 2020 211,938 50.9 0.7 29,079
27 August 2020 263,949 19.4 2.5 35,463
25 October 2020 525,782 283.2 3.9 37,338
24 December 2020 2,009,317 368.3 0.9 70,900
6 January 2021 2,201,945 349.3 1.0 76,877
12 February 2021 2,697,296 278.9 1.1 93,045

5.10.1. Extended SEIR Model

The calculation of the βE from the SEIR model described in Equations (26)–(29) is
made as in previous countries and the results are shown in Figure 22.

Figure 22. Value of βE for the different levels of lockdown. Blue background will correspond to Stage
1, red to Stage 2, yellow to Stage 3 and white to Stage 4. A green dotted line corresponds to the value
of new cases per 100,000 hab.

Again, a series of histograms is made in order to describe the distribution of βEs
calculated for each of the 107 regions of Italy at the different lockdown stages which have
been applied since early 2020 as seen in Figure 23.

Figure 23. Histogram of the 107 different regions of Italy. The value of βE at the different levels of
lockdown registered in 2020.

The statistical information acquired from these histograms is displayed at Table 15.
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Table 15. Histogram for the mean values of βE at the different stages of lockdown in Italy.

Phase Mean Variance CI 95% p

Lockdown 0.079 0.3× 10−4 (7.8, 8.0) × 10−2

New normality 0.568 21.5× 10−4 (55.9, 57.6) × 10−2 0
Indoor contact 0.399 24.5× 10−4 (39.0, 40.9) × 10−2 0
Second lockdown 0.206 226.2× 10−4 (17.7, 23.4) × 10−2 0
Indoor contact 0.268 154.1× 10−4 (24.5, 29.2) × 10−2 <10−3

5.10.2. µ-SEIR Model

Calculations of the transmission rates of the exposed subpopulation in the different
lockdown stages is made in Figure 24.

Figure 24. Value of βE for the different levels of lockdown. Blue background will correspond to Stage
1, red to Stage 2, yellow to Stage 3 and white to Stage 4. A green dotted line corresponds to the value
of new cases per 100,000 hab.

A series of histogram is made as in the previous cases for the 107 regions of Italy at
the different lockdown stages, as seen in Figure 25.

Figure 25. Histogram of the 107 different regions of Italy. The value of βE at the different levels of
lockdown registered in 2020.

Furthermore, the data regarding these histograms is displayed in Table 16.

Table 16. Histogram for the mean values of βE at the different stages of lockdown in Italy.

Phase Mean Variance CI 95% p

Lockdown 6.2× 10−2 0.2× 10−4 (6.1, 6.2) × 10−2

New normality 26.3× 10−2 10.3× 10−4 (25.6, 26.9) × 10−2 0
Indoor contact 13.0× 10−2 1.7× 10−4 (12.7, 13.2) × 10−2 0
Second lockdown 11.4× 10−2 27.0× 10−4 (10.4, 12.4) × 10−2 3× 10−3

Indoor contact 10.2× 10−2 14.2× 10−4 (9.5, 11.0) × 10−2 6× 10−4
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6. Discussion
6.1. France and Portugal

As said in the previous section, even though France and Portugal are big enough to
acquire relevant data of the incidence of COVID-19 at regional level, we have not found
reliable data organized by provinces or similar territories so only analysis of the whole
country has been made. France is special as it is the reference on which we will base the
value for the factor k from Equations (46) and (47) for all countries. We have cautiously
chosen a k which is as close as 1 as possible but still generates values for the transmission
rate βE coherent with the values expected from the initial lockdown stage. In the µ-SEIR
model, after the initial lockdown (Stage 1) with β I0 = βE0 = 0.065 and the low cases of
summer, in which the transmission rates are not calculated, the βE in the new normality
(Stage 4) rises up to 2–3 times the initial value βE ∈ (0.15–0.20) . Stage 3, corresponding
to the level of indoor contact, does not seem to change significantly, although it is higher
than the following lockdown (Stage 1) starting late October (βE ≈ 0.015–0.100) and the
outdoor lockdown (Stage 2) at Christmas season (βE ≈ 0.045–0.130). The variation of the
rates in the extended SEIR model is similar as in the µ-SEIR model, although the values of
the transmission rates are higher. Here, the initial β I0 = βE0 ≈ 0.095 and in the following
Stages 4 and 3 βE ∈ (0.265–0.550). During the second lockdown, the calculated βE drops
to values close to zero when β I = β I0 , and rises up to βE = 0.38 when β I = 0.6β I0 . The
transmission rate at the final outdoor lockdown Stage (Level 2) presents a infectivity rate
βE for the exposed quite similar to the previous September-October indoor lockdown Stage
(Level 3). In Portugal the variation between the values of βE after and before summer is
notable. While in the first half of 2020 the values of transmission rates βE0 , β I0 at the first
total lockdown stage in the µ-SEIR and the extended SEIR model are βE = 0.062/0.078
respectively, the first outdoor lockdown (Stage 2) rises up to βE = 0.068/0.102 and in
the indoor lockdown (Stage 3) rises again to βE = 0.122/0.331 respectively. The second
wave of infection after summer, when the daily cases grows up to 20 daily cases per
100,000 inhabitants, present a βE especially higher than the previous one. The values of the
transmission rate in the new normality (Stage 4), which extends from the 15th of August
to the 15th of September are 0.183 and 0.461 for the µ-SEIR and extended SEIR models
respectively; at the following indoor lockdown (Stage 3) they decrease to 0.164 and 0.456,
which are values greater than the previous Stage 3 of summer. The second total lockdown,
starting the 15th of January 2021 after the rise of new cases in Christmas presents also a
value which is higher than the initial total lockdown of 2020, from βE = 0.062/0.078 to
βE = 0.11/0.42 for the µ and extended SEIR models respectively.

6.2. Norway and Sweden

Norway and Sweden present very similar ethnic and sociodemographic profiles and
age distributions of the population, health care, educational and political systems [63], pop-
ulation density, age and urban distribution and similar climate due to proximity [64]. How-
ever, the impact of the two different strategies applied in both countries is notable as seen
in the calculations of the transmission rates βE and β I . Norway proceeded with cautionary
NPI measures, opting for the total lockdown at the beginning of the outbreak during March,
April and May. After the summer, the rate of new cases per 100,000 inhabitants rose again in
both countries and Sweden finally chose as strong of isolation strategy as Norway. The val-
ues for the Stage 1, 4 and 3 are, respectively, βE = (0.075, 0.530, 0.317)/(0.059, 0.211, 0.114)
for the µ/extended SEIR model respectively. Sweden, on the other side, while recommend-
ing social distancing decided to approach to the situation by appealing to the personal
responsibility of the individuals without any NPI measure implemented at the beginning of
the outbreak. It can be seen that the increments of new cases in both the two Scandinavian
countries (see Figures 4 and 6) appear at the same dates, but the incidence rate of new
infections is almost five times higher in Sweden. The transmission rate values for the
exposed subpopulation of the new normality Stage 4 and the indoor lockdown (Stage 3)
which was practiced after summer in both countries up to February 2021 are quite the same,
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from βE = 0.211/0.113 as we can see in Figure 5 to βE = 0.530/0.317, in Figure 4, for the µ
and extended SEIR models for Norway, and βE = 0.221/0.122 as we can see in Figure 7
and βE = 0.577/0.384 , in Figure 6, in the µ and extended SEIR models for Sweden. This
similarity on this interval suggests that the number of infected individuals up to September,
which was approximately 85,000 for a population of 10 million in Sweden in contrast to the
11,000 cases of Norway for a population of 5 million, could have been substantially less in
the case of Sweden had they adopted proper NPI measures.

6.3. Spain and Italy

Spain and Italy are the European countries in which COVID-19 initially advanced in
2020 and the countries which acted on the propagation of the disease through NPI earlier
in 2020. The fact that the data of incidence of the disease is distributed geographically on
the provinces of both countries allows us to make a study at two different levels, a global
one and a regional one. The transmission rates βE0 of Italy and Spain are comparable
at the initial total lockdown, which started in March and ended in May as we can see
in Figures 18 and 22. In the initial Stage 1, both the infectious and exposed transmission
rates are β I0 = βE0 = 0.065/0.083 in Italy and β I0 = βE0 = 0.061/0.078 in Spain for the
µ/extended SEIR model respectively. Observe that in the new normality, after the summer
also shows a similar βE = 0.268/0.584 in Italy and βE = 0.215/0.543 in Spain for the
µ/extended SEIR model respectively. After the rise of new cases in both countries, a new
indoor lockdown (Stage 3) is established in Spain the 15th of August and the 27th of August
in Italy. The transmission rates during these stages are reduced to βE = 0.148/0.411 in
Spain and βE = 0.117/0.347 in Italy for the µ/extended SEIR models. We can see that while
the Stage 3 lockdown NPI were a relative success in Italy as the rate of new cases decreased
more rapidly while it kept growing in Spain, this made Spain react earlier in November
by reducing down to a Stage 2 lockdown, decreasing the value of the transmission rate
to βE = 0.04/0.08 in the µ/extended SEIR model, and the incidence of new infected
individuals eventually went down. Italy, on the other hand, maintained the lockdown
Stage 3 until the Christmas season, when the decision to go to total lockdown was made,
although the period of time in which this measure is applied was not long enough to
βE to decrease to the levels of the previous one. It can be argued that the cold weather
and the special social circumstances of the period in which it was applied affected the
probability of infection and thus the βE = 0.103/0.167 at the µ/extended SEIR model. The
study of the transmission rates on the 107 and 50 provinces of Italy and Spain show the
impact of the different NPI strategies on both countries. On one hand the coherence of
the values for βE of the first Stage 1 total lockdown in both models and both countries
suggests that the measures were more strict at the beginning of the outbreak rather than in
the following waves of contagion. On the other hand, the p-test applied to the histograms
of the consecutive transition of stages, as seen in the µ/extended SEIR model in Italy (see
Tables 15 and 16) and Spain (see Tables 12 and 13), confirms that the difference between the
values of βE is statistically significant and that the impact of the NPIs is real and measurable.
The variance of the transmission rates is higher in the new normality and decreases as does
the stages of the lockdown.

6.4. Germany and the UK

Germany and the United Kingdom have their data distributed geographically, so
the analysis can be made in their regional and country level. While in Germany the
implementation of the NPI measures when the second wave of contagion arrived were
gradual; in the UK the lockdown measures level changed directly from Level 3 to Level
1. Germany has a transmission rate βE 0.060 /0.079, and as the incidence of new cases
increases at the beginning of the second wave it rapidly changes to a lockdown Stage 3,
where the βE = 0.218/0.560 in the µ/extended SEIR model respectively. However, the rate
of new cases is not curved down until the outdoor lockdown (Stage 2) is implemented,
when βE = 0.134/0.215 and in the second lockdown at Christmas season βE = 0.1/0.215 in
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the µ/extended SEIR model. In the following lockdown after Christmas the transmission
rate decreases in both the µ/extended model to βE = 0.054/0.067. On the study of the
33 different regions of Germany it can be seen that the variance of the average values of
the transmission rates for each is higher during the second lockdown, in contrast with
the small variance that occurs at the first total lockdown. As it is seen in Tables 9 and 10,
although the effect of the different isolation measures affects the values of βE in a statistical
significance, as the p-test made on the histograms shows, the variance of the calculated
βE during the second wave of the disease increases as the isolation applied is higher.
This development, in which the variance in the values of the βE of provinces is smaller
during the first total lockdown, happens too in the United Kingdom, as it can be seen in
the transmission rates of their 64 counties in Tables 6 and 7 and their related histograms,
in which the initial total lockdown has a lower mean value and variance than the following
two total lockdowns. The graphics of βE of all the UK (see Figures 10 and 12) actually show
the impact of these total lockdown stages on the incidence of newly infected individuals,
as their numbers decrease, to half in the first transition from indoor lockdown Stage 3 (from
August to November) with βE = 0.161/0.447 to total lockdown (November-December)
βE = 0.078/0.207 for the µ/extended-SEIR model respectively; and to 1/3 approximately
in the second transition from the indoor lockdown Stage 3 (December-January) with
βE = 0.184/0.485 to the second total lockdown (since January) with βE = 0.49/0.150.

6.5. Disparities on the Histograms

The first notable issue that comes up when analyzing the results of Spain, Italy, Ger-
many and the United Kingdom and the respective histograms is the differences observed
in some phases between the average value of the transmission rates of the local regions
and the whole countries. This difference is due to the decrease of the importance of the
data from provinces that have greater population. Those provinces add a superior number
of cases to the data of the whole country than other less populated areas and, when consid-
ering the total country, their importance is higher. In contrast, when making a histogram,
the importance of all the provinces is the same. A good example of this problem can be seen
in the United Kingdom as more than 17% of the cases from the United Kingdom take place
in London and, consequently, a big percentage of all cases are registered in London. The
importance of the data from London on the results of the whole United Kingdom is dimin-
ished when making an average from the data calculated from the counties, because all of
them have the same weight. A weighted arithmetic mean is calculated for the regional rates
for each lockdown stage and each country, being the weight for each province proportional
to the cases of infection that took place during that stage. Thus, the effect of each province
on the average value of the transmission rates β I and βE depends on the number of cases
that have occurred during the phase. We will call the average value the one calculated by
the unweighted mean. In Italy, the biggest difference is observed in the value from the
total lockdown Stage, i.e., the value of β I0 = βE0 . In Germany, there are not significant
differences between the average, the weighted arithmetic mean and the national value
of βE in all the stages, as all of the states presented on the histogram are big enough to
dismiss the disparities. In Spain, as in Italy, the weighted arithmetic mean of βE is closer to
the value of the whole country in almost all the phases than the average value. The big
variance of the average values in Spain, on the other hand, can also be explained as their
politics on NPI and isolation measures have been decided on regional levels from early in
2020, and the transition between stages of lockdown has not been coherent through the
entire second wave of COVID-19.

7. Conclusions

After analysis of the results, the general perception is that the results are coherent
in the sense that the decrements and increments of the infectious rate of the disease are
common through all the stages in both models’ studies and in every country. The initial total
lockdown of the first wave presents a set of similar values of β I0 = βE0 around 0.062/0.079
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for the µ and extended SEIR model respectively, with a consistency not only between
countries but within the studied provinces. The authors believe this fact is associated to
the strong NPI measures that were taken at the beginning of the outbreak due to the lack
of knowledge in regards to the disease and the initial alarm this created among society
and authorities. The variance of the values of βE during the second wave was notably
higher than in the first one because of the absence of the same motives as before. The NPI
measures got more flexible the moment the authorities were able to cope with the disease
without serious risk of sanitary collapse, and thus, the value of βE changed through phases
more irregularly. Even a study on the same region that applies the same isolation measures
would show disparities between the values of the transmission rates in a lockdown stage
calculated at different intervals of time, as the methods for measuring the COVID-19 cases,
the weather and the attitude about the disease have changed over the seasons of 2020. This
suggests that:

1. A total lockdown really works as a palliative measure in case of an outbreak, as it can
be seen when comparing the cases of Sweden and Norway.

2. The difference in the quality of gathered data, due to availability of tests, management
of the health care system and public awareness is present not only between the regions
of Europe but also between moments in time.

3. When no immunization is available, such that big enough vaccination campaigns can
be made, any type of NPI measures is able to reduce the contagion in a perceptible way.

The general impression we get from our calculations is that our models work fine
enough to describe the situation of the population in regards to the COVID-19 spread.
The extended SEIR model on one hand describes all subpopulations in a more accurate
way taking into account more precisely the medical observations of the evolution of the
disease on an individual, depicting realistically the exposed subpopulation, while the
µ-SEIR model is not so accurate, but the model is simpler to operate. It is worth pointing
out that although the output rates differ significantly, their relevance is in their relative
value, and their changes within lockdown stages vary coherently between each other. The
authors hope that future studies on COVID-19 will improve their predictability as a good
infrastructure for testing and diagnosis is established, and a better classification of the
isolation measures is made. The reduction in the number of diagnoses of other notable
airborne transmission diseases, like influenza [65], suggest that seasonality of the disease is
a factor to take into account in the impact of any possible outbreaks in the coming months.
Although it could be the strictness of the NPI after and before summer, which would change
the number of average contacts per individual per day, and thus the transmission ratio
of exposed subpopulation, it may also be the influence of the weather on the probability
of a contagious interaction between a susceptible and a infected individual [66,67]. The
authors believe it to be a mixture of both reasons, which should be studied accordingly.
Both models here presented are easily adaptable too when the vaccination campaigns
scheduled for 2021 start to have a beneficial impact on the incidence of new cases.
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