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Abstract: Natural dyes have been used from ancient times for multiple purposes, most importantly
in the field of textile dying. The increasing demand and excessive costs of natural dye extraction
engendered the discovery of synthetic dyes from petrochemical compounds. Nowadays, they
are dominating the textile market, with nearly 8 × 105 tons produced per year due to their wide
range of color pigments and consistent coloration. Textile industries consume huge amounts of
water in the dyeing processes, making it hard to treat the enormous quantities of this hazardous
wastewater. Thus, they have harmful impacts when discharged in non-treated or partially treated
forms in the environment (air, soil, plants and water), causing several human diseases. In the present
work we focused on synthetic dyes. We started by studying their classification which depended
on the nature of the manufactured fiber (cellulose, protein and synthetic fiber dyes). Then, we
mentioned the characteristics of synthetic dyes, however, we focused more on their negative impacts
on the ecosystem (soil, plants, water and air) and on humans. Lastly, we discussed the applied
physical, chemical and biological strategies solely or in combination for textile dye wastewater
treatments. Additionally, we described the newly established nanotechnology which achieves
complete discharge decontamination.

Keywords: synthetic dyes; classification; textile industries; discharge; treatment methods; nanotechnology

1. Introduction

The worldwide developmental process influenced all fields of life by providing rapid-
ity, efficacy and comfort. However, it has also engendered side effects related to biosphere
pollution coming from uncontrolled pollutant discharge from all sorts of industries, es-
pecially those manipulating harmful and recalcitrant compounds [1]. Particularly, the
dye industries generate huge amounts of hazardous wastewater routinely [2]. Dyes are
used for the coloration of several materials such as textile fibers, paper, cosmetics, tannery,
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leather, food, pharmaceutical products, etc., [3,4]. Before 1856, dyes were derived from
natural sources only. The increasing demand and excessive costs of natural dye extrac-
tion engendered the discovery of the first synthetic dye aniline (mauveine) in 1856 by a
chemist named Perkin [5]. This purple dye gave a stable and uniformly distributed color
when applied to silk [6]. Dying industries depended on synthetic dyes ever since and
started to expand globally, attaining nearly 8 × 105 tons of synthetic dyes produced per
year [7,8]. Notably, the textile industry accounts for ~75% of the global dyestuff market and
involves around ten thousand different dyes used for printing and/or coloring multiple
types of fabrics [9,10]. Textile industries are mostly located in developing countries such
as India, Bangladesh, Sri Lanka and Vietnam, where they enhanced employment capacity,
building the economy and foreign exchange earnings [11,12]. However, these countries
do not fully respect effluent discharge norms because of their poor wastewater treatment
systems. They often reject large quantities of untreated or partially treated dye effluents,
eventually resulting in huge environmental pollution [13,14]. Thus, our study aims to give
a comprehensive survey on textile synthetic dyes and the discharged effluents of textile
industries. It focuses on introducing synthetic dyes and their classification in the first part.
It delimits the impacts of these dyes on the ecosystem and human beings in the second part
and discusses the available treatment methods of the released textile industry wastewater
in the last part.

2. Classification of Dyes

Textile industries produce fibers to form yarn, which is converted to fabric [15]. They
use dyes in different ways on textile fabric (Figure 1). For instance, dyeing is the process of
coating the textile fiber with dyes uniformly. Printing is the application of dyes in a specific
area of the fabric. Bleaching is the removal of dye color (decolorization) from textile fibers,
and finishing comprises crosslinking, softening and waterproofing [7]. Dyes are classified
depending on their origin into two main categories. Natural dyes, which have been known
ever since ancient times, are derived mainly from plants; and synthetic dyes are artificially
synthesized from chemical compounds. Synthetic dyes are divided into three groups based
on the nature of the manufactured fiber. These are cellulose fiber dyes, protein fiber dyes
and synthetic fibers dyes [4,16].
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2.1. Cellulose Fiber Dyes

Cellulose fiber originates from plants such as linen, cotton, ramie, rayon, lyocell and
hemp (Figure 1). These types of fabrics give perfect dyeing results with reactive dyes, direct
dyes, indigo dyes and sulfur dyes [17].

2.1.1. Reactive Dyes

Reactive dyes constitute the major class of cellulose fiber dyes and work well with
some protein fibers (Figure 1). They are known for their high pigmentation, permanent
effect, facility of manipulation under a wide temperature range and versatility due to
diverse reactive groups able to form covalent bonds with multiple fibers [10,14].

2.1.2. Direct Dyes

Direct dyes are very affordable, yet tend to remain in an aqueous form rather than
binding to cellulose fibers (they can be used with certain synthetic fibers as well). Thereby,
they are combined with inorganic electrolytes and anionic salts in the form of sodium
sulfate (Na2SO4) or sodium chloride (NaCl) to enhance their fabric binding capacities
(Figure 1). Thus, it is recommended to wash them in a cold cycle and with fabrics of the
same color [18].

2.1.3. Indigo Dyes

The indigo or dark blue color belongs to the classification of vat dyes, which are
originally not soluble in water but became soluble after an alkaline reduction (Figure 1).
The textile dyeing process occurs with the water-soluble or leuco form of indigo, then
this form oxidizes under air exposure and returns to its original insoluble or keto form to
ensure a perfect bonding of the dye to the fabric. The indigo dyes are mostly used in blue
denim dyeing, which explains their production in huge amounts around the world [19,20].

2.1.4. Sulfur Dyes

Sulfur dyes constitute a small, yet important class due to their excellent dyeing
properties, ease of application and low cost (Figure 1). They have a complex structure with
a disulfide (S–S) bridge. They belong to the vat dye classification; thus, they are reduced
from the keto to the leuco form via sodium sulfide utilization. Leuco sulfur becomes soluble
in water to achieve the dyeing purpose [21,22].

2.2. Protein Fiber Dyes

Protein fibers such as silk, cashmere, angora, mohair and wool originate from animal
sources (Figure 1). They are susceptible to high pH levels; hence they are dyed using
a water-soluble acid dyestuff to obtain a molecule of an insoluble dye on the fiber [23].
Acid dyes encompass azo dyes as the most important group followed by anthraquinone,
triarylmethane and phtalocyanine dyes [24,25].

2.2.1. Azo Dyes

Azo dyes account for the largest category (60–70%) of the total synthetic dyes industry
due to their versatility, cost-effectiveness, simplicity of utilization, high stability and high
intensity of the color [26,27]. This dye has a prominent chromophore (-N = N-) structure,
ensuring the solubility of the dyes in water and its attachment to the fiber [28,29]. Azo
dyes are classified into three groups (mono, di and poly) depending on the number of
azo groups in their structure (Figure 1). These groups are attached to an aromatic or
heterocyclic compound on one side and an unsaturated heterocycle, carboxyl, sulphonyl,
or aliphatic group on the other side [30,31].

2.2.2. Anthraquinone Dyes

The class of anthraquinone is extensively used in textile dyeing industries; the red
dyestuff particularly has been used for a long time [32]. These dyes are known for their
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solubility in water, bright colors and excellent fastness properties (Figure 1). The an-
tharaquinone structure could constitute junctions with azo dyes [33,34].

2.2.3. Triarylmethane Dyes

The triphenylmethane dyes are widely applied in the textile industry for either dyeing
wool and silk protein fibers when formed of two groups of sulfonic acid (SO3H). They can
be used as indicators if they contain only one sulfonic acid (SO3H) auxochrome in their
chemical structure (Figure 1). These dyestuffs are known for their solubility in water and
their wide and intense color range [17,35].

2.2.4. Phtalocyanine Dyes

The phtalocyanine family of dyes is synthesized by a reaction between the 1,4-
Dicyanobenzene compound with a metallic atom (Nickel, Cobalt, Copper, etc.) to produce
green and blue shades (Figure 1). They have multiple inherent properties such as good col-
orfastness to light, resistance to oxidation, solubility in water and chemical stability [36,37].

2.3. Synthetic Fiber Dyes

Synthesized fibers are composed of spandex, polyester, acrylic, polyamide, polyoac-
etate, polypropylene, ingeo and acetate fabrics (Figure 1). They are used in 60% of global
fiber production due to their wide application range. These fibers are dyed using direct
dyes, basic dyes and disperse dyes [38,39].

2.3.1. Disperse Dyes

Disperse dyes are the smallest molecules among all dyes. These dyes are insoluble
in water but stable under high-temperature exposure (Figure 1). The high-temperature
dyeing solution is a mixture between the dyestuff powder and the dispersing agent [40–42].

2.3.2. Basic Dyes

Basic dyes are also called cationic dyes because they transform into colorful cationic
salts responsible for dyeing the anionic fiber textile [43]. These dyes are susceptible to light;
thus, they are strictly used for dyeing paper nylon and modified polyesters. Their principal
structures are cyanine, triarylmethane, anthraquinone, diarylmethane, diazahemicyanine,
oxazine, hemicyanine, thiazine and hemicyanine [10] (Figure 1).

3. Characteristics and Impacts of Synthetic Dyes

Synthetic dyes are mostly derived from petrochemical compounds, they are com-
mercialized in liquid, powder, pastes, or granule forms [16]. They are endowed with
multiple potentialities such as fast and consistent coloration with different classes of fabrics
as mentioned in the above section, a wide range of color pigments and shades, facility
of manipulation, stability over several external factors and economical energy consump-
tion [13]. Therefore, the majority of synthetic dyes cause harmful impacts when discharged
in non-treated or partially treated forms in the environment [44,45]. Several reports have
mentioned that up to 15% of applied dyes escape the textile fibers and are released into
wastewater, and that the procedures of textile dyeing (dyeing, fixing, washing, etc.) con-
sume a massive amount of water. Hence, a huge volume of improper discharge is rejected
continuously [46,47]. Dye effluents contain high biological and chemical oxygen demand
(BOD and COD) and they are very rich in organic and inorganic pollutants such as chlori-
nated compounds, heavy metals, sulfur, nitrates, naphtol, soaps, chromium compounds,
formaldehyde, benzidine, sequestering agents and dyes and pigments [48,49]. Several toxic
elements remain in the wastewater even after certain treatment processes [50,51]. Thereby,
they cause multi-contamination effects on air, soil, plants and water resources, in addition
to severe human diseases [52].
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3.1. Harmful Impacts on Soil and Plants

Liquid and solid wastes discharged from textile industries contain dyes, plastic,
polyester, fibers, yarns and other hazardous materials as mentioned in the above section
(Figure 2). These polymeric compounds have been responsible for the pollution of local
landfill habitats and agricultural fields, especially in developing countries. This soil pollu-
tion engenders plant growth inhibition by causing oxidative stress, lowering the protein
content, photosynthesis and CO2 assimilating rates [7,53].
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3.2. Harmful Impacts on Air

Textile dye industries release toxic gases like sulfur, formaldehyde, oxides of nitrogen,
volatile compounds, particulate matter and dusts distinguished by an unpleasant smell
(Figure 2). This air pollution could affect humans (workers and customers), animals, the
final product and the environment [52,54,55].

3.3. Harmful Impacts on Water

The main damage caused by the industrial dye effluent effects the receiving water
bodies (including seas, rivers, lakes, natural ponds and streams) and spreads over large
distances causing damage to other forms of life [49]. The wastewater contains multiple
toxic materials and its color result from the discharge of several dyes; it is noticeable and
very recalcitrant even in low concentrations (>1 mg/L), yet the average concentration of
textile effluent dye reaches about 300 mg/L [56]. The dark color and high turbidity of
these effluents interfere with sunlight transmission through water, decrease the amount
of dissolved oxygen and disturb the pH level (Figure 2). These factors lead to several
ecological impacts on the aquatic system such as the inhibition of photosynthesis in aquatic
plants, low biodegradability by aerobic microorganisms and harmful effects on the food
chain [57,58]. Water is highly susceptible to pollution compared to the other areas, and it is
also hard to determine the pollution level in aquatic systems. The water may appear clear
even though the pollution may reside for long periods in sediments and fish [16,44].
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3.4. Harmful Impacts on Humans

Dye products and by-products existing in wastewater discharge or the dust produced
inside the textile industry pose serious damages and long-lasting health impacts to human
beings (Figure 2). They affect several vital organs (brain, kidney, liver, heart) and systems
(respiratory, immune, reproductive) of the human organism [59,60]. Diseases may occur
either directly through inhalation such as respiratory problems, asthma, allergy, nausea,
or skin and eye irritation and dermatitis, or indirectly through the food chain such as
tuberculosis, cancer, hemorrhage, gene mutations, and heart disease [2,61].

4. Applied Strategies for Textile Dye Wastewater Treatment

Textile industries use huge amounts of water in the dyeing processes, making it hard
to treat the enormous quantities of wastewater discharge (Figure 3). The latter is composed
of various organic and inorganic pollutants as described in the previous section [45,62].
Therefore, several countries have imposed rules to reach a standard before the effluent is
released into the ecosystem or is reused for other purposes. For this to happen, physical,
chemical and biological technologies have been employed to protect the environment and
human health from discharge problems. These strategies could be implemented solely or
in combination to obtain effective results [13,30,63].
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4.1. Physical Treatment Process

The physical treatment (Figure 3) of industrial wastewater involves conventional
processes such as adsorption, filtration, ion exchange and oxidation [16].

4.1.1. Adsorption

This approach is an efficient and easy operation applied when the discharge effluent
contains a large variety of dyes [56]. An appropriate adsorbent is selected depending on its
affinity and ability of regeneration. Adsorbent materials are known to be pricy (e.g., acti-
vated carbon), which allowed scientific researchers to find alternative adsorbent materials
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such as bentonite clay, fly ash, wheat residue, date stones, nanoparticles, etc., (Figure 3).
They are affordable and effective in wastewater treatment [64,65]. This treatment strategy
is achieved through the attachment of the pollutants to the specific surface area of the
adsorbent material [66,67]. The achievement of dyes decolorization by adsorption with
activated carbon was extensively studied. For instance, malachite green was adsorbed with
curcuma-based activated carbon [65], with tetraethylenepentamine activated carbon [66]
and with carbon coated layered double hydroxide [64]. Rhodamine B was successfully
adsorbed by ordered mesoporous carbon and commercial activated carbon and by treated
rice-husk based activated carbon Acid red 4 adsorption occurred via the activated car-
bon. Other adsorption methods were applied to remove the Basic fuchsin by bottom ash
and deoiled soya and with mussel shell biomass waste and Acid blue 25 with shrimp
shells (Table 1).

Table 1. Examples of textile dyes and their treatment methods.

Textile Dyes Treatment Methods Type of the Treatment Methods References

Malachite green

Adsorption with curcuma-based
activated carbon

Physical

[65]

Adsorption with
tetraethylenepentamine

functionalized activated carbon
[66]

Penicillim ochrochloron

Biological

[67]

Pandoraea pulmonicola YC32 [68]

Enterobacter asburiae XJUHX-4TM [69]

Flavobacterium caeni sp. [70]

Crystal violet and malachite green Adsorption with carbon-coated
layered double hydroxide Physical [64]

Crystal violet

Surfactant modified
magnetic nanoadsorbent

Physical

[71]

Adsorption with
bentonite-alginate composite [72]

Adsorption onto
TLAC/Chitosan composite [73]

Ozonation
Chemical

[74]

Electrociagulation [75]

Agrobacterium radiobacter
Biological

[76]

Diaporthe schini [77]

Acid yellow

Adsorption on flakes of chitosan
Physical

[78]

Fenton oxidation [79]

Electrocoagulation using
iron electrolites Chemical [80]

Rhodamine B and Acid yellow
Adsorption by ordered
mesoporous carbon and

commercial activated carbon
Physical [81]
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Table 1. Cont.

Textile Dyes Treatment Methods Type of the Treatment Methods References

Rhodamine B

Adsorption by micro and
nano-particles of ZnO

Physical

[82]

Adsorption with treated rice
husk-based activated carbon [83]

Ozonation Chemical [84]

Basic violet and Acid blue 93 Pseudomonas putida Biological [85]

Basic violet 3

Candida krusei Biological [86]

Fenton oxidation

Physical

[87]

Ag, ZnO and bimetallic Ag/ZnO
alloy nanoparticles [88]

Reactive Black 5 and Reactive red Nano zerovalent iron treatment Physical [89]

Reactive red 195 Electro-fenton Physical [90]

Reactive red 2
Adsorption sludge Physical [91]

Pseudomonas sp. SUK1 Biological [92]

Reactive red 180 Citrobacter sp. CK3 Biological [93]

Reactive red 198 Catalytic ozonation Chemical [94]

Reactive red 120 Ozonation Chemical [95]

Reactive green

Micrococcus glutamicus
NCIM-2168 Biological

[96]

White rot fungus [97]

UV/H2O2 advanced oxidation
process (AOP) Physical [98]

Indigo carmine

Electrooxidation on
Ti/IrO2-SnO2-Sb2O3

Physical

[99]

Electrochemical oxidation [100]

Adsorption with
calcium hydroxide [101]

Trametes hirsuta
laccase production

Biological

[102]

Phanerochaete chrysosporium
manganese

peroxidase production
[103]

Bacillus amyloliquefaciens
laccase production [93,104]

Anthraquinone, indigo
and triphenylmethane Ganoderma sp. En3 Biological [105]

Acid red 27
Armillaria sp. F022 Biological [106]

Chitosan adsorption Physical [107]

Acid red 131 Eectrochemical coagulation
Chemical

[108]

Acid red 73 Coagulation [109]

Methyl violet, basic fuchsin and
their mixture Biosorption using fungal biomass Biological [110]
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Table 1. Cont.

Textile Dyes Treatment Methods Type of the Treatment Methods References

Basic fuchsin

Adsorption by graphene
oxide/zinc oxide

(GO/ZnO) nanocomposite

Physical

[111]

Adsorption by bottom ash and
deoiled soya [112]

Adsorption on
alkali-activated diatomite [113]

Adsorption with mussel shell
biomass waste [114]

Electrochemical oxidation Chemical [115]

Amido black 10B

Phanerochaete chrysosporium
Biological

[116]

Leptothrix sp. [117]

Fenton oxidation

Physical

[118]

Adsorption with zeolite [119]

Adsorption with polyaniline/iron
oxide composite [120]

Adsorption
usingpolyaniline/SiO2

nanocomposite
[121]

Direct red 28 Electrocoagulated sludge Chemical [122]

Direct red Oxidation with photo-Fenton

Physical

[123]

Direct red 23 Adsorption with PAN/PVDF
composite ananofibers [124]

Direct red 31 and Direct orange 26 Biosorption by rice husk Physical [125]

Direct red 89 and Reactive green 12 Biosorption Physical [126]

Direct Blue 1 and Direct Red 128 Biosorption using
Trametes versicolor Biological [127]

4-nitroaniline

Acinetobacter sp. AVLB2
Biological

[128]

Candida sp. AVGB4 [129]

RGO-Ni nanocomposite Physical [130]

Acid Blue 92
Coagulation/Flocculation Chemical [131]

Ozone based oxidation Physical [132]

Acid Blue 113 Electrocoagulation Chemical [133]

Congo red

Nanofiltration
Physical

[134]

Adsorption by clay materials [135]

Ozonation Chemical [136]

Aspergillus niger Biological [137]

Congo red Bacillus cohnii Biological [138]

Remazol orange Pseudomonas aeruginosa Biological [139]

Remazol brilliant orange 3R CdO–ZnO nanofibers Physical [140]

Reactive blue 13 Pseudomonas sp. Biological [141]

Reactive orange 16 Ozone oxidation Physical [142]
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Table 1. Cont.

Textile Dyes Treatment Methods Type of the Treatment Methods References

Remazol Black-B Adsorption on waste orange peel Physical [143]

Brilliant blue G Galactomyces geotrichum and
Bacillus sp. Biological [144]

Remazol brilliant blue and orange Peel adsorption Physical [145]

Brilliant blue R Adsorption with orange peel and
spent tea leaves Physical [146]

Acid orange 7 and Remazol black 5 Biosorption Physical [147]

Orange 2
Adsorption by row and

chemically modified
brown macroalga

Physical [148]

Acid blue 25 Biosorption with shrimp shells Physical [149]

Acid orange 8 Pd-Ni bimetallic nanoparticles Physical [150]

Basic blue 3 Pd-Ni nanoparticles supported on
activated carbon Physical [151]

Rhodamine B
palladium-supported

zirconia-based
catalytic degradation

- [152]

Acid red 4 Adsorption with activated carbon Physical [153]

4.1.2. Nanoparticle Utilization

Nanotechnology is the science of nanoscale materials (size ≤ 100 nm); it has attracted
numerous researchers due to the great potentials of nanoparticles in removing textile
dyes [68]. Nanoparticles have a wide range of classification [69], they are chemically
stable, have a large surface area, can be prepared physically, chemically and biologically
(microbes and plants), and are cheap and eco-friendly [70]. The shape, size, structure,
purity and arrangement of nanomaterials matters in the process of decolorization [71].
Nanoparticles are mainly applied directly to wastewater to adsorb rejected dyes on their
surface for further elimination [72]. They could also be used in filters, membranes and
carbon nanotubes for further regeneration and reutilization in dye wastewater discharge
cleaning [73]. This original methodology is taking place as a significant, large-scale solution
for textile industries due to the speed of cleaning and reduction of certain pollutants to
near-zero levels [74]. Nanomaterials could be synthesized based on plant extracts [75,76],
metals and metal oxides [77,78], carbon [79] and nanocomposites [80]. However, it is
important to know that the elimination of nanoparticles after water purification needs to be
addressed [81]. Multiple scientific works covered dye degradation using nanocomposites
including graphene oxide/zinc oxide (GO/ZnO) [111], polyaniline/SiO2 [121] and RGO-
Ni [130]. Umar et al. [150] used Pd–Ni bimetallic nanoparticles to treat Acid orange
8 (Table 1).

4.1.3. Filtration

Filtration is a membrane-based separation process (Figure 3) that involves popular
techniques such as reverse osmosis, ultrafiltration and nanofiltration, to allow the acquisi-
tion of reusable water and recycled dyes [82–84]. The concept of these procedures consists
of transporting industrial wastewater throughout several membranes differing by mesh
size and separation mechanisms to finally obtain clean water [85,86]. Dye waste water
treatment by the membrane filtration method was reported by [154–177], he used nano-
membrane filtration. Liang et al. [178] coupled electro-fenton reaction with membrane
filtration to achieve better results. Liu et al. combined the membrane filtration method
with iron nanoparticle reduction to remove various classes of dyes [179]. This technology
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proved to be prominent in dye removal, but it has some drawbacks such as permanent
change to the membrane, the generation of foul odors and insoluble wastes, which implies
further processing [87,88].

4.1.4. Ion-Exchange

Ion-exchange adsorbents are introduced in the wastewater in either solid or liquid
form, they are used to bind harmful anions or cations of the opposite charge, and in turn,
release an equivalent amount of non-harmful hydrogen ions [89,90]. The review paper
of Hassan and Carr [180] addressed strategies for reactive dye removal by applying the
ion-exchange method [180–182]. Cationic dyes were also removed from water throughout
the ion-exchange method [183,184]. Raghu and Basha (2007) combined the ion-exchange
with chemical or electrochemical methods to remove dyes from textile wastewater [185].
This technique is great for the elimination of toxic and soluble pollutants (Figure 3) from
effluent water; however, its use has been limited because of its high cost [91].

4.1.5. Oxidation

Advanced oxidation processes (AOPs) have been extensively applied for textile dye
degradation due to their powerful ability to oxidize a wide range of synthetic dyes and
other complex pollutants existing in textile effluents [92,93]. They include catalytic oxi-
dation, which is the process of active radical production (hydroxyl or sulfate radicals) on
a particular catalyst surface [94,95]. In the Fenton reaction example, hydrogen peroxide
is the oxidant and iron ions are the catalyst (Figure 3). This reaction occurs in an acid
medium (pH ~ 3) to allow the decomposition of the hydrogen peroxide into hydroxyl
free radicals acting as strong oxidants [96]. Other types of Fenton techniques are also
applicable such as electro-Fenton, photo-Fenton and sono-Fenton, with the possibility of
a combination of them [97]. Interestingly, the acid yellow 17 [79], Basic violet 3 [87] and
Amido black 10B [118] dyes were treated by the Fenton oxidation process. Otherwise,
Reactive orange 16 was treated by the ozone oxidation method [142], Reactive green was
removed using UV/H2O2 AOP [98] and indigo carmine was subjected to the electrochem-
ical oxidation [100]. The main drawbacks of the oxidation technique are the generation
of hazardous by-products in cases of incomplete oxidation and the possibility of sludge
formation [98,99].

4.2. Chemical Treatment Process

The most common chemical treatment processes (Figure 3) are coagulation, floccula-
tion and ozonation [56]; they are utilized for contaminant elimination and in particular,
those released in textile wastewater [100].

4.2.1. Coagulation/Flocculation

Coagulation and flocculation (Figure 3) are the simplest chemical methods for the
pretreatment of textile dye effluent [101,102]. This technique enables the elimination of
suspended insoluble materials by adding charged chemical colloids (Aluminium sulfate
(Al2(SO4)3), Iron (III) chloride (FeCl3), Iron (II) sulfate (FeSO4), alum, lime, etc.) provoking
coagulation and settling with oppositely charged particles in the polluted water [103].
It is worth noting that Crystal violet [75], Direct red 28 [122] and Acid yellow [80] dyes
were removed throughout the electrocoagulation technique. Acid red 73 was treated
by coagulation [109] and Acid blue 92 was removed by the coagulation/flocculation
technique [131]. The provoked residues and the necessity to use subsequent treatments to
ensure the elimination of the remaining soluble contaminants are the major limits of this
technique [65,104].

4.2.2. Ozonation

This approach uses ozone as a strong oxidizer, its cleaning properties allow it to elimi-
nate toxic textile effluent compounds such as azo dyes [105,106]. Other benefits of ozone,
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when used in the gaseous state (Figure 3), are no fluctuation of the volume of wastewater
and no generation of sludge [107]. In this respect, the literature has multiple examples on
the degradation of dyes including Reactive red 120 [95], Acid blue 92 [132], Rhodamine
B [84] and Crystal violet [74] using the ozonation method. The main shortcomings of this
process are that it is highly susceptible to many factors (pH, salts, temperature, etc.), it can
release toxic compounds and its cost is elevated [103].

4.3. Biological Treatment Process

The process of biodegradation/bioremediation occurs naturally via a wide variety
of adapted microorganisms such as bacteria, fungi, algae and yeast existing within the
wastewater and/or the polluted area [108,109]. This process could also be induced on a lab-
oratory scale by isolating and screening appropriate microorganisms, succeeded by a scale
up to allow for textile effluent treatment and decolorization [3,110,111]. The responsible
microorganisms for biodegradation (Figure 3) use several techniques such as adsorption,
biosorption, bioaccumulation, alleviation, elimination, or mineralization of the harmful
wastewater molecules into non-harmful or even beneficial products [49,112]. This technique
gained major attention for being environmentally friendly, safe, clean (no sludge), and
economic, because it could be combined with other technologies [113,114]. Bacteria [115]
and fungi [6] are the principal contributors to wastewater degradation due to their ability
to produce degrading enzymes (oxidoreductases, hydrolases, oxygenases, ligninases, per-
oxidases and laccases) responsible for breaking down recalcitrant molecules [116–119]. It is
noteworthy to cite the role of extracellular laccase produced by multiple fungi such as Neu-
rospora crassa and Phanerochaete chrysosporium in the degradation of multiple dyes [186–206].
Al-Jawhari et al. [207] also mentioned the ability of few filamentous fungi in the treatment
of crystal violet and methylene blue dyes [154–214]. Otherwise, Bacillus subtillis, Proteus sp.
and Streptococcus sp. proved to be useful in azo dyes degradation [207,215]. Lysinibacillus
sp. RGS proved to decolorize and detoxify the Remazol red dye [216–219]. Nonetheless,
natural bioremediation is a time-consuming method, the induced biodegradation is not
readily reproduced and elevated concentrations of toxic compounds may prevent the
growth of existing or introduced microorganisms [8,102].

4.4. Combinatorial Treatments

All the above-mentioned treatments proved effective in alleviating textile wastewater
toxicity (Figure 3). However, achieving complete decontamination is a major challenge.
Thus, a multistep treatment process is needed to obtain the best possible results [50]. The
example of three treatment steps was well explained by Ghaly et al. [17]. It combines
several treatment methods, starting with chemical methods to allow for the elimination of
solid contaminants [17,87,120]. The secondary treatment is achieved using microorganisms
to reduce the COD and BOD rates, to remove turbidity and to convert the generated sludge
from the primary treatment into non-harmful products [121]. In the tertiary treatment,
physical methods are applied to ensure the total decontamination of the textile wastewater
and its safe reuse or release in the environment [122] (Figure 3).

5. Conclusions

This study delimited the harmful impacts of synthetic dyes and other pollutants
existing in textile effluents when discharged in non-treated or partially treated forms in
the first section, and introduced physical, chemical and biological treatments and their
efficiency when applied solo or combined to give rise to clean and reusable water, in another
section. The future of textile dyeing industries promises wider expansion, which will see
producers seeking more applications. This rapid development generates large pressures
on governments, who have to be more aware of the consequences of the uncontrolled
discharge of textile effluents on all sorts of life and to impose severe regulations on textile
and synthetic dye industries (such as the use of environment-friendly dyes and fibers,
developing employed treating techniques, and reducing water and energy consumption).
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Nanotechnology application in wastewater purification has a promising future due to the
versatile properties of nanoparticles in reducing costs and time of wastewater cleanup
operations. This strategy could be combined with any of the above-mentioned techniques
to ensure the best possible results of textile dye decontamination and water reutilization
for other purposes.
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