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Featured Application: The presented analytical expression for the atomic volume of the binary
alloys at arbitrary composition can be used in the equation of state modeling. This expression is
robust and predictive even in the absence of experimental data at a particular alloy composition.

Abstract: Alloys expand or contract as concentrations change, and the resulting relationship between
atomic volume and alloy content is an important property of the solid. While a well-known ap-
proximation posits that the atomic volume varies linearly with concentration (Zen’s law), the actual
variation is more complicated. Here we use the apparent size of the solute (solvent) atom and the
elasticity to derive explicit analytical expressions for the atomic volume of binary solid alloys. Two
approximations, continuum and terminal, are proposed. Deviations from Zen’s law are studied for 22
binary alloy systems.
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1. Introduction

According to the Hume-Rothery rules [1], (a) extensive substitutional solid solution
occurs only if the relative difference between the atomic diameters (radii) of two species is
less than 15%; (b) for the appreciable solid solubility, the crystal structures of two elements
must be identical; (c) a metal will dissolve a metal of a higher valency to a greater extent
than one of a lower valency; (d) an electronegativity difference close to zero gives maximum
solubility. The more electropositive one element and the more electronegative the other,
the greater the likelihood is that they will form an intermetallic compound instead of a
substitutional solid solution.

According to Vegard’s law [2], the unit cell parameters should vary linearly with
the composition for a continuous substitutional solid solution in which the atoms or ions
that substitute for each other are randomly distributed. For ideal solutions, with excess
energies and volumes equal to zero, the atomic volumes (Ω) of disordered alloys vary
linearly with the composition (Zen’s law, [3]): Ω(x) = ΩAx + ΩB(1 − x), where x is the
atomic composition of the element A. One should notice that even for an ideal solution
(for which Zen’s law is valid), a deviation from Vegard’s law can occur. Indeed, for a
cubic structure, the lattice parameter, a, is related to the cell volume, V, by the relation
a = Ω1/3, and the linear variation of the cell volume does not imply the linear variation of
the lattice parameter.

Models exist to predict the deviation from Zen’s law; however, they are not sufficiently
reliable. Even the accuracy for predicting the sign of the deviation from Zen’s law does not
exceed 60%. Hume-Rothery and Raynor [4] found a significant negative deviation from
Zen’s law for Cd-Mg solid solutions. Massalski and King [5] found that the numerous
intermetallic phases in the Cu-Zn system show a negative deviation from Zen’s law. Indeed,
negative deviations from Zen’s law are observed for most of the ordered compounds.
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The excess volume of the alloy, ∆Ω = Ω − ΩZen’s, usually called “the superstructure
contraction”, plays an important role in the stabilization of intermediate structures due to
the free energy gain (ΩZen’s is the atomic volume determined by Zen’s law).

Kozlov et al. [6] introduced several parameters that define the geometry of binary
alloys. In addition to the dimensional size factor, δ = RA/RB, where RA and RB are the
atomic radii of components A and B, respectively, Lawes-Parthé space filling factor, ψ, and
superstructure contraction, ∆Ω/Ω, have been introduced. The space filling factor of binary
alloys is defined as ψ = [ΩAx + ΩB(1 − x)]/Ω(x). By studying numerous binary alloys
with AB and A3B stoichiometry, Kozlov et al. [6] found that among AB stoichiometry
structures, B2, B19, and L10 structures with Pm3m, Pmcm, and C4/mmm Space Groups,
respectively, show a negative superstructure contraction, ∆Ω/Ω, equal to −0.100, − 0.038,
−0.045, respectively, and only L11 structure, the Space Group R-3m, shows a very small
but positive superstructure contraction equal to +0.003. Among A3B stoichiometry struc-
tures, L12 (Pm3m), D019 (P63/mmc), D023 (4I/mmm), and D024 (P63/mmc) structures
show a negative superstructure contraction equal to −0.153, −0.053, −0.105, and −0.144,
respectively. Two A3B structures, D022 (4I/mmm) and A15 (I/mmm) show a positive
superstructure contraction equal to +0.011 and +0.054, respectively. The existence of stable
intermetallic compounds with a positive superstructure contraction is explained in terms
of the space filling factor, ψ.

Kozlov et al. [7] constructed the histograms of distribution of the B2 and L12 super-
structures in the Ni-Al system as a function of the space filling factor, ψ, and superstructure
contraction, ∆Ω/Ω. It was found that the space filling factor and enthalpy of phase for-
mation increase simultaneously in the Ni-Al intermetallic compounds. The space filling
factor and superstructure contraction intertwine: the higher the space filling factor, the
higher the superstructure contraction. It was shown that the rate of the change in the
superstructural contraction determines, in many respects, the enthalpy of phase formation:
the higher space filling factor, the higher the enthalpy of phase formation. The highest
space filling factor, superstructure contraction, and the enthalpy of formation are observed
for the stoichiometric NiAl (B2) structure: 0.785, −0.140, and −59 kJ/mol, respectively.

Klopotov et al. [8] addressed the main crystallogeometrical parameters of compounds
in the Ni–Ti system. It was determined that the space filling factor, superstructural con-
traction, and enthalpy of phase formation increase simultaneously. The highest space
filling factor, superstructure contraction, melting temperature and the enthalpy of forma-
tion are observed for the stoichiometric Ni3Ti (D024) structure: 0.80, −0.086, 1400 ◦C and
−38 kJ/mole, respectively.

Potekaev et al. [9,10] established the explicit correlation between the type of evolution
of the binary phase diagrams based on elements of VIIIA and IB groups of Mendeleyev’s
Periodic Table and the nature (positive/negative) of the superstructure contraction.

The superstructure contraction, which reflects the deviation from Zen’s law, is a very
important parameter of the binary alloy crystal lattice. In the next section we discuss a the-
oretical basis, based on Lubarda’s [11] elastic inclusion model, for analytical determination
of the atomic volume of solid solutions.

2. Theoretical Background

Lubarda [11] derived an expression for the effective lattice parameter of binary solid
solutions by using an elasticity inclusion model, in conjunction with an apparent size of
the solute atom when resolved in the solvent matrix. Assuming the R1 is the Wigner-Seitz

radius of the solvent material, Ω1 =
4πR3

1
3 , the volume increase produced by insertion of

the solute atom to the solvent is expressed as

∆Ω = 4πR3
1γ1C, (1)
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where the misfit coefficient, C, is given by the expression

C =
(R∗2 − R1)

R1γ2
(2)

and R∗2 is the apparent Wigner-Seitz radius of the solute material, which is introduced to
approximately account for the electronic interactions between the outermost quantum
shells of the solute and solvent atoms. The parameters γ1 and γ2 are defined by

γ1 = 1 +
4µ1

3K1
, γ2 = 1 +

4µ1

3K2
, (3)

where µ1(2) and K1(2) are the shear and bulk moduli of the solvent (solute). If x is the
atomic concentration of the solute, the total volume increase produced by insertion of the
N2 = xN1 solute atoms (N1 is the total number of the solvent atoms) is

∆V = 4πR3
1xN1γ1C (4)

and the total volume is
V = V1 + 4πR3

1xN1γ1C (5)

where V1 is the volume of the solvent. The atomic volume of the system with N2 = xN1
solute atoms will be

Ω = Ω1 + 4πR3
1xγ1C. (6)

The apparent radius of the solute atom, R∗2 , is estimated using one piece of experi-
mental information about the solid solution, i.e., the initial slope of the lattice spacing vs.
composition curve,

(
da
dx

)
x=0

. King [12] introduced the volume size factor:

ω2 =
1

Ω1

(
dΩ
dx

)
x=0

=
3
a1

(
da
dx

)
x=0

. (7)

By differentiating Equation (6), Ω = Ω1 + 4πR3
1xγ1C,(

dΩ
dx

)
x=0

= 4πR3
1γ1C. (8)

Thus, combining Expressions (7) and (8), one gets ω2Ω1 =
(

dΩ
dx

)
x=0

= 4πR3
1γ1C =

4πR3
1γ1

(R∗2− R1)
R1γ2

or ω2Ω1 = 3 4πR3
1

3 γ1
(R∗2− R1)

R1γ2
= 3Ω1γ1

(R∗2− R1)
R1γ2

and ω2 = 3γ1
(R∗2− R1)

R1γ2
.

Thus, the apparent Wigner-Seitz radius of the solute atom can be calculated from

R∗2 =R1

(
1 +

γ2

3γ1
ω2

)
(9)

and an analogous expression is derived for R∗1 = R2

(
1 + γ1

3γ2
ω1

)
. King [12], using the

high-precision lattice parameter data available in the literature, presented numerical values
ofω2 for 469 metallic solid solutions. The values of the experimental Wigner-Seitz radii, R1,
R2, measured at room temperature, the volumes size factors,ω1 andω2, and the apparent
radii, R∗1 and R∗2 , are listed in tables one, two and four of Ref. [11].

According to Lubarda [11] and Equation (6), the effective lattice parameter, a, of a
binary alloy is

a =

[
a3

1 + 4πR3
1x
κ1

ϑ1
γ C

]1/3
, (10)

where
γ = 1 +

4µ1

3K
, (11)
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where K is the effective bulk modulus and κ is the number of atoms per unit cell used to
define the atomic volume Ω = ϑa3

κ , where a1 denotes the lattice parameter of the solvent,
and κ is equal to 1 for the simple cubic (SC), 2 for the body-centered cubic (BCC), 4 for the
face-centered cubic (FCC), 6 for the hexagonal close-packed (HCP), and 8 for the diamond-
cubic lattice (DCL) structure. The parameter ϑ = 1 for cubic lattices, and ϑ = 3

√
3 c

2a for
the ideal hexagonal close-packed lattice. Lubarda [11] suggested performing calculations
of the effective lattice parameter of a binary alloy in two stages based on micromechanics.
First, assume that a1 is the lattice constant of the solvent and a2 is the lattice constant of the
solute. In this case, the effective lattice parameter becomes:

a =

[
a3

1 + 3x
γ

γ2
a2

1(ζa2 − a1)

]1/3
, (12)

where
γ

γ2
=

1 + 4µ1/3K
1 + 4µ1/3K2

(13)

and

ζ =
R∗2
R2

3

√
ϑ2κ1

ϑ1κ2
. (14)

The terminal solid solution at the other end of the phase diagram can be treated by
reversing the role of two materials (a2 is the lattice constant of the solvent and a1 is the
lattice constant of the solute). Thus, Equation (10) is replaced with

a =

[
a3

2 + 4πR3
2(1− x)

κ2

ϑ2
γ C

]1/3
, (15)

where
γ = 1 +

4µ2

3K
(16)

and

C =
(R∗1 − R2)

R2γ1
. (17)

In that case, Equation (15) becomes

a =

[
a3

2 + 3(1− x)
γ

γ1
a2

2(ζa1 − a2)

]1/3
, (18)

where
γ

γ1
=

1 + 4µ2/3K
1 + 4µ2/3K1

(19)

and

ζ =
R∗1
R1

3

√
ϑ1κ2

ϑ2κ1
(20)

To use Equations (12) and (18), one must calculate the effective shear (µ) and bulk (K)
moduli. Lubarda [11] used Hill’s self-consistent method, as presented by Nemat-Nasser
and Hori, [13], which gives the following system of equations for the effective shear and
bulk moduli:

1− x
1 + 4µ/3K1

+
x

1 + 4µ/3K2
− 5

(
1− x

1− µ
µ2

+
x

1− µ
µ1

)
+ 2 = 0, (21)

K(x) =
(

1− x
k1 + 4µ/3

+
x

k2 + 4µ/3

)−1
− 4

3
(22)
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and the atomic volume for the alloys can be calculated as

Ω = Ω1 + 4πR3
1xγC, (23)

where γ = 1 + 4µ1
3K is written by Equation (11).

However, if Equation (22) has a reasonable solution in both terminal cases, x = 0, K = K1
and x = 1, K = K2, Equation (21) has negative solutions in both terminal cases:

x = 0, µ=
−3(3K1 + 4µ1)±

√
9(3K1 + 4µ1)

2 − 192K1µ1

16
; x = 1, µ =

−3(3K2 + 4µ2)±
√

9(3K2 + 4µ2)
2 − 192K2µ2

16
.

In the present calculations we use the Voigt-Reuss-Hill approximation [14] to calculate
the effective shear modulus, µVRH(x):

µv(x) = (1− x)µ1 + xµ2

µR(x) =
[
(1−x)
µ1

+ x
µ 2

]−1

µ(x) = µVRH(x) =
1
2 (µV(x) + µR(x))

(24)

Equations (22) and (23) are solved self-consistently. For a special case of the small
atomic volume misfit, Lubarda [11] assumed:

Ω2 −Ω1 = 4πR3
1γ2C, (25)

which allows rewriting Equation (23):

Ω = Ω1 + 4πR3
1xγC = Ω1 + 4πR3

1 γ2Cx
(

γ

γ2

)
= Ω1 + (Ω2 −Ω1)

γ

γ2
x, (26)

Lubarda wrote this expression in a slightly different form:

Ω =

(
1− γ

γ2
x
)

Ω1 +
γ

γ2
xΩ2, (27)

emphasizing that in the case of γ =
(

1 + 4µ1
3K

)
= γ2=

(
1 + 4µ1

3K2

)
, which, according to

Equations (3) and (11), means if K = K2, Zen’s mixture rule of additive atomic volumes of
the solute and solvent will be fulfilled.

In this paper, several additional assumptions have been made to achieve a continuous
solution for the alloy atomic volume within the whole composition range. As pointed out
above, see Equations (10) and (15), Lubarda assumed that calculations should be performed
for two opposite terminal solid solutions located at the ends of the binary phase diagram. In
that case the calculated lattice constants typically have a discontinuity in the middle, at the
equiatomic composition. To avoid this problem, we redefine (symmetrize) the coefficient γ1,
Equation (3), as well as assuming that the effective coefficient, γ, defined by Equation (11),
should be recalculated at each alloy composition, x, and be expressed through the effective
bulk, K(x), and shear, µ(x), moduli calculated by Equations (22) and (24):

γ1 = 1 +
4µ2

3K1
, γ2 = 1 +

4µ1

3K2
, (28)

γ(x) = 1 +
4µ(x)
3K(x)

. (29)

In addition, we rewrote Equation (26) for the two terminal solid solutions:

Ω(1)(x) = Ω1 + (Ω2 −Ω1)
γ(x)
γ2

x, (30)
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Ω(2)(x) = Ω2 + (Ω1 −Ω2)
γ(x)
γ1

(1− x). (31)

Additionally, the atomic volume of the alloy is defined as a function of composition, x,

Ω(x) = Ω(1)(x)(1− x) + xΩ(2)(x) = Ω(1)(x) + x
(

Ω(2)(x)−Ω(1)(x)
)

. (32)

Lubarda [11] used the apparent Wigner-Seitz radius, Equation (9), in calculations of
the lattice parameters of the alloy. In our calculations we introduce two approximations for
the atomic volumes of the alloy components which, in turn, are used as input parameters
in Equation (32).

1. Continuum approximation. In cases where the field of the disordered solid solution
spans throughout the whole composition range, we assume that the atomic volume
of the solvent (Ω1(x)) changes linearly with composition from the real value, Ω1, x = 0,
to its apparent value, Ω∗1 , in the pure solute, x = 1.

Ω1(x) =Ω1(1− x)+Ω∗1x (33)

Similarly, the atomic volume of the solute, Ω2(x), changes linearly with composition,
from its apparent value in the pure solvent, Ω∗2 , x = 0, to the real value, Ω2, x = 1.

Ω2(x) = Ω2x + Ω∗2(1− x) (34)

2. Terminal approximation. In cases of limited mutual solubility of the alloy components,
it is reasonable to consider the atomic volume of the solvent to be constant and equal
to its real value, Ω1(2),

Ω1(2)(x) =Ω1(2), (35)

The atomic volume of the solute, Ω1(2), undergoes a linear change with composition, x,

Ω2(1)(x) = Ω2(1)x + Ω∗2(1)(1− x). (36)

The experimental (real) atomic volumes of selected elements at the room temperature,
together with the bulk and shear moduli, are listed in Table 1. The atomic volumes
correspond to the Wigner-Seitz radii reported in table one of Ref. [11], and the elastic
constants are the same as in table three of Ref. [11]. In addition to the binary alloys studied
in Ref. [11], we present data for Mg-Cd and Fe-Cr solid solutions. The volume size factors,
ω1 andω2, for the alloy systems under consideration are reproduced in Table 2. The values
of the real and apparent atomic volumes are listed in Table 3 (table four of Ref. [11]).

Table 1. The experimental atomic volumes and elastic constants for polycrystalline metals [11].

Element Ω (Å3) K (GPa) µ (GPa)

Mg 23.2396 35.6 17.3
Cd 22.0210 46.8 19.1
Al 16.6036 72.6 26.0
Si 20.0182 97.6 66.2
Ti 17.6542 108.2 45.6
V 13.8256 157.9 46.7
Cr 12.0064 160.0 115.1
Mn 12.2199 98.0 39.0
Fe 11.7771 169.6 81.4
Co 11.0732 82.3 88.8
Ni 10.9415 183.0 80.0
Cu 11.8072 136.4 46.8
Zn 15.2123 69.6 41.9
Ge 22.6345 75.0 54.9
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Table 1. Cont.

Element Ω (Å3) K (GPa) µ (GPa)

Zr 23.2790 94.0 30.0
Nb 17.8715 170.3 37.5
Mo 15.5834 261.3 125.5
Ag 17.0578 103.4 30.3
Sn 27.3255 58.2 18.4
Ta 18.0173 196.5 69.0
W 15.8566 311.0 160.6
Au 16.9618 170.7 27.5
Pb 30.3246 45.9 5.6

Table 2. The volume size factor data: ω1 is the volume size factor when the first element of the alloy
system is the solute, andω2 when the second element is the solute [11].

Alloy ω1 ω2

Al-Ag −0.0918 +0.0012
Al-Cu +0.2000 −0.3780
Al-Mg −0.3580 +0.4082
Al-Mn +0.1620 −0.4681
Al-Ti −0.2009 −0.1506
Al-Zn −0.0625 −0.0574
Cu-Ag −0.2775 +0.4352
Cu-Au −0.2781 +0.4759
Cu-Fe +0.1753 +0.0457
Cu-Ni +0.0718 −0.0845
Cu-Zn −0.5457 +0.1710
Fe-Co +0.0524 +0.0154
Fe-Cr −0.0207 +0.0436
Fe-V −0.1886 +0.1051

Ag-Au −0.0064 −0.0178
Ag-Mg −0.6342 +0.0713
Mg-Cd −0.0160 −0.2108
Si-Ge −0.2065 +0.0468
Nb-Ta −0.0023 −0.0026
Pb-Sn +0.2905 −0.0825
Ti-Zr −0.2233 +0.3008
Cr-W −0.2173 +0.3735

Table 3. The real (experimental) atomic volumes (Ω1 and Ω2) and apparent atomic volumes (Ω∗1 and
Ω∗2) for the selected binary alloys.

Alloy Ω1 (Å3) Ω2 (Å3) Ω∗1

(
Å

3
)

Ω∗2

(
Å

3
)

Al-Ag 16.6036 17.0578 15.3642 16.6193
Al-Cu 16.6036 11.8072 15.0820 11.8247
Al-Mg 16.6036 23.2396 17.2056 27.4045
Al-Mn 16.6036 12.2129 14.5684 10.4510
Al-Ti 16.6036 17.6542 13.8034 14.4677
Al-Zn 16.6036 15.2123 14.2961 15.6559
Cu-Ag 11.8072 17.0578 13.0147 18.4090
Cu-Au 11.8072 16.9618 12.4972 17.8913
Cu-Fe 11.8072 11.7771 14.1683 12.3236
Cu-Ni 11.8072 10.9415 11.8423 10.9082
Cu-Zn 11.8072 15.2123 9.5991 14.6320
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Table 3. Cont.

Alloy Ω1 (Å3) Ω2 (Å3) Ω∗1

(
Å

3
)

Ω∗2

(
Å

3
)

Fe-Co 11.7771 11.0732 11.4817 12.0343
Fe-Cr 11.7771 12.0064 11.7664 12.3105
Fe-V 11.7771 13.8256 11.4252 13.0978

Ag-Au 17.0578 16.9618 16.8408 16.7868
Ag-Mg 17.0578 23.2396 13.9318 18.9916
Mg-Cd 23.2396 22.0210 21.6319 19.4024
Si-Ge 20.0182 22.6345 18.7414 21.1106
Nb-Ta 17.8715 18.0173 17.9742 17.8253
Pb-Sn 30.3246 27.3255 36.8260 27.9621
Ti-Zr 17.6542 23.2790 18.6324 23.8674
Cr-W 12.0064 15.8566 11.5458 15.7591

We introduced continuum and terminal approximations because, according to [11], the
apparent Wigner-Seitz radius of the solvent atom was assumed to be constant, Equation (9).
This is a reasonable assumption for the limited solubility of the solute component in the
solvent matrix. However, in the case of continuous solid solutions, especially in the region
around the vicinity of the equiatomic composition, the definitions “solvent” and “solute” are
meaningless. Thus, we introduce the continuum approximation, Equations (33) and (34),
which ensures continuity of the atomic volume of the alloy within the whole compositional
range. In the case of the limited solubility of the alloy components, the terminal approx-
imation, it is reasonable to consider the compositional change of the atomic volume of
the solute only, Equation (36), assuming that the atomic volume of the solvent does not
undergo a significant change with the alloy composition, which validates Equation (35).

3. Results

In this section, we report calculations of the atomic volume as a function of concentra-
tion for 22 binary alloy systems chosen because of the availability of experimental data. All
calculations and data are at room temperature. Both continuum and terminal approximations
are applied.

3.1. Al-Ag

According to Refs. [11,15], the maximum solubility of silver in aluminum is about
20 at.% at the eutectic temperature (567 ◦C). The lattice parameter of aluminum-based
solid solution remains practically unchanged up to 10 at.% Ag. The maximum solubil-
ity of aluminum in silver is about 20 at.% and occurs over a wider range of tempera-
tures (450–610 ◦C) [11,15]. In the terminal approximation, the calculated atomic volume
of Al-based solid solution is in good agreement with experimental data [16] although
the continuum approximation significantly underestimates the atomic volume, Figure 1.
For Ag-based solution, both continuum and terminal approximations produce a significant
negative deviation from Zen’s law which is in an accord with experimental observation [16];
however, in this case, the atomic volume calculated in the continuum approximation almost
exactly matches the experimental results, but the terminal approximation slightly overesti-
mates the atomic volume, Figure 1. The significant negative deviation from Zen’s law for
Ag-based solid solution correlates with the negative heat of mixing observed in disordered
Al-Ag alloys [17].
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Figure 1. Atomic volume vs. concentration for Al-Ag alloy system. The experimental data are from
Ref. [16] (p. 261 and p. 351).

3.2. Al-Cu

There is a very limited solubility (~2.5 at.%, at 550 ◦C) of copper in aluminum [11,18].
The maximum solubility of aluminum in copper is about 20 at.% and occurs over a wide
range of temperatures (360–567 ◦C) [11,18]. The good agreement between the calculations
(continuum and terminal approximations) occurs at the ends of the concentration range,
Figure 2. However, contrary to results of calculation of the lattice parameter of the FCC
Al-Cu solid solutions reported by Lubarda [11], which show a jump in the lattice parameter
at the equiatomic composition, the continuum approximation eliminates this kind of jump
of the atomic volume. As in the case of Al-Ag solid solutions, the negative deviation from
Zen’s law for Cu-based solid solution correlates with the negative heat of mixing observed
in disordered Al-Cu alloys [17].

Figure 2. Atomic volume vs. concentration for Al-Cu alloy system. The experimental data are from
Ref. [16] (p. 328 and p. 331).

3.3. Al-Mg

According to Refs. [11,19], the maximum solubility of magnesium in aluminum is
about 18 at.% at 450 ◦C, and that of aluminum in magnesium is about 12 at.% at 437 ◦C.
According to Lubarda [11], the lattice spacing of Al-based alloys increases by introduction
of larger Mg atoms and the lattice spacing of Mg-based alloys decreases by introduction
of smaller Al atoms. Superposition of these results produces a positive deviation from
Vegard’s law for Al-based alloys and a negative deviation from Vegard’s law for Mg-
based alloys, which results in a significant jump of the lattice parameter at the equiatomic
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composition [11]. However, it is inappropriate to talk about the lattice parameter for the
system formed by the FCC metal, Al, with a single lattice parameter, a, the lattice constant,
and the HCP metal, Mg, with two parameters, the lattice constant, a and c/a ratio. In this
case, description of the atomic volume behavior as a function of composition (the deviation
from Zen’s law) is more appropriate because it excludes ambiguity imposed by the different
crystal structure of the alloy components. The results of calculations are shown in Figure 3.
In the terminal approximation, the calculated atomic volume of Al-based solid solution
shows the slight positive deviation from Zen’s law while the slightly negative deviation
from Zen’s law is found experimentally [16]. In the terminal approximation, the calculated
atomic volume of Mg-based solid solution is in excellent agreement with experimental data
(the negative deviation from Zen’s law). The continuum approximation shows the positive
deviation from Zen’s law for both Al- and Mg-based solid solutions.

Figure 3. Atomic volume vs. concentration for Al-Mg alloy system. The experimental data are from
Ref. [16] (p. 367 and p. 728).

3.4. Al-Mn

There is a very limited solubility (~3.5 at.%, at 658 ◦C) of manganese in aluminum [16,20].
The lattice parameters for the quenched β-Mn-based Al-Mn alloys have been reported
at 9.65 at.% and 18.4 at.% Al [16]. Good agreement between the calculated (the terminal
approximation) atomic volume and the experimental data occurs at both ends of the
concentration range, Figure 4. The continuum approximation shows the negative deviation
from Zen’s law for both Al- and Mg-based solid solutions; however, only for Al-based solid
solutions do both continuum and terminal approximations agree well the experimental data.
For Mn-based solid solutions, the continuum approximation underestimates the calculated
atomic volume. The negative deviation from Zen’s correlates with the negative heat of
mixing observed in disordered Al-Mn alloys [17].

Figure 4. Atomic volume vs. concentration for Al-Mn alloy system. The experimental data are from
Ref. [16] (pp. 373–374).
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3.5. Al-Ti

According to Refs. [16,21], the aluminum-based Al-Ti solid solution is very restricted.
The maximum solubility of titanium in aluminum is about 0.2 at.% and is not considered
in the present study. The maximum solubility of aluminum in titanium, quenched from
1200 ◦C, is about 42 at.% [16]. In the terminal approximation, the calculated atomic volume
of Ti-based solid solutions is in fair agreement with experimental data, Figure 5, although
above ~25 at.% of Al calculations overestimate the observed atomic volume. For Ti-based
solid solutions the continuum approximation significantly underestimates the calculated
atomic volume. The significant negative deviation from Zen’s law for Ti-based solid
solutions correlates with the negative heat of mixing measures for Al-Ti solid solutions at
room temperature [17].

Figure 5. Atomic volume vs. concentration for Al-Ti alloy system. The experimental data are from
Ref. [16] (p. 386).

3.6. Al-Zn

According to Refs. [16,22], there is a slight solid solubility of aluminum in zinc and the
extensive solubility of zinc in aluminum extending to ~65 at.% Zn at 381 ◦C. For Al-based
Al-Zn solid solutions the lattice spacing has been measured for alloys containing up to
35 at.% Zn [16]. For Zn-based Al-Zn solid solutions the lattice spacing has been measured
for alloys containing up to ~1.7 at.% of Al [16]. In the terminal approximation, the calculated
atomic volume of Al-Zn solid solutions is in good agreement with experimental data,
Figure 6. The positive deviation from Zen’s law is described (the terminal approximation)
for Al-based Al-Zn solid solutions in a perfect accord with experimental data. In contrast,
the continuum approximation shows the negative deviation from Zen’s law. For Zn-based
Al-Zn solid solutions, the present calculations show a negative deviation from Zen’s law
for both continuum and terminal approximations, which is in an accord with experimental
data available up to ~2 at.% of Al [16]. Al and Zn form a eutectic phase diagram with
the small but positive heat of formation for solid Al-Zn alloys [17]. This positive heat of
formation correlates with the positive deviation from Zen’s law for the extended range of
Al-based Al-Zn solid solutions.
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Figure 6. Atomic volume vs. concentration for Al-Zn alloy system. The experimental data are from
Ref. [16] (p. 389 and p. 886).

3.7. Ag-Cu

According to Refs. [16,23], Ag and Cu form the eutectic type of phase diagram with
restricted terminal solid solutions. The maximum solubility of silver in copper is about 5 at.%
and the maximum solubility of copper in silver is about 14 at.% at the eutectic temperature
of 779 ◦C. For Cu-based alloys, calculations of the atomic volume, performed within both
continuum and terminal approximation, give excellent agreement with experimental data
measured up to 3.7 at.% of Ag at 770 ◦C. [16], Figure 7. For Ag-based alloys, calculations of
the atomic volume, performed within the terminal approximation, give excellent agreement
with experimental data measured up to 12.1 at.% of Cu at 770 ◦C [16], Figure 7. The
continuum approximation slightly overestimates the atomic volume of Ag-based alloys.
The small positive deviation from Zen’s law correlated with a small but positive heat of
formation observed in Cu-Ag alloys [17].

Figure 7. Atomic volume vs. concentration for Ag-Cu alloy system. The experimental data are from
Ref. [16] (p. 279 and p. 602).

3.8. Cu-Au

According to Refs. [16,24], copper and gold form continuous solid solutions at high
temperatures. The calculated, within continuum approximation, atomic volume of Cu-Au
solid solutions is in good agreement with experimental data [16], Figure 8, reproducing a
positive deviation from Zen’s law. The terminal approximation also reveals the positive
deviation from Zen’s law but slightly underestimates the atomic volume. The heat of for-
mation measured at high temperatures, ~500–700 ◦C, of continuous solid Cu-Au solutions
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is negative [17] and the positive deviations from Zen’s law is stipulated exclusively by the
size effect.

Figure 8. Atomic volume vs. concentration for Au-Cu alloy system. The experimental data are from
Ref. [16] (p. 411 and p. 601).

3.9. Cu-Fe

According to Ref. [25], the solubility limit of copper in α-iron is small, ~1.9 at.%. at
eutectoid temperature 840 ◦C; the solubility of α-iron in copper at the same temperature
is also small, 1.3 at.%. At peritectic temperature, 1090 ◦C, about 7.5% of copper can
be dissolved in γ-iron and about 4.6 at.% of γ-iron can be dissolved in copper. The
experimental data of the lattice constant for Cu-based alloys is reported up to 2.7 at.% of
Fe, and for Fe-based alloys the lattice constant is reported only up to 0.66 at.% of Cu [16].
In the terminal approximation, the atomic volume reproduces experimental measurements
and shows a positive deviation from Zen’s law, Figure 9. However, for Cu-based alloys,
the continuum approximation overestimates the atomic volume. The very small solubility
limits in Cu-Fe solid solutions correlate with a significant positive heat of formation in this
system [17].

Figure 9. Atomic volume vs. concentration for Cu-Fe alloy system. The experimental data are from
Ref. [16] (p. 571 and p. 632).

3.10. Cu-Ni

According to Refs. [16,26], copper and nickel form continuous solid solutions. In the
terminal approximation, the calculated atomic volume of Cu-Ni solid solutions is in good
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agreement with experimental data [16], Figure 10, reproducing a slight negative deviation
from Zen’s law. The heat of formation of the Cu-Ni solid solution is moderate positive
within the composition range, [17], signaling that the entropy factor plays a decisive role in
formation of a continuous solid solutions above 365 ◦C [17].

Figure 10. Atomic volume vs. concentration for Cu-Ni alloy system. The experimental data are from
Ref. [16] (p. 592 and p. 601).

3.11. Cu-Zn

According to Refs. [16,27], the Cu-Zn system contains six intermediate phases over a
composition range. Two of them, α and η, represent solid solutions based on Cu-rich and
Zn-rich parts of the Cu-Zn phase diagram, respectively. The maximum solubility of Zn- in
Cu-based solid solutions is about 37 at.% [16]. The maximum solubility of Cu in Zn-based
solid solutions is about 3 at.% [16]. The atomic volume, calculated within the terminal
approximation, for both Cu-based and Zn-based solid solutions reproduces experimental
measurements and shows a significant negative deviation from Zen’s law, Figure 11, which
is in accord with a significant negative heat of formation of disordered Cu-Zn alloys [17].
For Cu-based solid solutions, the continuum approximation significantly underestimates
the calculated atomic volume.

1 
 

 Figure 11. Atomic volume vs. concentration for Cu-Zn alloy system. The experimental data are from
Ref. [16] (p. 620 and p. 622).



Appl. Sci. 2021, 11, 6231 15 of 25

3.12. Co-Fe

According to Refs. [16,28], cobalt and iron form continuous solid solutions at high
temperatures. In the terminal approximation, the calculated atomic volume of Co-Fe
solid solutions is in good agreement with experimental data measured at 575 ◦C for FCC
and BCC solid solutions [16], Figure 12, reproducing a positive deviation from Zen’s
law. The continuum approximation also reveals the positive deviation from Zen’s law but
underestimates the atomic volume. The heat of formation of liquid Co-Fe alloys at 1590 ◦C
is a small negative value [17] reflecting a continuous solid solution at high temperature.

Figure 12. Atomic volume vs. concentration for Fe-Co alloy system. The experimental data are from
Ref. [16] (p. 505 and p. 634).

3.13. Fe-Cr

According to Refs. [16,29], iron and chromium form continuous solid solutions at
elevated temperatures. In the terminal approximation, the calculated atomic volume of
Fe-Cr solid solutions shows a strong positive deviation from Zen’s law that is in accord
with experimental data up to ~12 at.% of Cr [16], Figure 13. However, between ~12 and
17 at.% of Cr the experimental atomic volume remains almost unchanged, then slightly
increases between 17 and 25 at.% of Cr, then drops to its value at ~19 at.% of Cr, and then
gradually increases within the remaining compositional range, [16]. Figure 13 also shows
calculated, within the terminal approximation, the volume of Cr-based solid solutions in
the compositional range, 30 at.% −100 at.% of Cr, which is in excellent agreement with
experimental data [16] (and Zen’s law). The heat of formation of Fe-Cr solid solutions,
measured at 1327 ◦C [17], is positive, indicating that the entropy factor is responsible for
formation of a continuous solid solutions at elevated temperatures.

Figure 13. Atomic volume vs. concentration for Fe-Cr alloy system. The experimental data are from
Ref. [16] (p. 533 and p. 544).
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3.14. Fe-V

According to Refs. [16,30], iron and vanadium form continuous solid solutions at
elevated temperatures. In the continuum approximation, the calculated atomic volume
of Fe-V solid solutions is in good agreement with experimental data measured above
1252 ◦C [16], Figure 14, reproducing a negative deviation from Zen’s law, although above
~20 at.% of Fe calculations slightly overestimate the observed atomic volume. In the terminal
approximation, calculated atomic volume of Fe-V solid solutions also shows a negative
deviation from Zen’s law, but this approximation overestimates the experimental data for
V-rich solid solutions. According to [17], the heat of formation of Fe-V solid solutions,
measured at 1327 ◦C, is positive up to ~52 at.% of V and slightly negative in the remaining
part of the composition range.

Figure 14. Atomic volume vs. concentration for Fe-V alloy system. The experimental data are from
Ref. [16] (p. 634 and p. 663).

3.15. Ag-Au

According to Refs. [16,31], silver and gold form continuous solid solutions. In the
continuum and terminal approximation, the calculated atomic volume shows a significant
negative deviation from Zen’s law which is in an accord with the experimental data [16],
Figure 15, although the continuum approximation significantly underestimates the atomic
volume, and the terminal approximation overestimates it. The heat of formation of the solid
solutions, measured at 527 ◦C [17] is significantly negative.

Figure 15. Atomic volume vs. concentration for Ag-Au alloy system. The experimental data are from
Ref. [16] (p. 267 and p. 289).
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3.16. Ag-Mg

According to Refs. [16,32], the magnesium dissolved in silver is beyond 25 at.% (the
maximum solubility of Mg in Ag is ~29 at.% at eutectic temperature of 759 ◦C). The
maximum solubility of Ag in Mg is significantly lower, ~4 at.% at eutectic temperature
472 ◦C, Figure 16. In the terminal approximation, the calculated atomic volumes for both
Ag-based and Mg-based solid solutions show the negative deviation from Zen’s law with
excellent accord with experimental data [16], Figure 16. For Ag-based solid solutions the
continuum approximation significantly underestimates the calculated atomic volume. The
significant negative heat of formation of Ag-based alloys is reported in [17].

Figure 16. Atomic volume vs. concentration for Ag-Mg alloy system. The experimental data are
from Ref. [16] (p. 292 and p. 729).

3.17. Cd-Mg

According to Refs. [16,33], cadmium and magnesium form continuous solid solutions
at high temperatures. In the continuum approximation, the calculated atomic volume of Cd-
Mg solution show a significant negative deviation from Zen’s law following the tendency
that was observed experimentally [16] at 310 ◦C, Figure 17, although this approximation
significantly underestimates the atomic volume. The terminal approximations also show
the negative deviation from the Zen’s law with a better agreement with experimental
data, although it slightly overestimates the atomic volume. According to [17], the heat of
formation of solid Cd-Mg solutions, measured at 270 ◦C, is also negative.

Figure 17. Atomic volume vs. concentration for Cd-Mg alloy system. The experimental data are
from Ref. [16] (p. 49 and p. 485).
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3.18. Ge-Si

According to Refs. [16,34], germanium and silicon form a continuous solid solution.
The measured atomic volume, [16], shows a very small negative deviation from Zen’s law
which cannot be reproduced either by the terminal or by the continuum approximation,
Figure 18. Only if one uses the real volumes instead of apparent volumes, can the experi-
mental results be reproduced, Figure 18. Neither pure Ge and Si are the metals, unlike the
components of other systems studied here. This is probably a partial explanation of the
failure of the apparent volume theory for Ge-Si alloys.

Figure 18. Atomic volume vs. concentration for Ge-Si alloy system. The experimental data are from
Ref. [16] (p. 679).

3.19. Nb-Ta

According to Refs. [16,35], niobium and tantalum form a continuous solid solution.
However, the experimental data for the atomic volume are available only for 34.3 at.%
and 62.25 at.% of Nb [16], Figure 19. In the continuum and terminal approximations, the
calculated atomic volume of Nb-Ta solutions is shown on Figure 19, although the continuum
(terminal) approximation shows a negative (positive) deviation from Zen’s law. If we use
the real volumes instead of the apparent volumes, a weak positive deviation from Zen’s law
is observed.

Figure 19. Atomic volume vs. concentration for Nb-Ta alloy system. The experimental data are from
Ref. [16] (p. 757 and p. 773).

3.20. Pb-Sn

According to Refs. [16,36], lead and tin form a eutectic phase diagram. The maxi-
mum solubility of Sn in Pb is ~29 at.% at eutectic temperature 183 ◦C, and the maximum
solubility of Pb in Sn is 1.5 at.% at the same temperature. In the terminal and continuum
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approximations, the calculated atomic volume for both Pb-based and Sn-based solid solu-
tions together with experimental data [16] is shown in Figure 20. For Pb-based alloys the
calculated volume follows Zen’s law in an accord with experimental data. Slight positive
deviation from Zen’s law is observed for Sn-based alloys. The heat of formation of solid
Pb-based alloys is positive which is in accord with the eutectic type of the Pb-Sn phase
diagram [16,17].

Figure 20. Atomic volume vs. concentration for Pb-Sn alloy system. The experimental data are from
Ref. [16] (p. 818 and p. 862).

3.21. Ti-Zr

According to Refs. [16,37], titan and zirconium form a continuous solid solution. In the
continuum (terminal) approximation, the calculated atomic volume of Ti-Zr solutions show
a slight positive (negative) deviation from Zen’s law. In the terminal approximation, the
results of the calculations better agree with the experimental data [16] shown in Figure 21.

Figure 21. Atomic volume vs. concentration for Ti-Zr alloy system. The experimental data are from
Ref. [16] (p. 873 and p. 876).

3.22. Cr-W

According to Refs. [16,38], chromium and tungsten form a continuous solid solution at
high temperatures (above 1677 ◦C). In the continuum approximation, the calculated atomic
volume of Cr-W solutions shows a positive deviation from Zen’s law, which is in excellent
accord with the experimental data [16], Figure 22. The terminal approximation slightly
overestimates the atomic volume.
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Figure 22. Atomic volume vs. concentration for Cr-W alloy system. The experimental data are from
Ref. [16] (p. 545 and p. 567).

4. Discussion

Lubarda [11] studied the validity of Vegard’s law in five systems: Al-Cu, Al-Ag, Al-
Mg, Cu-Au, and Au-Ag. Four of these alloys are isostructural (FCC), and in Al-Mg alloy, Al
and Mg have FCC and HCP crystal structures, respectively, which causes discontinuity of
the lattice constant calculated for Al- and Mg-based terminal solutions, where the sign of the
deviation from Vegard’s law changes from positive (Al-based) to negative (Mg-based) solid
solutions at the equiatomic composition. Even for Al-Cu and Al-Ag isostructural solid
solutions, the discontinuity of the lattice constant, calculated for two terminal solutions, is
observed at the equiatomic composition [11]. We show that the study of the deviation from
Zen’s law, instead of Vegard’s law, removes the problem related to the discontinuity of the
calculated value (the atomic volume) at the equiatomic composition.

We place twenty-two studied binary alloys in seven different groups: 1. Alloys that
contain aluminum (Al-Ag, Al-Cu, Al-Mg, Al-Mn, Al-Ti, and Al-Zn); 2. Alloys that contain
copper (Cu-Ag, Cu-Au, Cu-Fe, Cu-Ni, and Cu-Zn); 3. Alloys that contain iron (Co-Fe,
Fe-Cr, Fe-V); 4. Alloys that contain silver (Ag-Au, Ag-Mg); 5. Alloys with both transition
metal components (Nb-Ta, Ti-Zr, and Cr-W); 6. Alloys whose elements belong to the same
group of the Periodic Table (Ge-Si, Pb-Sn); and 7. Cd-Mg alloys.

4.1. Al-Ag, Al-Cu, Al-Mg, Al-Mn, Al-Ti, and Al-Zn

These alloys do not form continuous solid solutions. The maximum solubility of alu-
minum (about 42 at.%) is observed in the Al-Ti system, although the solubility of titanium
in aluminum is very low (0.2 at.%). Al-Ti system possesses both the maximum and mini-
mum mutual solubilities of the alloy components for this group. As we mentioned above,
Al-Cu, Al-Ag, and Al-Mg alloys were discussed in Ref. [11]. The terminal approximation
works perfectly for all six systems, reflecting the correct deviation (the sign) from Zen’s
law, except for Al-based solid solutions in the Al-Mg system, where calculations revealed a
slight positive deviation from Zen’s law, contrary to the experimentally observed slight
negative deviation. The continuum approximation significantly fails for Al-based alloys
in Al-Ag and Al-Zn systems as well as for Mn-based alloys in Al-Mn system and for
Ti-based alloys in Al-Ti system. The success of the terminal approximation and failure of the
continuum approximation indicates the validity of the usage of Equations (35) and (36) for
the alloys with limited mutual solubility components over Equations (33) and (34), which
were designed for continuous, across the whole compositional range, solid solutions.

4.2. Cu-Ag, Cu-Au, Cu-Fe, Cu-Ni, and Cu-Zn

The isostructural Cu-Au and Cu-Ni alloys form continuous solid solutions; however,
Cu-Au alloys show a slight positive deviation from Zen’s law and Cu-Ni alloys show a
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slight negative deviation from Zen’s law. The continuum approximation works perfectly
for both these alloys. The continuum and terminal approximations produce almost identical
values of the atomic volume for Cu-Ni alloys because the real and effective volumes are
almost identical for Cu (Ω = 11.8072 Å3, Ω* = 11.8510 Å3) and for Ni (Ω = 10.9415 Å3,
Ω* = 10.9128 Å3). Cu-Ag and Cu-Fe alloys show the limited mutual solubility of the
components. The terminal approximation works perfectly for both alloys, although the
positive deviation from Zen’s law is more pronounced in Cu-Fe alloys due to the very
small mutual solubility of the components that have different crystallographic structures,
Cu (FCC) and Fe (BCC). Cu (FCC) and Zn (HCP) also have different crystallographic
structures; however, there is a significant, about 40 at.%, solubility of Zn in Cu. It is really
surprising that the terminal approximation works successfully within the above-mentioned
concentration range, despite that it is supposed to work well for the limited solubility of
the solute in the solvent matrix as occurs for Zn-based solid solutions (only approximately
3 at.% of Cu dissolved in Zn). The continuum approximation significantly overestimates the
atomic volume of Cu-rich Cu-Fe alloys and underestimates the atomic volume of Cu-based
Cu-Zn alloys. We consider that the failure of the continuum approximation for these two
alloys is due to the different crystallographic structures of the alloys’ components, (Cu, Fe)
and (Cu, Zn), respectively.

4.3. Co-Fe, Fe-V, and Fe-Cr

As we already mentioned, iron and vanadium form continuous solid solutions at
elevated temperature. Both components, Fe and V, are isostructural (BCC). At ambient
temperatures, there is no mutual solubility in the composition region that spans from
~40 at.% to ~70 at.% of Fe. Fe-based alloys, with an amount of Fe ≥ 70 at.%, are described
pretty well within both continuum and terminal approximations. For the same reason (Fe
and V are isostructural), one should expect good agreement between the calculated atomic
volume, within the continuum approximation, and the experimental data for V-based alloys.
However, while both continuum and terminal approximations produce a “smooth” behavior
of the calculated atomic volume of the V-based alloys up to almost 40 at.% of Fe, the
experiment shows a significant decrease of the atomic volume in the compositional region
between 25 and 40 at.% of Fe, which we relate to the presence of the complex Ve0.5Fe0.5
phase [30] (the Cr0.49Fe0.51 prototype) with a wide region of homogeneity. Two other alloys,
Fe-Co and Fe-Cr are formed by magnetic components. Although at room temperature
Fe and Co have different structures, BCC and HCP, respectively, iron transforms to the
FCC structure at elevated temperatures, which causes the mutual solubility of the com-
ponents of Fe-Co alloys within the whole composition range. The continuum and terminal
approximations describe a positive deviation from Zen’s law that is in good accord with
experimental data, although the terminal approximation shows a better agreement with
experiment in the BCC regions that spans between 20 at.% and 100 at.% of Fe. Fe and
Cr are both isostructural at room temperature; however, due to existence of the complex
narrow σ-phase in the vicinity of the equiatomic composition, the continuous Fe-Cr solid
solutions are formed only above 830 ◦C. Both continuum and terminal approximations work
well in the Fe-rich side of the Fe-Cr phase diagram, up to 12 at.% of chromium, describing
the strong positive deviation from Zen’s law; however, due to the unusual behavior of the
atomic volume of this system in the composition region between 12 at.% and 25 at.% of Cr,
see Refs. [29,39] for details, both approximations fail in that region. On the remaining part
of the Fe-Cr phase diagram, above 25 at.% of Cr, the terminal approximation gives excellent
agreement with the experimental data (and Zen’s law). This is only the case where the
terminal approximation works better than the continuum approximation for alloys with the
mutual solubility of the components.

4.4. Ag-Au and Ag-Mg

Both Ag and Au are isostructural (FCC) metals and belong to the same subgroup
of the Periodic Table. They form continuous Ag-Au solid solutions that are described
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within the continuum and terminal approximations (the negative deviation from Zen’s Law).
Ag and Mg have different structural modifications, FCC, and HCP, respectively. Thus, a
limited mutual solubility is observed in Al-Mg alloys. The terminal approximation works
well for both end points of the Al-Mg phase diagram. We consider that the significantly un-
derestimated atomic volume for Ag-based solid solutions, calculated within the continuum
approximation, is due to the different structure modifications of Ag and Mg.

4.5. Nb-Ta, Ti-Zr, and Cr-W

Both Ti and Zr are isostructural (HCP) metals and belong the IVB subgroup of the
Periodic Table. Cr and W are also isostructural (BCC) and belong to the VIB subgroup
of the Periodic Table. The composition dependence of the atomic volume is described
by the continuum and terminal approximations in good accord with experimental data,
although the almost perfect Zen’s law behavior is observed in Ti-Zr alloys, and a slight
positive deviation from Zen’s law is observed in Cr-W alloys. The situation with Nb-Ta
alloys is more complex. Both Nb and Ta metals are isostructural (BCC) and belong to the
same VB subgroup of the Periodic Table. According to the phase diagram [35], Nb and Ta
form continuous solid solutions. However, according to Ref. [16], the experimental data
for atomic volume are available for two compositions of Nb-Ta system only: the negative
deviation from Zen’s law is observed at ~34 at.% of Nb and the positive deviation from
Zen’s law is observed at ~62 at.% of Nb. The continuum (terminal) approximation shows a
negative (positive) deviation from Zen’s law.

4.6. Ge-Si and Pb-Sn

Both Pb and Sn belong to the same 4A group of the Periodic Table and form the
eutectic phase diagram. At room temperature the mutual solubilities of the components
are negligibly small, and the composition dependence of the atomic volume is described
well within the terminal approximation. Ge and Si also belong the same 4A group of the
Periodic Table; however, contrary to Pb-Sn system, Ge-Si alloys form continuous solid
solutions. As we already mentioned, both the continuum and terminal approximations
could not reproduce the very small negative deviation from Zen’s law, so we speculate that
this failure is due to the non-metallic nature of both Si and Ge.

4.7. Cd-Mg

In 1940, Hume-Rothery and Raynor [40] found that the experimental atomic volume
of Mg-Cd solid solutions was smaller than the one calculated using the additivity rule (the
negative deviation from Zen’s law formulated in 1956, Ref. [3]). Since then, the behavior of
Mg-Cd disordered solid solutions has been the subject of numerous investigations [41–44].
These works used the pseudopotential method in conjunction with thermodynamic per-
turbation theory (the Gibbs-Bogoliubov inequality) to calculate the phase diagram and
equation of state of the disordered solid and liquid MgxCd1-x alloys. The calculated com-
position dependence of the equilibrium volume of the solid MgxCd1-x alloys [44] shows
a negative deviation from Zen’s law, but not to such an extent as was reported in the
experiment in Ref. [40]. The calculations [41–44] were performed within the local pseu-
dopotential approximations, which excluded the charge transfer between alloy components
due to the difference of their electronegativity, see Ref. [45] for details. Incorporation of the
apparent size of solute atom, suggested in Ref. [11], together with modifications suggested
in the present study, Equations (28)–(36), makes it possible, for the first time, to describe
quantitively the negative deviation from Zen’s law in Mg-Cd solid solutions.

5. Conclusions

We derived an analytical expression for the atomic volume of the binary alloys at
arbitrary composition for use in the equation of state modeling. We wanted this expression
to be robust and predictive even in the absence of experimental data at a particular concen-
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tration. This paper tests our proposed expression by comparison with experimental data
for the binary alloys.

Our method is based on the work of Lubarda [11], who introduced an apparent size of
the solute atom in order to account for the electronic interactions between the outermost
quantum shells of the solute and solvent atoms. This idea reflects, to some extent, the
electron density rearrangement due to the charge transfer in order to cancel the chemical
potential difference due to alloying. The method [11] was designed to calculate the lattice
parameter of a binary alloy as the function of the alloy composition (the deviation from
Vegard’s law) and had deficiencies in several cases, e.g., when the alloy components were
not isostructural or when the deviations from Vegard’s law had different signs for the end
points of the binary phase diagram.

To remove these problems, we applied Lubarda’s approach to the atomic volume
instead the lattice parameter, or in other words, studied the deviation from Zen’s law,
instead of Vegard’s law. In addition, we redefined (symmetrized) some parameters of
Lubarda’s model and assumed that they should be recalculated at each alloy composition.
Moreover, we introduced two approximations, continuum and terminal, where each is suited
to get more accurate results for the atomic volume in the case of continuous solid solutions
and the in the case of solutions with limited solubility of the solute component in the
solvent matrix, respectively. Jacob et al. [46] concluded that both Vegard’s and Zen’s laws
should be downgraded to an approximation that is valid in specific conditions. We agree
with this by describing numerous cases of the deviation from Zen’s law, along with a
satisfactory way to describe (or predict) these deviations, which is the primary motivation
for this study.
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