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Abstract: This article evaluates a recently introduced algorithm that adjusts each dimension in
particle swarm optimization semi-independently and compares it with the traditional particle swarm
optimization. In addition, the comparison is extended to differential evolution and genetic algorithm.
This presented comparative study provides a clear exposition of the effects introduced by the
proposed algorithm. Performance of all evaluated optimizers is evaluated based on how well they
perform in finding the global minima of 24 multi-dimensional benchmark functions, each having 7,
14, or 21 dimensions. Each algorithm is put through a session of self-tuning with 100 iterations to
ensure convergence of their respective optimization parameters. The results confirm that the new
variant is a significant improvement over the traditional algorithm. It also obtained notably better
results than differential evolution when applied to problems with high-dimensional spaces relative
to the number of available particles.

Keywords: optimization; particle swarm optimization; genetic algorithm; differential evolution

1. Introduction

Particle swarm optimization (PSO) algorithms are reputed for optimizing complex
multidimensional problems with a balanced trade-off between reliability of convergence
and computational efficiency. PSO relies on momentum, local/personal best attraction,
and global best attraction to find a global optima. Although PSO tends to be slightly slower
than differential evolution (DE), it can produce similar or even slightly better convergence
rates depending on the problem at hand [1,2]. PSO also tends to be faster and more efficient
than genetic algorithms (GAs), which rely heavily on random mutation and cross-over.

The work reported in this article builds on prior work where PSO was modified to
optimize each dimension semi-independently [3]. This variant, called dimension-wise
particle swarm optimization (DPSO), aims to increase the convergence reliability at the cost
of some additional time complexity. The focus of the original article [3] was on how varying
the ratio of particles to dimensions and per-dimension sensitivity—henceforth referred
to as ill-conditioning—affected the algorithm’s ability to find the global optimum. These
evaluations were carried out with scarce populations, i.e., with more dimensions than
particles, which increased the difficulty and importance of exploration. The same article
also introduced self-tuning as a method of PSO parameter selection. These configurations
are carried over to this work with some changes in the rules, an inclusion of DE and GA in
the evaluation, and an increase in the number of functions to be optimized.

An in-sample evaluation with some degree of similarity to each out-of-sample function
is used for each optimizer’s parameter optimization process. The most suitable optimizer
parameters are determined using self-tuning. This way, the algorithm of interest can explore
and change its parameters during the in-sample test should it find a statistically better
set w.r.t. fitness. For the out-of-sample tests, each algorithm must rely on the generally
optimized parameters derived from the self-tuning process. The results are evaluated based
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on the statistical mean and standard deviation of each algorithm’s global optimum results
for the 24 problem functions used. These benchmark functions are composed of 7-, 14-,
and 21-dimensional spaces with randomly generated offsets, ill-conditioning, rotation, and
overlaps. To ensure the results are reliable, each problem function is randomly generated
and evaluated 30 times.

Related Work

PSO has a wide range of modifications, which address specific aspects of the algorithm
or the problem of interest. PSO can be improved by integrating other algorithms into its
process—such as neural networks and support vector machines—or by modifying the
fundamental rules for particle movement [4–8]. For relatively high dimensional problems,
it is usually preferred to selectively optimize a subset of dimensions at a time [9]. By occa-
sionally changing the subset, progressive convergence towards the overall global optimum
can be improved.

DPSO differs from other variants such as dual gbest PSO (DGPSO) in that it does not
rely on preprocessing steps to identify, order, and select the dimensions with the greatest
sensitivity [9]. A simpler method of feature selection borrows from the GA, where crossover
is used to combine the particle’s current location, a predetermined relevant feature vector,
the global best position, and its local best position. However, this approach uses a look-
ahead approach, evaluating the three candidate locations before choosing the best one as
the new individual, effectively tripling the population size during evaluation [10]. PSO
with an enhanced learning strategy and crossover operator uses a weighted sum of local
bests over all particles based on a normalized fitness distribution to achieve variations
in attractor locations [11]. DGPSO’s approach can be described as a divide-and-conquer
approach, while PSO with crossover hybridizes features from GA into PSO. These methods
improve PSO’s ability to find the optimum; however, many come at the expense of notably
larger preprocessing requirements or by superficially increasing the population size. The
aim of DPSO is to improve the fitness with relatively small increases in computational
demand by limiting the scale of the modifications. DPSO’s approach is less complicated,
randomly selecting dimensions to apply global and local best attractions based on a fixed
probability value. The selection of dimensions is not of a fixed number, nor is it based on
pre-processed information about the local search space, thus maintaining a relatively low
computational cost. The binary nature of DPSO’s attractors is closer to casting a net-like
structure of potential attraction points on the search space solely based on the particles’
current location and the location of the local and global best points; i.e., it does not require
pre-processing or a look-ahead feature.

The velocity limitations imposed on DPSO are similar to the boundary restrictions
of the population migration PSO’s (PMPSO). However, DPSO’s limits do not change in
scale over time and only restrict each particle’s maximum viable search space for the next
iteration relative to its current location [12]. Velocity restriction-based improvised PSO
(VRIPSO) uses a dynamic method of limiting velocity and relies on an escape velocity
mechanism to explore beyond its velocity limit [13]. Alternatively, DPSO warps individuals
who appear to be stagnating, while VRIPSO occasionally allows particles to escape the
imposed velocity limit. Warping has been applied to all algorithms in this article as a
general rule to ensure that it does not become a primary difference in results. Although
VRIPSO’s approach may allow for faster convergence in some circumstances, DPSO’s
warping condition recycles particles to increase the exploration of dimensions that may not
have been sufficiently covered.

Tabu search PSO has an interesting feature, where the fitness results of particles and
the respective locations are saved for a specified number of iterations [8]. This type of
logging has been applied for all algorithms covered in this article but without removing
older records. By recording the fitness of a location for later, it is possible to skip the
function evaluation step and, over time, to significantly reduce the time spent on iterations
with repeated positions. An element of reserving the position was also included in all
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algorithms to ensure that multiple particles on the same position would only require one
shared evaluation.

Another feature found in VRIPSO is that it adjusts momentum over time [13]. Contin-
uous PSO has a more in-depth version of this momentum feature in that it determines a
gradient by which to adjust the momentum factors, encouraging movement in directions
with greater improvements and not just in the current direction [14]. Though these dynamic
methods are appealing, DPSO was limited to using random noise injection, which can
either dampen or excite the particle’s movement irrespective of the perceived gradient or
its direction of travel. These random perturbations allow for greater degrees of exploration
along the dimensions lacking in representation or for which movement has stagnated.
Given that this research is interested in solving high-dimensional problems with relatively
sparse population sizes, it is important to ensure that particles do not restrict themselves to
a subset of searchable dimensions while neglecting the rest.

2. Algorithms

For all algorithms, the local best position is the individual’s recorded best optimal
value such that, in the case of minimizing the reward rt,

{~plocal, rlocal} =


{~pt, rt} if rt < rlocal or

(rt == rlocal and
rand(0, 1) < 1/N),

{~plocal, rlocal} otherwise,

(1)

where N is the number of individuals used in the algorithm. The conditional replacement
of the position when rt == rlocal serves to allow for a possibility of equivalent locations to
replace the current attraction point. This comparison can also be made for the global best
by evaluating across each individual i of the current iteration such that

{~pglobal, rglobal} =


{~plocal|i, rlocal|i} if rlocal|i < rglobal or

(rlocal|i == rglobal and
rand(0, 1) < 1/N),

{~pglobal, rglobal} otherwise.

(2)

The reward r is an evaluation of fitness w.r.t. the parameters p when they are applied to
the problem of interest. As the chosen problems are evaluated over 30 runs, r is the average
plus standard deviation, to not only prefer parameters that perform well on average, but
also give some preference to parameters that give consistent results. By recording with
six decimal points of resolution and a range (−1,+1) for problem functions and (0, 1)
for self-tuning algorithms, the search spaces become partially discretized and ensure the
recorded values are precise in their outcomes. This setup assures that dependencies in
the reward do not arise from rounding off the seventh decimal place, and allows for some
extrapolation into more granular ranges such as integers. As the algorithms are iterating
over a relatively long series of optimization steps, a log of fitness values is included to save
processing time at the expense of memory. In the situation where the algorithm fails to
process the current position, the fitness value is set to +∞. Should a given particle stagnate,
i.e., when |∆~pt| = 0, the individual is warped to a new random position, maintaining a
degree of random exploration.

2.1. Traditional PSO

In the traditional PSO algorithm, each individual has a velocity and position update
method [15]

~vt+1 = c0 ·~vt + c1 · rand(0, 1) · (~pglobal − ~pt) + c2 · rand(0, 1) · (~plocal − ~pt), (3)
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and

~pt+1 = ~pt +~vt+1, (4)

respectively, where c0 is the momentum constant, and c1 and c2 are the global and local
attraction strengths. rand(0, 1) is a randomly generated value from a uniform distribution
within the range [0, 1). rand(0, 1) varies the degree of attraction to the respective best value
every iteration up to c1 and c2, respectively. The parameter labels have been changed
for ease of equating to data arrays in code. This is applied to all later algorithms as well,
however, these parameters are entirely independent.

Velocity and position vectors are subject to the dimension-wise limitation

vt+1 =

{
vt+1 if pmax > pt+1 > pmin,
−vt+1 otherwise,

(5)

and

pt+1 =


pt+1 if pmax > pt+1 > pmin,
pmin if pt+1 ≤ pmin,
pmax if pmax ≤ pt+1.

(6)

Allowing particles to bounce off the upper and lower limits maintains a degree of
activity, preventing early termination of exploration due to boundary collisions. Addition-
ally, given that the position is stopped at the respective limit, a measure of performance at
the said limit will still be obtained. The general process flow for PSO is shown in Figure 1a.
The velocity calculation time complexity is O(5D× N), position updates are O(D× N),
and each dimension limit check is O(D × N), resulting in a total time complexity per
iteration of O(8D× N).

2.2. Dimension-Wise PSO

The Dimension-wise PSO (DPSO) algorithm has been designed with the intention
of handling relatively large dimensional spaces with a sparse population size. This is
accomplished by determining the global and local attraction points separately for each
dimension. DPSO’s velocity is defined as

~vt+1 = c0 ·~vt + c1 ·
−−→
rand(−1, 1) · |~vt|+ c2 ·~b3 · (~pglobal − ~pt) + c4 ·~b5 · (~plocal − ~pt), (7)

and is also subject to dimension-wise limitations

vt+1 =


vlim if vlim < vt+1,
−vlim if − vlim > vt+1,
vt+1 otherwise,

(8)

followed by Equation (5). As with PSO, the individual’s position update relies on
Equation (4) subject to Equation (6).

Percent noise injection—regulated by c1—is used as a precaution to improve variations
in movement and increase the likelihood of escaping from local minima without causing
a large change in course. Noise injection replaces the random values affecting attractor
strengths and allows it to have an effect independent of a particle’s distance from the
optima. Visually, it can be likened to roughening a surface dependent on the speed of a ball
rolling down its surface, causing the said ball to deviate from a trivial path. The trajectory
and speed are often disrupted, but the general direction of travel is not necessarily changed
as it has three other elements that are largely responsible for determining velocity, i.e.,
momentum, global best attraction, and local best preference.
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Figure 1. Flow diagrams depicting the process of each algorithm.

The velocity limit, vlim, partially opposes the effect of percent noise injection, as it
attempts to restrict the overshooting caused by an excessive build up of momentum and
attractive strength along a given dimension. Situations where a particle builds up too
much momentum and is slingshot further away from the known optimal locations can help
with increasing diversity in exploration, but scattering particles away from the optimal
attractors can also impair the rate of convergence [16]. To prevent an excessive expansion
in the required search parameters, vlim is simplified to

vlim = c6 · (pmax − pmin), (9)

where c6 is the percentage of a given dimension’s span a particle can traverse in one
iteration, and pmax and pmin are the position boundaries bracketing the valid range of
exploration along the given dimension.

The primary change that gives DPSO the ability to search on a per-dimension basis is
that, in Equation (7), the uniform random attraction values are replaced with probabilistic
binary values, b3 and b5, respectively. These values determine if the individual should
move toward the respective best position of a given dimension. The activation of b3 and b5
can be described as

bn =

{
1 if rand(0, 1) < cn,
0 otherwise,

(10)

where c3 and c5 denote the respective probability of activation. It must be stressed that
b3 and b5 are evaluated on a per-dimension basis, as opposed to being a single value
applied to each dimension. Although this discretized approach reduces the coverage of
points between the two known best locations, it increases the exploration of points in
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the surrounding neighborhood (see Figure 2). When momentum and noise injection are
accounted for, the individual is less likely to become fixated on a single vector and can
partially explore the area around each point. Without noise or momentum, the probability
of moving to a given point is based on the products of b3, b5, 1− b3, and/or 1− b5 for each
dimension. For the top-left example in Figure 2, if the lower ‘×’ marks the global optimum,
the point in the top left corner would have the following transition probability

P(TL) = (1− bhor
3 ) · (1− bhor

5 ) · bvir
3 · bvir

5 , (11)

where hor and vir denote the dimension with which the binary attractor is associated. The
probability of transitioning to the global optimum’s mark is

P(glob) = bhor
3 · (1− bhor

5 ) · bvir
3 · (1− bvir

5 ). (12)

As with the traditional PSO, when c2 and c4 are reduced, the scale of movement, i.e.,
the grid size, is reduced. Momentum skews the final landing point in the direction of
motion, while noise injection causes each potential attractor point to represent the center of
a distribution. It is worth noting that DPSO values c0 = 0 and c6 = 1 make this variant
the closest possible form to the original PSO, where the key differences are the attraction
random values. The general process flow for DPSO is identical to PSO (see Figure 1a). The
velocity calculation time complexity is O(9D×N), binary attractor selections are O(D×N),
position updates are O(D× N), and each dimension limit check is O(D× N), resulting
in a total time complexity per iteration of O(10D× N)—approximately O(2D× N) more
than PSO.

Figure 2. The difference between exploitation with PSO (blue envelope) and DPSO (red points on
the grid).

2.3. Genetic Algorithm

The Genetic Algorithm (GA) is very different from PSO in its method of optimization,
as it does not rely on momentum or points of attraction. Instead, it uses the fitness of
individuals from the last generation [17]. The first step of modifying the parameters is
selecting parents. In this study, it is carried out through a roulette-style competition without
replacement, where each individual’s fitness is determined by the following
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r̂(i) =
(ri −min(~rgen))× (1−

len(argmin(~rgen))

N
)

max(~rgen)−min(~rgen)
+

len(argmin(~rgen))

N2 . (13)

where len(argmin(~r)) returns the number of individuals who obtained the current mini-
mum fitness, which allows the fitness distribution to approach a uniform distribution as
more individuals produce equivalent fitness values.

As there is no order on the resulting list of parent indices, they are considered suffi-
ciently mixed. These parents are used in pairs to produce the kth child

parent1 = mod (k, q0), (14)

parent2 = mod ((k + 1), q0). (15)

where mod (k, q) is the modulus division of k by the number of selected parents q.
parent1 and parent2 are the indices of the chosen parents whose genes are ~pparent1 and
~pparent2, respectively.

The number of parents permitted to produce offspring is defined by

q0 = max(2, min(N − 2, bc0 × Nc)), (16)

where c0 is the percent population allowed to reproduce. The percent replacement is
determined by (1− c0), i.e., the population that was not selected is replaced to minimize
redundant evaluations. After the parents are selected, crossover occurs with

~pchild = ~pparent1 ×~bg + ~pparent2 × (1−~bg), (17)

where bg = 1 with random permutation ~g = P(G, bG/2c) and bg = 0 otherwise. G is
the length of the genome, and P(G, X) denotes a random choice of X elements of G
without replacement, while PR(G, X) is with replacement. Gene mutation for each child
is determined by a random permutation with replacement ~g = PR(G, bc1 × Gc), where
c1 is the maximum allowed percent mutation a genome can undergo (the minimum is
one mutated genome). For each unique gene/dimension selected for mutation, a uniform
random value within the respective limits is applied. The general process flow for GA is
shown in Figure 1b. The individual fitness calculation time complexity is O(4N), parent
selection which shuffles and fully utilizes the current population is O(2N), a random
permutation of the genes for each child is O(D× N), crossover with full replacement is
O(2D× N), mutation is O(D× N), and each dimension limit check is O(D× N), resulting
in a total time complexity per iteration of O((5D + 6)× N).

2.4. Differential Evolution

Differential Evolution (DE) tends to be faster in processing due to its relative simplic-
ity. A key difference from PSO and GA is that DE mutates its population before evalu-
ating the fitness of its individuals [18]. The first step is choosing a random permutation
a, b, c = P(N, 3) for the genetic material to be used for mutation

~pm = ~plocal,a + 2× c0 × (~plocal,b − ~plocal,c), (18)

where c0 is the degree of mutation that can be imposed on the base material provided by
sample ‘a’. After a mutant is generated, each gene/dimension has the possibility of going
through crossover—determined by the crossover probability c1—where the respective
mutated gene is clipped to fit within the dimension’s limits and applied to the targeted
individual, i.e., pi,s = pm,s. If no genes are selected for crossover, one is selected at random.

The general process flow of DE is shown in Figure 1c. The random permutation
of three genetic sources has a time complexity is O(3N), mutated gene production is
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O(3D×N), crossover using a random permutation is O(D×N), and each dimension limit
check is O(D× N), resulting in a total time complexity per iteration of O((5D + 3)× N).

3. Methodology

The configuration for this experiment is such that the algorithm is assigned an initial
estimate of the best parameter combination, which is randomly seeded with one of the
individuals to be evaluated. This algorithm (Alg1) is set to optimize 5 particles for up to
100 iterations. Thirty copies of the algorithm (Alg2) are generated as the problem function,
each optimizing 5 particles for up to 500 iterations. For each of these optimized algorithms,
30 randomly offset and ill-conditioned copies of the in-sample problem function are set to
be optimized. Alg2’s average global optimum result across these 30 copies plus the standard
deviation is taken as the algorithm’s measure of fitness during self-tuning. The outcome of
evaluating the fitness of Alg2, i.e., its final global optimum result, is used as follows: if it
is better than what was recorded for the global optimum in Alg1, the parameters used by
Alg1 are updated to those of Alg2 before moving on to the next iteration. After self-tuning,
the optimal parameters are applied to the algorithm again with 30 separate runs of the
out-of-sample function problems. The out-of-sample optimization uses 5 individuals and
lasts for 1000 iterations without allowance for early termination. The mean results of the
out-of-sample global best logs are recorded for plotting and the final mean and standard
deviation values are recorded for tabulation.

3.1. Self-Tuning

Self-tuning is a form of bootstrapping, where the algorithm attempts to improve its
own parameters based on its relative improvement in optimizing a problem [19]. Granted,
it is inefficient to self-tune on the problem of interest as this will likely result in having
found the global optimum several times over. Therefore, it is preferred to self-tune using
a simpler approximation of the out-of-sample problem(s) as an in-sample training step.
This allows the algorithm parameters to be generally optimized for any problem similar to
the in-sample function. For self-tuning to be effective, the in-sample problem must be a
close approximation of the out-of-sample function set. In the case where the out-of-sample
set only has one function, the in-sample function must at least be sufficiently simplified
to make the additional evaluation steps worthwhile. In contrast to some alternative self-
tuning methods, an external approach does not require specialized modifications or rules
to adjust the parameters on the fly [20,21].

3.2. Function Problems

The base problem functions used as benchmarks are: Elliptical (scale: 500), Ackley
(scale: 32), Rosenbrock (scale: 7.5; offset: 1.5), Rastrigin (scale: 5.12), Drop-wave (scale:
5.12), Zero-sum (scale: 10), and Salomon (scale: 100) [22,23]. For 2 to 3 dimensions, most
of these functions would be considered somewhat challenging, as they have many local
minima. To add complexity to each problem, random offsets (up to 80% off center) and
ill-conditioning (up to 10 times the scale), rotations, and partial-separability (30% overlap)
were applied in steps as shown in Table 1 [24]. The dimensions shown in the table are for
the 14D problem; however, these steps were similarly carried out for 7D and 21D problems.
Ill-conditioning, rotation, and overlap effects were applied to all 7, 14, and 21 dimensions,
respectively, while the 4 copies of each function had independently allocated dimensions.
For the cases of overlap and rotation, some of these functions are partially dependent on
the same inputs, further complicating the search process.
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Table 1. The list of functions evaluated on for each algorithm.

Abbrev. Name Augments Dimensions

f0 In-Sample (one of each base function) offset and ill-conditioning (2 each = 14)
f1 In-Sample (one of each base function) offset, ill-conditioning, and rotation (2 each = 14)
f2 In-Sample (one of each base function) offset, ill-conditioning, rotation, and overlap (2 each = 14)

f3 Elliptical (4 copies) offset and ill-conditioning (~14/4 each = 14)
f4 Elliptical (4 copies) offset, ill-conditioning, and rotation (~14/4 each = 14)
f5 Elliptical (4 copies) offset, ill-conditioning, rotation, and overlap (~14/4 each = 14)

f6 Ackley (4 copies) offset and ill-conditioning (~14/4 each = 14)
f7 Ackley (4 copies) offset, ill-conditioning, and rotation (~14/4 each = 14)
f8 Ackley (4 copies) offset, ill-conditioning, rotation, and overlap (~14/4 each = 14)

f9 Rosenbrock (4 copies) offset and ill-conditioning (~14/4 each = 14)
f10 Rosenbrock (4 copies) offset, ill-conditioning, and rotation (~14/4 each = 14)
f11 Rosenbrock (4 copies) offset, ill-conditioning, rotation, and overlap (~14/4 each = 14)

f12 Rastrigin (4 copies) offset and ill-conditioning (~14/4 each = 14)
f13 Rastrigin (4 copies) offset, ill-conditioning, and rotation (~14/4 each = 14)
f14 Rastrigin (4 copies) offset, ill-conditioning, rotation, and overlap (~14/4 each = 14)

f15 Drop-Wave (4 copies) offset and ill-conditioning (~14/4 each = 14)
f16 Drop-Wave (4 copies) offset, ill-conditioning, and rotation (~14/4 each = 14)
f17 Drop-Wave (4 copies) offset, ill-conditioning, rotation, and overlap (~14/4 each = 14)

f18 Zero-Sum (4 copies) offset and ill-conditioning (~14/4 each = 14)
f19 Zero-Sum (4 copies) offset, ill-conditioning, and rotation (~14/4 each = 14)
f20 Zero-Sum (4 copies) offset, ill-conditioning, rotation, and overlap (~14/4 each = 14)

f21 Salomon (4 copies) offset and ill-conditioning (~14/4 each = 14)
f22 Salomon (4 copies) offset, ill-conditioning, and rotation (~14/4 each = 14)
f23 Salomon (4 copies) offset, ill-conditioning, rotation, and overlap (~14/4 each = 14)
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4. Results

The resulting optimal parameters after self-tuning on f0 are shown in Appendix A
(Tables A1–A3). For each algorithm, the final optimal parameters tended to be found
well before reaching the limit of 100 iterations. In all cases, DPSO has shown to be a
significant improvement from PSO, which was consistently in the last place. The resulting
fitness in Table A4, the normalized fitness and per-problem rank in Table 2, and the plots
shown in Figures A1, A4, A7 and A10, suggest that DPSO is capable of outperforming
DE and GA in overall fitness with a margin of approximately 20% when using five par-
ticles on seven-dimensional problems. For 14 dimensions, Tables 3 and A5, as well as
Figures A2, A5, A8, and A11, show that, although DPSO easily bests the GA results and
despite only placing third or fourth in 6 of the 24 problem functions, it underperforms
w.r.t. DE with a margin of 17%. Rank Factor is the average result of the normalized fitness
divided by the smallest average normalized fitness. The Normalized fitness in Tables 2–4
are the fitness results scaled for ease of comparison.

Increasing the dimensions to 21, DPSO’s overall fitness is notably better with respect
to Tables 4 and A6 relative to the ranked second DE with a margin of more than 58%. The
gradual improvements shown in Figures A3, A6, A9, and A12 also suggest that DPSO’s
ability to make gradual improvements was not severely hindered by the small ratio of
particles to dimensions. Given that the standard deviation is relatively small compared to
the mean fitness, the algorithms’ final rankings are expected to be reliable for the applied
out-of-sample functions and chosen parameters.

Table 2. Normalized fitness w.r.t. each function problem with 7 dimensions and the resulting ranking: rank 1 (best), rank 2,
rank 3, and rank 4.

Function DPSO PSO GA DE

f0 Norm 1.000 4.286×10−27 0.000 2.788×10−8

f1 Norm 4.198×10−6 1.000 3.444×10−4 0.000

f2 Norm 2.965×10−5 1.000 4.319×10−5 0.000

f3 Norm 0.000 4.829×10−13 2.276×10−12 1.000

f4 Norm 1.000 1.317×10−1 8.409×10−2 0.000

f5 Norm 0.000 5.785×10−1 1.915×10−1 1.000

f6 Norm 2.713×10−1 1.000 0.000 5.643×10−1

f7 Norm 5.350×10−1 1.000 4.485×10−1 0.000

f8 Norm 2.126×10−1 1.000 0.000 9.816×10−2

f9 Norm 0.000 1.000 2.284×10−1 4.773×10−3

f10 Norm 0.000 1.000 2.065×10−1 1.180×10−1

f11 Norm 0.000 1.000 9.790×10−2 3.169×10−2

f12 Norm 4.899×10−2 1.000 0.000 5.153×10−1

f13 Norm 0.000 8.458×10−1 2.568×10−1 1.000

f14 Norm 4.650×10−2 1.000 3.996×10−1 0.000

f15 Norm 0.000 1.000 8.147×10−1 8.099×10−1

f16 Norm 1.924×10−1 1.000 0.000 4.153×10−1

f17 Norm 0.000 1.000 7.439×10−1 8.794×10−1

f18 Norm 6.275×10−1 2.121×10−1 1.000 0.000

f19 Norm 3.254×10−1 9.631×10−1 1.000 0.000

f20 Norm 0.000 1.000 6.042×10−1 3.920×10−1
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Table 2. Cont.

Function DPSO PSO GA DE

f21 Norm 1.000 3.965×10−4 2.108×10−1 0.000

f22 Norm 2.659×10−3 1.000 7.282×10−2 0.000

f23 Norm 0.000 1.000 1.036×10−1 8.478×10−3

Rank Factor 1.000 3.560 1.228 1.299

Rank Sum 47 84 59 50

Overall Rank 1 4 3 2

Table 3. Normalized fitness w.r.t. each function problem with 14 dimensions and the resulting ranking: rank 1 (best), rank 2,
rank 3, and rank 4.

Function DPSO PSO GA DE

f0 Norm 1.000 3.179×10−26 3.198×10−18 0.000

f1 Norm 4.177×10−2 1.000 9.584×10−1 0.000

f2 Norm 5.512×10−27 1.000 1.790×10−8 0.000

f3 Norm 1.038×10−1 8.430×10−7 1.000 0.000

f4 Norm 1.000 1.695×10−15 0.000 4.382×10−16

f5 Norm 4.974×10−26 1.000 0.000 4.589×10−18

f6 Norm 5.333×10−1 1.000 0.000 7.938×10−1

f7 Norm 1.000 9.388×10−1 2.211×10−1 0.000

f8 Norm 1.000 9.366×10−1 2.205×10−1 0.000

f9 Norm 3.572×10−2 1.000 4.059×10−1 0.000

f10 Norm 1.183×10−2 6.927×10−1 1.000 0.000

f11 Norm 0.000 1.000 7.310×10−3 6.228×10−5

f12 Norm 0.000 1.000 1.529×10−1 2.407×10−1

f13 Norm 0.000 1.000 2.248×10−1 6.415×10−2

f14 Norm 4.245×10−1 1.000 7.824×10−1 0.000

f15 Norm 0.000 1.000 4.718×10−1 8.685×10−1

f16 Norm 0.000 1.000 2.758×10−1 2.454×10−1

f17 Norm 0.000 9.025×10−1 8.807×10−1 1.000

f18 Norm 0.000 1.000 3.761×10−1 2.728×10−1

f19 Norm 8.134×10−2 1.000 3.241×10−1 0.000

f20 Norm 0.000 1.000 4.254×10−1 1.214×10−1

f21 Norm 0.000 3.293×10−1 1.443×10−1 1.000

f22 Norm 6.666×10−2 2.230×10−2 1.000 0.000

f23 Norm 9.424×10−2 1.326×10−1 1.000 0.000

Rank Factor 1.171 3.897 2.143 1.000

Rank Sum 49 83 64 44

Overall Rank 2 4 3 1



Appl. Sci. 2021, 11, 6201 12 of 31

Table 4. Normalized fitness w.r.t. each function problem with 21 dimensions and the resulting ranking: rank 1 (best), rank 2,
rank 3, and rank 4.

Function DPSO PSO GA DE

f0 Norm 2.246×10−9 1.000 1.006×10−16 0.000

f1 Norm 8.388×10−3 1.147×10−1 1.000 0.000

f2 Norm 0.000 2.710×10−5 6.438×10−11 1.000

f3 Norm 3.810×10−6 1.000 0.000 1.593×10−8

f4 Norm 0.000 4.428×10−15 2.682×10−1 1.000

f5 Norm 4.154×10−5 0.000 1.000 1.447×10−3

f6 Norm 7.895×10−1 1.000 7.057×10−1 0.000

f7 Norm 0.000 1.000 8.062×10−1 8.557×10−1

f8 Norm 9.287×10−1 1.000 0.000 9.443×10−1

f9 Norm 2.543×10−2 1.000 7.551×10−3 0.000

f10 Norm 0.000 1.000 6.413×10−2 5.706×10−1

f11 Norm 0.000 1.000 4.721×10−2 6.814×10−3

f12 Norm 0.000 1.000 1.595×10−1 5.604×10−1

f13 Norm 0.000 9.106×10−1 1.182×10−1 1.000

f14 Norm 3.266×10−2 1.000 6.224×10−1 0.000

f15 Norm 8.635×10−1 1.000 5.252×10−1 0.000

f16 Norm 3.222×10−1 1.000 0.000 5.351×10−1

f17 Norm 1.238×10−1 9.600×10−1 1.000 0.000

f18 Norm 4.544×10−1 1.000 5.639×10−1 0.000

f19 Norm 4.795×10−1 1.000 0.000 3.025×10−1

f20 Norm 1.288×10−2 1.848×10−1 1.000 0.000

f21 Norm 0.000 1.000 2.130×10−1 1.616×10−1

f22 Norm 2.277×10−2 0.000 1.000 3.147×10−1

f23 Norm 5.228×10−1 0.000 1.000 1.202×10−2

Rank Factor 1.000 3.744 2.202 1.584

Rank Sum 47 80 61 52

Overall Rank 1 4 3 2

The results of this experiment show that DPSO and DE can be optimized through self-
tuning given a sufficient number of iterations and that they both demonstrate satisfactory
results. The tuned parameters allow these algorithms to remain largely effective when
the target problem deviates from the in-sample function, i.e., when they are able to self-
tune on an approximation of the out-of-sample problems and can be expected to perform
well. Given the fact that the rules were applied equally to all algorithms, the primary
cause for improvement in DPSO over PSO is the use of dimension-wise updates. A likely
reason why a number of fitness results are relatively large is that ill-conditioning scales up
the dimensional range, making it harder to find the global optimum. Regardless, every
algorithm was able to demonstrate some improvement in each problem, e.g., ending with
a fitness of 1032 is a significant improvement when starting with 1044. It is interesting
that the Ellipse problems had the worst performance results despite the relative simplicity
of its surface—likely attributed to the exponential nature of each axis. PSO and DPSO
have momentum factors that can cause them to overshoot or orbit the minima, but this



Appl. Sci. 2021, 11, 6201 13 of 31

problem does not exist for DE and GA. The likely factor that makes some of these problems
more difficult for DE and GA is that the population size, which they rely on for diversity,
is relatively small compared to the number of dimensions. This way, they are entirely
reliant on warping and mutation to increase the variety of candidate solutions. Without
randomly generating new genomes, they can only make do with trying to improve on the
dimensions for which there is a sufficient variety of overall fit individuals to experiment on.
From Figures A1–A12, it is apparent that most algorithms tend to converge or approach
convergence within the first 500 iterations, with relatively small improvements thereafter.
The last improvement in the global optimum is given at x-axis value 1.0 in the plots—
shown in Tables A4–A6—but data with next to no improvement at the end were removed
to improve clarity where possible. The sudden improvement given by DPSO may be due
to the fact that the dimension-wise activation of attractors is similar in principle to the
crossover method found in GA and DE.

A separate test without logging was conducted on the elliptical function ( f3) to analyze
the computational costs of these algorithms (given in Table 5). As expected, DPSO is slightly
more demanding than PSO by approximately 300 bytes (4.7%) for seven dimensions, further
diminishing to 3.6% and 3.2% for 14 and 21 dimensions, respectively. Compared to GA
and DE, both DPSO and PSO are notably more memory demanding.

In terms of execution time, DPSO requires a few milliseconds more per iteration than
GA and DE. The time lapse was determined by the average execution time to complete
one iteration over 200 iterations and 21 dimensions. Given that the time complexities for
GA and DE are similar and smaller than for PSO and DPSO, it is likely that some areas
of code are not fully optimized even though the base code was the same and care was
taken to minimize deviations from the base. In exchange for a slightly larger processing
time relative to the other algorithms, DPSO was able to reduce the rate at which its
ability to converge worsened when the disparity between population and search-space
dimensionality increased.

There are several components of the DPSO algorithm that contribute to its execution
time. Their individual contributions can be measured by recording the corresponding
time lapse. The time required for PSO to calculate momentum followed by the time
lapse for local and global attraction forces can be compared to DPSO’s momentum plus
noise injection and dimension-wise attraction forces. The difference in calculation time for
momentum (>1 µs) versus momentum plus noise injection (36µs) and the regular attraction
(7µs) versus the dimension-wise attraction (116µs) calculations is larger than expected.
A notable portion of this increase can likely be attributed to DPSO relying on a for-loop
to perform its per-dimension calculations, while PSO is able to exploit the optimizations
given by the numpy library. Regardless, the velocity update steps for DPSO are expected
to take more time given that the attractors are decided on a per-dimension basis.

Table 5. The Computational costs in terms of average memory and time for each dimension size on the elliptical problem.

DPSO PSO GA DE

Dims [bytes] [s] [bytes] [s] [bytes] [s] [bytes] [s]

7 6872 1.849 6552 1.218 5528 1.849 4944 1.849
14 7904 1.879 7616 1.060 6280 1.856 5448 1.851
21 8968 1.866 8680 1.474 7096 1.860 5952 1.857

5. Conclusions and Future Work

This article examines the recently introduced dimension-wise particle swarm opti-
mization (DPSO) algorithm and compares its performance with other commonly used
metaheuristic optimization systems. Specifically, it compares the statistical mean of the
global fitness values for DPSO, PSO, GA, and DE in a two-step process: in-sample tuning
and out-of-sample evaluation. The optimal parameters for each algorithm were selected by
applying self-tuning while evaluating 30 independent runs of a generic in-sample problem
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that approximated the set of all functions used for evaluation. To evaluate the performance,
each algorithm was tested on 24 separate problems, and the mean and standard deviation
were obtained from 30 separate runs of each for 7, 14, and 21 dimensions. The obtained
results show that DPSO performs better than DE, PSO, and GA when the population is
sparse w.r.t the number of dimensions to be explored.

In future work, it may be worth incorporating other methods such as Adaptive PSO
to reduce the number of parameters that must be tuned. It may also be interesting to
investigate other options for rules on warping particles and setting the population size
as one of the adjustable parameters. To better grasp the benefits of DPSO, it would also
be worth comparing this algorithm with more state-of-the-art variations in PSO such as
Dual Gbest PSO without regard for the computational costs. Given that there is no conflict
with momentum degradation methods such as the one found in continuous PSO w.r.t. the
changes made in DPSO, integrating them into DPSO may allow for further improvements
in fitness with minimal addition to computational costs [9].
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Symbols

The following symbols are used in this manuscript:

~pt Position of a particle at time t
~vt Velocity of a particle at time t
r Location fitness on the problem surface at a given point/time
N The total number of particle/individual used
D The total number of dimensions in the search space
i An arbitrary particle/individual of the current iteration
t Time step/iteration/generation
local Denoting local attractor information
global Denoting global attractor information
rand(0, 1) A uniform randomly generated number within the range [0, 1)
cn An algorithm parameter designated for tuning
bn Binary decider for attractors and crossover

Appendix A. Additional Tables and Graphs

Table A1. Global best self-tuning parameters for 7 dimensions.

DPSO c0 c1 c2 c3 c4 c5 c6
0.862056 0.859008 0.620299 0.526893 0.103819 0.986512 0.801248

PSO c0 c1 c2
0.107710 0.741607 0.492210

GA c0 c1
0.974085 0.558012

DE c0 c1
0.251732 0.000000 1

1 DE is forced to choose one parameter to crossover.
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Table A2. Global best self-tuning parameters for 14 dimensions.

DPSO c0 c1 c2 c3 c4 c5 c6
0.507646 0.438668 1.000000 0.308361 1.000000 0.655705 0.970521

PSO c0 c1 c2
0.649608 0.594950 0.175723

GA c0 c1
0.899098 0.233414

DE c0 c1
0.470144 0.544929

Table A3. Global best self-tuning parameters for 21 dimensions.

DPSO c0 c1 c2 c3 c4 c5 c6
0.734627 0.712416 0.891312 1.000000 0.767508 0.853393 0.786354

PSO c0 c1 c2
0.715330 0.386808 0.897650

GA c0 c1
0.390245 0.092636

DE c0 c1
1.000000 0.532237

Table A4. Fitness w.r.t. each function problem with 7 dimensions and the resulting ranking: rank 1 (best), rank 2, rank 3,
and rank 4.

Function DPSO PSO GA DE

f0 Ave 1.234×1031 1.424×105 8.956×104 3.439×1023

Std 2.252×1015 2.910×10−11 0.000 1.342×108

f1 Ave 1.641×106 3.849×1011 1.326×108 2.560×104

Std 2.328×10−10 1.831×10−4 4.470×10−8 1.091×10−11

f2 Ave 2.402×106 6.209×1010 3.242×106 5.608×105

Std 9.313×10−10 2.289×10−5 1.397×10−9 2.328×10−10

f3 Ave 1.257×1031 2.950×1031 9.232×1031 3.505×1043

Std 6.755×1015 4.504×1015 1.801×1016 9.904×1027

f4 Ave 1.235×1012 1.626×1011 1.039×1011 1.293×106

Std 0.000 6.104×10−5 1.526×10−5 0.000

f5 Ave 9.617×105 3.099×1011 1.026×1011 5.356×1011

Std 3.492×10−10 1.221×10−4 1.526×10−5 3.052×10−4

f6 Ave 4.011×101 6.085×101 3.239×101 4.845×101

Std 1.421×10−14 2.132×10−14 1.421×10−14 3.553×10−14

f7 Ave 4.172×101 6.060×101 3.821×101 2.000×101

Std 2.132×10−14 3.553×10−14 2.842×10−14 3.553×10−15

f8 Ave 4.172×101 5.472×101 3.821×101 3.983×101

Std 2.132×10−14 3.553×10−14 2.842×10−14 1.421×10−14

f9 Ave 1.007 1.248×104 2.851×103 6.054×101

Std 4.441×10−16 1.819×10−12 2.274×10−12 2.842×10−14

f10 Ave 8.802×103 9.429×104 2.645×104 1.889×104

Std 7.276×10−12 4.366×10−11 1.091×10−11 0.000
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Table A4. Cont.

Function DPSO PSO GA DE

f11 Ave 1.179×101 1.303×105 1.277×104 4.141×103

Std 5.329×10−15 8.731×10−11 9.095×10−12 0.000

f12 Ave 3.482×101 1.310×102 2.987×101 8.200×101

Std 2.842×10−14 0.000 7.105×10−15 4.263×10−14

f13 Ave 2.288×101 1.189×102 5.204×101 1.364×102

Std 7.105×10−15 7.105×10−14 3.553×10−14 2.842×10−14

f14 Ave 2.444×101 1.990×102 8.907×101 1.593×101

Std 0.000 1.137×10−13 1.421×10−14 5.329×10−15

f15 Ave 1.913×10−1 2.357 1.956 1.945

Std 1.388×10−16 0.000 4.441×10−16 8.882×10−16

f16 Ave 1.778 2.448 1.618 1.963

Std 1.332×10−15 1.332×10−15 8.882×10−16 1.332×10−15

f17 Ave 1.000 2.051 1.782 1.924

Std 4.441×10−16 4.441×10−16 1.110×10−15 6.661×10−16

f18 Ave 7.162×102 2.955×102 1.094×103 8.071×101

Std 5.684×10−13 1.705×10−13 0.000 4.263×10−14

f19 Ave 2.052×102 6.003×102 6.232×102 3.490

Std 5.684×10−14 1.137×10−13 4.547×10−13 1.332×10−15

f20 Ave 1.812×102 4.409×102 3.381×102 2.830×102

Std 1.137×10−13 2.274×10−13 5.684×10−14 1.705×10−13

f21 Ave 2.223×104 1.836×101 4.693×103 9.548

Std 0.000 1.421×10−14 0.000 0.000

f22 Ave 1.660×101 1.291×102 2.451×101 1.630×101

Std 1.066×10−14 5.684×10−14 1.421×10−14 7.105×10−15

f23 Ave 6.700 1.643×102 2.302×101 8.036

Std 1.776×10−15 0.000 1.066×10−14 3.553×10−15

Table A5. Fitness w.r.t. each function problem with 14 dimensions and the resulting ranking: rank 1 (best), rank 2, rank 3,
and rank 4.

Function DPSO PSO GA DE

f0 Ave 7.483×1031 2.379×106 2.393×1014 2.127×102

Std 0.000 4.657×10−10 9.375×10−2 8.527×10−14

f1 Ave 7.640×103 1.753×105 1.680×105 3.327×102

Std 2.728×10−12 5.821×10−11 8.731×10−11 5.684×10−14

f2 Ave 7.064×105 8.116×1031 1.452×1024 2.590×105

Std 1.164×10−10 3.603×1016 2.684×108 0.000

f3 Ave 2.018×1031 1.638×1026 1.943×1032 2.578×1017

Std 1.126×1016 6.872×1010 3.603×1016 6.400×101

f4 Ave 7.842×1026 1.378×1012 4.856×1010 3.923×1011

Std 2.749×1011 0.000 1.526×10−5 1.221×10−4
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Table A5. Cont.

Function DPSO PSO GA DE

f5 Ave 4.560×1011 8.607×1036 2.788×1010 3.949×1019

Std 0.000 2.361×1021 7.629×10−6 3.277×104

f6 Ave 7.538×101 8.185×101 6.799×101 7.900×101

Std 0.000 4.263×10−14 4.263×10−14 1.421×10−14

f7 Ave 8.224×101 8.116×101 6.852×101 6.462×101

Std 0.000 0.000 4.263×10−14 0.000

f8 Ave 8.228×101 8.116×101 6.852×101 6.462×101

Std 4.263×10−14 0.000 4.263×10−14 0.000

f9 Ave 1.963×104 5.403×105 2.195×105 3.387×102

Std 7.276×10−12 3.492×10−10 2.910×10−11 5.684×10−14

f10 Ave 3.243×104 1.549×106 2.234×106 6.067×103

Std 2.183×10−11 1.164×10−9 1.397×10−9 4.547×10−12

f11 Ave 7.982×104 2.034×107 2.279×105 8.108×104

Std 5.821×10−11 7.451×10−9 2.910×10−11 4.366×10−11

f12 Ave 6.891×101 1.443×103 2.789×102 3.996×102

Std 1.421×10−14 6.821×10−13 1.705×10−13 2.842×10−13

f13 Ave 7.068×101 7.193×102 2.165×102 1.123×102

Std 2.842×10−14 4.547×10−13 0.000 5.684×10−14

f14 Ave 1.647×102 2.841×102 2.389×102 7.673×101

Std 8.527×10−14 1.705×10−13 1.137×10−13 4.263×10−14

f15 Ave 2.256 3.689 2.932 3.500

Std 8.882×10−16 2.665×10−15 1.332×10−15 1.332×10−15

f16 Ave 2.663 3.510 2.897 2.871

Std 0.000 1.332×10−15 1.332×10−15 4.441×10−16

f17 Ave 2.540 2.970 2.960 3.017

Std 4.441×10−16 2.220×10−15 4.441×10−16 8.882×10−16

f18 Ave 6.945×102 1.831×103 1.122×103 1.005×103

Std 1.137×10−13 9.095×10−13 2.274×10−13 6.821×10−13

f19 Ave 1.708×102 2.040×103 6.648×102 5.270

Std 0.000 4.547×10−13 3.411×10−13 8.882×10−16

f20 Ave 1.545×102 1.397×103 6.831×102 3.054×102

Std 8.527×10−14 0.000 0.000 0.000

f21 Ave 2.142×102 7.904×103 3.584×103 2.357×104

Std 0.000 9.095×10−13 1.819×10−12 0.000

f22 Ave 9.540×101 6.300×101 7.769×102 4.672×101

Std 4.263×10−14 7.105×10−15 1.137×10−13 2.132×10−14

f23 Ave 5.050×101 5.681×101 1.995×102 3.500×101

Std 1.421×10−14 7.105×10−15 5.684×10−14 7.105×10−15
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Table A6. Fitness w.r.t. each function problem with 21 dimensions and the resulting ranking: rank 1 (best), rank 2, rank 3,
and rank 4.

Function DPSO PSO GA DE

f0 1.375×1019 6.121×1027 6.249×1011 9.395×109

Std 0.000 0.000 0.000 3.815×10−6

f1 2.600×107 2.824×108 2.417×109 5.773×106

Std 1.490×10−8 0.000 9.537×10−7 2.794×10−9

f2 2.401×105 4.489×1012 1.091×107 1.657×1017

Std 8.731×10−11 9.766×10−4 3.725×10−9 6.400×101

f3 2.028×1030 5.324×1035 5.551×1023 8.484×1027

Std 1.407×1015 2.951×1020 2.013×108 2.199×1012

f4 1.012×1010 5.906×1011 3.516×1025 1.311×1026

Std 3.815×10−6 2.441×10−4 2.147×1010 6.872×1010

f5 2.981×1023 2.988×1012 7.175×1027 1.038×1025

Std 1.342×108 0.000 4.398×1012 0.000

f6 8.179×101 8.342×101 8.114×101 7.567×101

Std 1.421×10−14 0.000 1.421×10−14 2.842×10−14

f7 7.943×101 8.394×101 8.307×101 8.329×101

Std 1.421×10−14 7.105×10−14 2.842×10−14 4.263×10−14

f8 8.311×101 8.394×101 7.225×101 8.329×101

Std 0.000 7.105×10−14 4.263×10−14 4.263×10−14

f9 1.220×106 3.937×107 5.202×105 2.246×105

Std 6.985×10−10 7.451×10−9 1.746×10−10 8.731×10−11

f10 1.817×105 2.345×107 1.674×106 1.345×107

Std 5.821×10−11 1.118×10−8 6.985×10−10 0.000

f11 2.353×105 1.266×107 8.217×105 3.199×105

Std 0.000 1.863×10−9 3.492×10−10 5.821×10−11

f12 4.166×102 1.787×103 6.351×102 1.185×103

Std 1.137×10−13 2.274×10−13 1.137×10−13 4.547×10−13

f13 5.709×102 7.462×102 5.936×102 7.634×102

Std 3.411×10−13 1.137×10−13 4.547×10−13 3.411×10−13

f14 3.199×102 6.809×102 5.400×102 3.077×102

Std 5.684×10−14 3.411×10−13 4.547×10−13 0.000

f15 3.883 3.941 3.740 3.517

Std 0.000 1.332×10−15 4.441×10−16 4.441×10−16

f16 3.693 3.958 3.566 3.776

Std 1.332×10−15 4.441×10−16 0.000 4.441×10−16

f17 3.045 3.731 3.764 2.943

Std 1.332×10−15 8.882×10−16 0.000 4.441×10−16

f18 2.111×103 3.932×103 2.477×103 5.943×102

Std 1.364×10−12 1.819×10−12 1.364×10−12 0.000

f19 9.646×102 1.594×103 3.848×102 7.506×102

Std 3.411×10−13 4.547×10−13 1.137×10−13 2.274×10−13

f20 6.138×102 8.441×102 1.936×103 5.966×102

Std 2.274×10−13 5.684×10−13 1.364×10−12 4.547×10−13

f21 2.518×103 1.894×104 6.016×103 5.172×103

Std 4.547×10−13 7.276×10−12 2.728×10−12 1.819×10−12

f22 3.762×102 1.709×102 9.187×103 3.008×103

Std 5.684×10−14 5.684×10−14 3.638×10−12 4.547×10−13

f23 3.401×103 1.415×102 6.376×103 2.164×102

Std 1.364×10−12 8.527×10−14 2.728×10−12 8.527×10−14
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(a) f0 (offset and ill-conditioned) (b) f1 (offset, ill-conditioned, and rotated)

(c) f2 (offset, ill-conditioned, rotated, and overlapped)
(d) f3 (offset and ill-conditioned)

(e) f4 (offset, ill-conditioned, and rotated) (f) f5 (offset, ill-conditioned, rotated, and overlapped)

Figure A1. The average In-Sample ( f0, f1, f2) and Elliptical ( f3, f4, f5) global best results over time for 7 dimensions.
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(a) f0 (offset and ill-conditioned) (b) f1 (offset, ill-conditioned, and rotated)

(c) f2 (offset, ill-conditioned, rotated, and overlapped)
(d) f3 (offset and ill-conditioned)

(e) f4 (offset, ill-conditioned, and rotated) (f) f5 (offset, ill-conditioned, rotated, and overlapped)

Figure A2. The average In-Sample ( f0, f1, f2) and Elliptical ( f3, f4, f5) global best results over time for 14 dimensions.
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(a) f0 (offset and ill-conditioned) (b) f1 (offset, ill-conditioned, and rotated)

(c) f2 (offset, ill-conditioned, rotated, and overlapped) (d) f3 (offset and ill-conditioned)

(e) f4 (offset, ill-conditioned, and rotated) (f) f5 (offset, ill-conditioned, rotated, and overlapped)

Figure A3. The average In-Sample ( f0, f1, f2) and Elliptical ( f3, f4, f5) global best results over time for 21 dimensions.
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(a) f6 (offset and ill-conditioned) (b) f7 (offset, ill-conditioned, and rotated)

(c) f8 (offset, ill-conditioned, rotated, and overlapped) (d) f9 (offset and ill-conditioned)

(e) f10 (offset, ill-conditioned, and rotated) (f) f11 (offset, ill-conditioned, rotated, and overlapped)

Figure A4. The average Ackley ( f6, f7, f8) and Rosenbrock ( f9, f10, f11) global best results over time for 7 dimensions.
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(a) f6 (offset and ill-conditioned)

(b) f7 (offset, ill-conditioned, and rotated)

(c) f8 (offset, ill-conditioned, rotated, and overlapped) (d) f9 (offset and ill-conditioned)

(e) f10 (offset, ill-conditioned, and rotated) (f) f11 (offset, ill-conditioned, rotated, and overlapped)

Figure A5. The average Ackley ( f6, f7, f8) and Rosenbrock ( f9, f10, f11) global best results over time for 14 dimensions.
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(a) f6 (offset and ill-conditioned) (b) f7 (offset, ill-conditioned, and rotated)

(c) f8 (offset, ill-conditioned, rotated, and overlapped) (d) f9 (offset and ill-conditioned)

(e) f10 (offset, ill-conditioned, and rotated) (f) f11 (offset, ill-conditioned, rotated, and overlapped)

Figure A6. The average Ackley ( f6, f7, f8) and Rosenbrock ( f9, f10, f11) global best results over time for 21 dimensions.
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(a) f12 (offset and ill-conditioned) (b) f13 (offset, ill-conditioned, and rotated)

(c) f14 (offset, ill-conditioned, rotated, and overlapped)
(d) f15 (offset and ill-conditioned)

(e) f16 (offset, ill-conditioned, and rotated) (f) f17 (offset, ill-conditioned, rotated, and overlapped)

Figure A7. The average Rastrigin ( f12, f13, f14) and Drop-Wave ( f15, f16, f17) global best results over time for 7 dimensions.
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(a) f12 (offset and ill-conditioned) (b) f13 (offset, ill-conditioned, and rotated)

(c) f14 (offset, ill-conditioned, rotated, and overlapped)
(d) f15 (offset and ill-conditioned)

(e) f16 (offset, ill-conditioned, and rotated) (f) f17 (offset, ill-conditioned, rotated, and overlapped)

Figure A8. The average Rastrigin ( f12, f13, f14) and Drop-Wave ( f15, f16, f17) global best results over time for 14 dimensions.
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(a) f12 (offset and ill-conditioned) (b) f13 (offset, ill-conditioned, and rotated)

(c) f14 (offset, ill-conditioned, rotated, and overlapped)
(d) f15 (offset and ill-conditioned)

(e) f16 (offset, ill-conditioned, and rotated) (f) f17 (offset, ill-conditioned, rotated, and overlapped)

Figure A9. The average Rastrigin ( f12, f13, f14) and Drop-Wave ( f15, f16, f17) global best results over time for 21 dimensions.
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(a) f18 (offset and ill-conditioned) (b) f19 (offset, ill-conditioned, and rotated)

(c) f20 (offset, ill-conditioned, rotated, and overlapped) (d) f21 (offset and ill-conditioned)

(e) f22 (offset, ill-conditioned, and rotated) (f) f23 (offset, ill-conditioned, rotated, and overlapped)

Figure A10. The average Zero-Sum ( f18, f19, f20) and Salomon ( f21, f22, f23) global best results over time for 7 dimensions.
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(a) f18 (offset and ill-conditioned) (b) f19 (offset, ill-conditioned, and rotated)

(c) f20 (offset, ill-conditioned, rotated, and overlapped) (d) f21 (offset and ill-conditioned)

(e) f22 (offset, ill-conditioned, and rotated) (f) f23 (offset, ill-conditioned, rotated, and overlapped)

Figure A11. The average Zero-Sum ( f18, f19, f20) and Salomon ( f21, f22, f23) global best results over time for 14 dimensions.
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(a) f18 (offset and ill-conditioned) (b) f19 (offset, ill-conditioned, and rotated)

(c) f20 (offset, ill-conditioned, rotated, and overlapped) (d) f21 (offset and ill-conditioned)

(e) f22 (offset, ill-conditioned, and rotated) (f) f23 (offset, ill-conditioned, rotated, and overlapped)

Figure A12. The average Zero-Sum ( f18, f19, f20) and Salomon ( f21, f22, f23) global best results over time for 21 dimensions.
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