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Featured Application: As a backdrop for our user study, we recreated a museum gallery in virtual
reality. More generally, the results presented here may be interesting for all applications based
on recreating real-world places as immersive virtual environments.

Abstract: Several recent works have presented image-based methods for creating high-fidelity
immersive virtual environments from photographs of real-world scenes. In this paper, we provide
a user-centered evaluation of such methods by way of a user study investigating their impact on
viewers’ perception of visual realism and sense of presence. In particular, we focus on two specific
elements commonly introduced by image-based approaches. First, we investigate the extent to
which using dedicated image-based rendering algorithms to render the scene with view-dependent
effects (such as specular highlights) causes users to perceive it as being more realistic. Second, we
study whether making the scene fade out beyond a fixed volume in 3D space significantly reduces
participants’ feeling of being there, examining different sizes for this viewing volume. To provide
details on the virtual environment used in the study, we also describe how we recreated a museum
gallery for room-scale virtual reality using a custom-built multi-camera rig. The results of our study
show that using image-based rendering to render view-dependent effects can effectively enhance the
perception of visual realism and elicit a stronger sense of presence, even when it implies constraining
the viewing volume to a small range of motion.

Keywords: image-based rendering; view-dependent effects; multi-camera; virtual reality; user study;
visual realism; presence

1. Introduction

Several recent publications have demonstrated the use of inside-out multi-view cap-
ture to generate photorealistic 360° scenes for virtual reality (VR). In particular, such capture
setups can be used to effectively recreate the captured scene in all directions, even as users
move their head within a viewing volume of several tens of centimeters [1,2]. Additionally,
various authors have shown how photographs taken from multiple different viewpoints
can be used to accurately recover complex view-dependent effects such as specular high-
lights, in order to replicate the way light interacts with reflective and semi-transparent
objects in real life [1,3–6]. In this way, such methods aim to make scenes rendered from
photographs more realistic. However, these approaches also have drawbacks: most notably,
they often generate visual inaccuracies such as flickering or ghosting artifacts (visual data
from one object appearing on top of the surrounding objects during blending due to errors
in the geometry), and may thus be distracting or disturbing for immersed viewers [1].
With this in mind, we believe that it is important to investigate how immersed viewers
effectively respond to effects such as the display of view-dependent highlights and the pres-

Appl. Sci. 2021, 11, 6173. https://doi.org/10.3390/app11136173 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5474-2769
https://orcid.org/0000-0002-3314-951X
https://doi.org/10.3390/app11136173
https://doi.org/10.3390/app11136173
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11136173
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11136173?type=check_update&version=1


Appl. Sci. 2021, 11, 6173 2 of 21

ence of distracting visual artifacts, and in particular how this may impact their appreciation
of the scene’s realism. Few existing user studies have examined this question.

Additionally, because the input photographs are captured around a given viewpoint,
the accuracy of the rendered views diminishes the more users move away from the view-
point. Consequently, several approaches make the scene fade out beyond a fixed range of
head motion [1,7]. However, it seems reasonable to assume that making the scene disappear
in this way may cause users to feel like they are not actually there, visiting the recreated
place, as the scene is thereby likely to feel intangible, fleeting, ephemeral. Therefore, we
hypothesize that such limited viewing volumes are likely to cause a significant decrease in
what is often referred to in the literature as the sense of presence [8–10] or place illusion [9]—
that is, the sensation of being in a real place, of “being there” [8–10]. If this is indeed the
case, it may thus be preferable instead to remove this fade effect, in spite of the decrease in
visual accuracy as one moves away from the center. Similarly, few existing studies seem
to address this question of how having to restrict the viewing volume (due to the virtual
environment being created from photographs centered around a given viewpoint) may
potentially impact users’ sense of presence.

Therefore, in this paper we propose a user-centered evaluation of virtual reality
environments created from inside-out multi-view capture systems. Specifically, we lead
a user study to evaluate two hypotheses. First, we test the assumption that immersive
environments capable of replicating view-dependent highlights are likely to be perceived
by users as being more visually realistic than standard alternatives that blur out these
highlights, despite the likely creation of visual artifacts. Second, we test the hypothesis that
making the scene fade out beyond a small distance (several tens of centimeters) away from
the central viewpoint is likely to cause a significant decrease in users’ sense of presence.
We believe that both of these questions are important, as they may provide valuable insight
on how the size of the capture volume and the choice of a rendering method may make the
immersive experience seem more realistic and provide a stronger sense of being transported
in the recreated location.

Consequently, we make the following contributions in this paper:

• We provide an overview of the challenges and opportunities linked to capturing
and rendering real-world scenes using multi-view setups. We notably discuss how
we applied this analysis to recreate a museum gallery in VR (see Figure 1 for an
illustration of the results) using a custom outward-facing multi-camera rig. These
points are notably discussed in Sections 2 and 3.

• We present a user study investigating (1) whether rendering captured view-dependent
effects significantly enhances perceived visual realism, by comparing 3D reconstruc-
tions rendered with and without these effects; and (2) the extent to which making the
scene fade out beyond a fixed radius significantly reduces the sense of place illusion,
considering different viewing radii ranging from tens of centimeters to over a meter.
This is discussed in Sections 3–5.

We structure the paper as follows. In Section 2, we analyze the literature related to
recreating immersive virtual environments from photographs of real-world scenes and
evaluating viewers’ perception of presence and visual realism. In Section 3, we then
describe our study design. We notably provide details on how we developed a multi-
camera rig with 40 outward-facing cameras arranged around a central position, and applied
it to create a VR museum visit by capturing viewpoints in the main gallery. We also discuss
how we designed our investigation into viewers’ perception of realism and presence in the
resulting virtual environments, outlining the key hypotheses of our study and detailing
our experimental protocol. In Section 4, we then present the results of our investigation.
Finally, in Section 5 we analyze these results and discuss their implications for future work.
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Figure 1. Rendered views from our recreated viewpoint in the MINES ParisTech Mineralogy Museum,
with view-dependent reflections visible on the windows and minerals in real-time VR.

2. Related Work
2.1. Recreating Real-World Scenes from Photographs
2.1.1. Issues with Single-Viewpoint Capture

To recreate real-world scenes as photorealistic background environments for VR, many
authors today rely on the use of 360° capture devices [7,11–13]. Indeed, consumer-grade
360° cameras are light, easy to use, cheap, and capable of acquiring visual data coming
from all directions in a single shot. However, 360° visuals alone can only render the scene
as perceived from a single viewpoint: moving one’s head in any direction will immediately
reveal the absence of geometry through the lack of motion parallax. By comparing users’
perception of 360° videos rendered with or without depth data, Serrano et al. [7] thus
show that users are effectively more likely to feel discomfort and VR-induced sickness
when there is no recovered geometry, thereby justifying the need for adding depth when
recreating scenes for VR based on input photographs. Several recent works have thus been
dedicated to finding efficient ways of recovering this geometry from 360° photographs to
provide motion parallax in VR [7,12].

2.1.2. Strengths of Multi-View Capture

To recover the geometric information required for comfortable motion parallax from a
set of input photographs, one very practical solution is to rely on multi-view capture, rather
than capturing a single 360° image. Indeed, acquiring the scene from multiple different
viewpoints enables the recovery of dense depth data through standard 3D reconstruction
techniques [1,7,14]. For instance, Hedman et al. [14] thus demonstrate a method for
transforming sets of casually captured photographs into complete and realistic 3D scenes
that can be viewed with motion parallax in VR. Furthermore, this strength of multi-view
capture has encouraged multiple research efforts towards developing custom inside-out
multi-camera rigs designed specifically for recreating 3D scenes for VR. Such systems are
typically composed of several tens of outward-facing cameras arranged on a sphere [15]
or rotating arc [1], and are all the more practical that they enable capturing the entire set
of photographs at the click of a button (rather than having to move a single camera to
multiple viewpoints).

Additionally, beyond the practical aspect of being able to more easily reconstruct
3D geometry from the captured photographs, multi-view acquisition systems are also
interesting in that they enable the recovery of complex visual effects such as reflections or
transparency [1–4,6]. Indeed, a number of view-dependent effects become particularly visi-
ble when capturing a scene from multiple viewpoints, such as specular highlights on a shiny
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object or reflections on a mirror. Because multi-view setups enable capturing these effects,
they can thus be coupled with dedicated image-based rendering algorithms to effectively
replicate these captured view-dependent effects in VR. For instance, Overbeck et al. [1]
present a system for capturing and rendering light field image datasets at VR-compatible
speeds, demonstrating its view-dependent capabilities on several sample scenes and shar-
ing the results by way of a complementary VR application. Similarly, de Dinechin and
Paljic [6] present an open-source toolkit and interface for transforming photographs into vir-
tual environments that can be rendered with view-dependent highlights in VR. As another
example, Broxton et al. [5] also demonstrate that these approaches can also be extended to
dynamic scenes, using a hemispherical setup to capture light field videos that they then
render using a deep learning network.

2.1.3. Novel Issues and Need for User Evaluation

However, both processes of estimating 3D geometry and recovering view-dependent
effects often also result in the creation of undesirable visual artifacts that are likely to be
distracting or uncomfortable for immersed viewers [1,4,5]. Moreover, because the accuracy
of the rendered views degrades as one moves further from the center of capture, several
authors intentionally restrict the viewing volume by making the scene fade out beyond
a given range. Serrano et al. [7] thus apply a fade to gray then to black after respectively
20 cm and 35 cm. Similarly, Overbeck et al. [1] make the scene smoothly fade out beyond
a viewing volume 60 cm wide in diameter. Both these constraints and the undesirable
presence of artifacts are thus likely to degrade viewers’ appreciation of the scene.

Therefore, while these novel solutions are expected to enhance the rendered scenes
such that viewers perceive them as being more comfortable and photorealistic, it may be
important to lead user studies to evaluate the extent to which this is effectively the case.
In this way, our approach significantly differs from previous work. Indeed, by proposing a
user-centered investigation into the perception of view-dependent effects and constrained
viewing volumes, our investigation is thus complementary to existing evaluations of multi-
view rendering solutions that are often instead based on qualitative comparison with
previous work and quantitative evaluation via image-quality metrics [1,2,5]. Additionally,
by examining view-dependent image-based rendering based on multi-view capture, our
work complements investigations into users’ perception of comfort or realism in image-
based VR scenes [7,12], that most often instead examine single-viewpoint 360° capture and
are focused on finding efficient ways of recovering the scene’s geometry.

2.2. Visual Realism and Presence
2.2.1. Factors for Achieving the Application’s Goals

Because we study immersive virtual environments created from photographs of real-
world scenes, it is important for the scene both to appear photorealistic and to elicit a sense
of presence.

Indeed, one is most likely to rely on photographs when the goal is to generate an
accurate digital replica, typically to create an immersive virtual visit of a specific place
for training or educational purposes [11]. In this context, Guttentag [16] explains that it
is particularly problematic if the reconstructed environment is not objectively accurate,
as viewers may be misled by visual inaccuracies and thus retain incomplete or incorrect
information. Furthermore, it is also critical for the reconstructed scene to subjectively
feel visually realistic, as virtual tours are expected to provide a visual experience close
to what would have been seen had one been physically there, that is, are expected to be
virtual substitutes that elicit a sense of visual “authenticity” [16]: viewers may thus be
disappointed if it does not seem real.

Additionally, if the reconstructed scenes are to be displayed in VR, then it is critical that
they foster users’ sense of presence. Indeed, this feeling of “being there” is often described
as being the key characteristic of virtual reality [8,10] that motivates rendering the scene
in an immersive system rather than on a standard desktop display [9]. Weech et al. [10]
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thus explain that unlocking the potential of VR largely depends on our ability to detect
and reduce factors that hinder presence, such as sources of cybersickness. Our study of
the impact of viewing volume size on place illusion thus falls into the same category of
approaches that aim to provide insight on possible barriers to presence in order to ensure
that the best solution is adopted to make users feel like they are there.

2.2.2. Evaluating Visual Realism

In the literature, authors often evaluate the realism provided by a virtual scene ei-
ther by directly recording users’ perception that the environment is photorealistic, or by
computing specific metrics of visual accuracy, in the latter case based on the assumption
that users are likely to better appreciate the scene’s realism if it scores higher in terms of
objective visual accuracy.

In this way, several researchers rely on single-item 7-point Likert-type questions to
assess viewers’ perception of a scene’s level of realism [7,12], using questions such as “How
realistic was the experience of the scene?” [12] and “Which of the two methods offers
a more realistic experience?” [7]. If it is expected for the rendering method to generate
noticeable visual artifacts, that are thus likely to degrade the scene’s realism, it is also
possible to use questionnaires to explicitly record the extent to which viewers perceive or
are disturbed by these visual inaccuracies [7].

Complementarily, to measure the extent to which a rendered environment accurately
replicates the original scene as it was at the moment of capture, authors typically evaluate
their proposed solutions by comparing the ground truth photographs with the correspond-
ing output views captured from the same viewpoint, using per-pixel metrics that measure
the difference between two images [2,5,14,17]. The work of Waechter et al. [17] is notably
interesting in this regard: the authors present an analysis of existing image comparison
metrics and geometry-based benchmarks, based on which they propose a novel evalu-
ation methodology, virtual rephotography, aimed at evaluating both the accuracy and
the visual completeness of the views rendered by a given solution. This methodology
has inspired several ensuing research works as a means to evaluate proposed solutions
and compare them with previous approaches [7,14,15]. In particular, because the absence
of view-dependent surface reflections would be likely to lead to significant differences
when comparing input photographs and rendered views, such image comparison metrics
can also be used as an indicator of a rendering method’s ability to convincingly render
view-dependent effects [5].

2.2.3. Evaluating Presence

How to measure presence, and which factors foster or hinder this sense, are questions
that have been thoroughly examined in the literature for several decades [8,10].

Evaluating presence is most often done by way of questionnaires: Schwind et al. [8]
thus recently performed a comparative analysis that showed that multiple-item forms such
as the Witmer and Singer (WS) [18] and Slater–Usoh–Steed (SUS) [19] questionnaires are
commonly used to provide standardized self-reported measures of presence. In this way,
when evaluating virtual environments created from photographs, many researchers rely on
questionnaire data to evaluate presence, using either standard forms from the literature [13]
or simple single-item assessments [7,12].

Through the evaluation of presence, user studies have also helped to better understand
the different factors that may hinder it. For instance, Weech et al. [10] provide a detailed
analysis of the association between presence and cybersickness in VR based on a review
of existing work, in which they outline the different factors that seem to contribute to
one or the other, and conclude that existing evidence points to a negative correlation
between the two. Additionally, several authors discuss ways to reduce the occurrence
of “breaks in presence” [8,9], which are notably expected to occur when users notice
inconsistencies in the perceived stimuli due to reaching the boundaries of the immersive
system’s capabilities [9]. In order to better understand the influence of a proposed method
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on viewers’ sense of presence, it is thus important to anticipate these different barriers and
evaluate the significance of their impact.

3. Materials and Methods
3.1. Multi-View Rendering for a Mineralogy Museum
3.1.1. Relevance for Minerals and the Museum Context

Using multi-view capture to render view-dependent effects is most interesting when
visual realism is key to the application’s goal. It thus seems particularly relevant for
educational experiences, such as virtual museum tours. Indeed, not only are museum
collections likely to comprise objects that display complex visual effects, but the context
of a museum’s educational mission may also specifically encourage a focus on recreating
scenes in a realistic way.

Additionally, minerals are a particularly interesting object to capture from multiple
viewpoints. Indeed, they often display various forms of highlights, reflections, and translu-
cency that become visible when looking at the items from different sides. Consequently,
minerals are difficult to recreate accurately using standard photogrammetry pipelines,
and instead can be expected to strongly benefit from being rendered using view-dependent
image-based techniques.

Therefore, we selected as a practical backdrop for our study the recreation of a miner-
alogy collection in VR. We thus partnered with the MINES ParisTech Mineralogy Museum
in order to capture the data required for our study, and were thereby kindly given access to
the museum to take photographs of the main gallery using our capture rig. The museum
staff also provided us with photographs of individual minerals in the collection, based on
which we created 3D replicas of these items.

3.1.2. Recreating Individual Minerals

In a mineralogy museum, visitors often only see the collection behind glass display
cases: minerals can be rare or precious items, and precautions thus have to be taken
to ensure that they are not damaged. In the same way, because we were not trained
museum staff, we could only take photographs of the minerals inside their protective cases.
However, the photographs we captured in this way proved to be unpractical for rendering
with view-dependent effects. Indeed, doing so noticeably generated artifacts by which
reflections on the display case windows were projected onto the reconstructed minerals,
thereby degrading the quality of the virtual replica.

Therefore, we needed to find a way to obtain higher-quality photographs of the
minerals, captured individually and on a uniform background. The museum’s curators
kindly agreed to help us in this task: the minerals were thus moved into a dedicated light
box by museum staff, captured from multiple angles using a high-resolution hand-held
camera, and returned into their display cases. These photographs were effectively a much
better fit for our reconstruction and rendering pipeline: each mineral’s 3D shape could
be recovered with high accuracy, and could be rendered with photorealistic highlights
in virtual reality. We provide an illustration of a mineral recreated in VR using this
methodology in Figure 2.

3.1.3. Recreating Viewpoints in the Museum Gallery

We then aimed to recreate the sense of being inside the museum itself. To do so, we
needed to be able to capture large amounts of photographs around a given viewpoint. This
led to our development of a custom camera rig, which we describe in Section 3.2.
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Figure 2. Rendered views of a pyrite mineral we recreated in VR (from original photographs of
the mineral by: MINES ParisTech Mineralogy Museum/E. Gaillou). The virtual object displays
view-dependent highlights where light was captured bouncing off the mineral’s facets.

We thus applied our custom-built multi-camera rig to recreate a central viewpoint
within the museum’s main gallery. The scene contained multiple reflective surfaces, most
notably the glass display cases and the minerals themselves. Therefore, by capturing
large amounts of densely packed images, we were able to capture a dense sample of
view-dependent highlights. However, while capturing more photographs enabled us to
enhance the final rendering quality, this also increased processing time and rendering
latency. Consequently, we led several reconstructions with different image counts to find
the trade-off we were most satisfied with. Ultimately, for our user study, we decided to
capture a museum viewpoint using 320 photographs of the scene. Using our multi-camera
rig, we were able to lead this capture process in about 15 min. Views rendered from this
reconstruction are illustrated in Figure 1.

3.2. Designing and Prototyping the Capture Rig

The specifications for our inside-out camera system were as follows. We required the
system to be capable of capturing large numbers of photographs at the click of a button,
such that the photographs could then be processed by existing 3D reconstruction tools
to generate a complete 3D environment fit for use with view-dependent image-based
rendering methods. The system also had to be relatively lightweight and portable, so as to
enable capturing viewpoints in different locations. Finally, we required the camera layout
to enable recovering visual data in all directions, with the potential exception of small areas
at the zenith and the nadir deemed less essential.

3.2.1. Hardware Setup

For reasons of availability, size, weight, cost, and ease of use, we chose to build
the system using 40 Raspberry Pi portable computers connected to the corresponding
8 Megapixel v2 camera modules. To simulate different possible camera layouts using
these modules, we then virtually captured sample 3D scenes in the Unity game engine
using various outside-in and inside-out setups, taking into account the fields of view of
our selected cameras. We then led alignment and reconstruction tests in Reality Capture,
a commercial photogrammetry software, to rapidly evaluate each design based on the
quality and completeness of the reconstructed 3D models.

As a result of this virtual prototyping phase, we ultimately selected a layout with
5 circular levels of 8 outward-facing cameras arranged in a uniform manner. Two successive
cameras on a given level were thus separated by a 45° angle. To obtain a better coverage,
we also set each level to be offset by 22.5° from the next. We chose the height of the center
level to make it correspond to the average height of view of an adult human in a standing
position (about 165 cm), to be able to capture and replicate a scene as if it was naturally
experienced by a standing person in reality. To achieve this height, we initially planned to
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mount the rig on a tripod; however, we also needed to be able to move it easily and we
required space for gear such as network switches, routers, cables, and a power supply. We
thus decided to mount the upper part of the rig on a supporting cart, which allowed us to
store the required equipment for easy handling. The cart was built around the rack that
encased all the gear we needed, notably a power supply, network switches, and a surface
to hold an open laptop. Adding 9 mm plywood for the structure gave us a square section
of 51 × 51 cm. We also added wheels (two of them with brakes), and set additional space
for an optional counterweight (or battery), to prevent the height and weight distribution of
the rig and cart from causing tilting. A 5 V/120 A power supply was finally installed to
distribute the voltage that each Raspberry Pi computer required.

Additionally, in order to increase sampling density and camera overlap, we mounted
the upper part of the rig on a lazy Susan (turntable). Indeed, this enabled us to rotate
the camera levels around the vertical axis in a continuous fashion, to obtain as many
intermediate angular positions as needed. Given that humans also essentially look around
by rotating their heads around a vertical axis, we deemed it less critical to also increase
sampling density along the vertical arc. The system thus only rotates in the horizontal plane.

Finally, we designed and 3D-printed camera mounts to attach the modules, using
Blender and a stereolithography resin printer. Indeed, we had initially planned to use
camera mounts from the market, but they proved to be very fragile and not flexible enough
to configure the tilt angle. Our 3D-printed mounts thus allowed us to tilt each camera
to 3 different tilt angles, and could be set in reverse on the plate, providing 2 additional
angles. Specifically, each camera could thus be set to a tilt angle of −40°, −20°, 0°, 20°, or
40°. We could thus implement complete cylindrical capture, as well as partial spheric or
quasi-spheric capture (without the zenith and nadir areas).

Photographs of the camera rig, with close-ups on a camera with a 3D-printed mount
and on the set of rotating wooden panels, are shown in Figure 3.

Figure 3. Our rotating 40-camera system for multi-view capture.
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3.2.2. Software Implementation

We decided to use a fixed addressing of cameras to get information on the location
of each camera taking the photographs. We thus defined an address nomenclature and
reserved the corresponding IP addresses in the router: level 1 was 192.168.0.11x, level 2
was 192.168.0.12x, and so on, the last digit being the camera index on the corresponding
level. Each Raspberry Pi ran a Python backend, including a TCP/IP server that waits for
incoming commands to set the white balance and shutter time. This server also enables
launching the capture, with the image data then being transferred over the same network
TCP/IP connection. A semi-automatic procedure was developed that allowed the easy
installation of a fresh Raspberry Pi running Raspbian, in command line and over the
network (SSH), with minimum manual intervention.

We developed the remote/client software in Unity, and tested it on both Windows
and Mac OS X. The remote software implements 40 TCP/IP clients and displays a user
interface allowing the operator to set capture parameters and remotely trigger cameras in
synchronization. After the capture process is launched, the images are gradually displayed
side-by-side on the screen for easy monitoring. Each image is then saved on disk with a
file naming nomenclature that includes a timestamp and a camera index. Launching this
process via WiFi allows the user to carry the laptop during capture, so as to be able to move
outside of the rig’s field of view.

3.2.3. On-Site Tests

We tested the multi-camera rig to perform several captures on site. We thus validated
that the rig can be moved easily to different locations, its overall size (190 × 51 × 51 cm)
enabling it to pass through doors and elevators with no difficulty. We also tested several
intermediate angle captures, with 8 and 16 rotations total (thereby yielding respectively 320
and 640 images). In the end, we selected for our study a capture process with 8 intermediate
rotations. To subdivide the 45° angle between consecutive cameras into equal rotation
angles, we used a pen to draw small markings in-between two cameras on one of the
circular levels, corresponding to the fixed angles we needed. The tilt angles we selected for
the cameras at each level were, from top to bottom, 40°/20°/0°/−20°/−40°.

3.3. Creating and Rendering a 3D Environment
3.3.1. Generating 3D Models from the Captured Photographs

To reconstruct a 3D model of our captured items and scenes, we decided to rely on
Schönberger and Frahm’s [20] COLMAP (see Figure 4), which had consistently achieved
satisfying results during testing. We were thus able to recover intrinsic parameters, po-
sitions, and orientations for every camera. The software’s dense reconstruction step also
provided us with a plausible 3D model of the minerals and environments, which we
simplified and cleaned up using Blender and Jakob et al.’s [21] Instant Meshes.

From the 41 high-resolution photographs of the pyrite mineral, we thus obtained a
final 3D mesh composed of 122 k vertices and 242 k triangles. Similarly, we simplified and
cleaned up the 3D model reconstructed from the 320 photographs of the museum gallery
to finally obtain an output mesh composed of about 80 k vertices and 160 k triangles.
Because part of our investigation consisted of comparing the scene’s appearance with
and without view-dependent highlights, and since COLMAP does not texture the output
model, we also applied the global texture mapping method implemented in de Dinechin
and Paljic’s [6] COLIBRI VR to obtain textures for these models.
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Figure 4. Reconstructing the museum scene in COLMAP.

3.3.2. Applying a View-Dependent Rendering Method

We then rendered the obtained models with view-dependent highlights in VR in
Unity, using the implementation of unstructured lumigraph rendering [3] made available
in the open-source COLIBRI VR toolkit [6]. We simply applied the toolkit’s unstructured
lumigraph rendering method using a global 3D mesh as proxy, without any modification
to the algorithm. Using this method, we were able to render the scene at framerates of
more than 60 frames per second on our setup, with specular highlights and reflections
effectively becoming visible on the facets of the minerals and on the glass display cases.
With the obtained VR scene, we could now lead our user study.

3.4. Study Protocol
3.4.1. Hypotheses

We designed our study to investigate two hypotheses:

Hypothesis 1 (H1). Larger viewing volumes provide participants with a stronger sense of presence,
due to the virtual location not fading out as the viewer moves away.

Hypothesis 2 (H2). Scenes rendered with view-dependent effects provide participants with a
stronger impression of visual realism, due to the corresponding increase in fidelity with regard to
the real-world scene.

3.4.2. Scenes and Overall Procedure

To test these hypotheses, we relied on two sample scenes. In one scene, viewers were
thus shown a virtual mineral we had recreated from the photographs captured by the
museum’s curators (see Section 3.1.2), specifically a pyrite mineral. This was used to study
H2, by rendering the mineral with or without view-dependent highlights. In the other
scene, users were shown the recreated viewpoint captured in the museum’s gallery using
our multi-camera rig (see Section 3.1.3). This second scene was used to study both H1
and H2, by varying the size of the viewing volume between participants, and showing
the scene successively with and without view-dependent effects. To give a better sense of
what the scenes looked like, we provide a panoramic view of the museum scene and its
underlying geometry in Figure 5.

Each participant thus observed both scenes, each rendered successively both with and
without view-dependent highlights, in a randomized order. Specifically, participants were
tasked with observing each scene for a few seconds, before answering a series of questions
related to perceived realism, comfort, and presence. After seeing the two ways of rendering
a given scene, participants were also asked to state which rendering solution they had
preferred, for both scenes.
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Figure 5. The images show 360° color and depth panoramas obtained by placing a virtual camera in the center of the
“Museum” scene. Note that we generated these panoramas from the scene simply for illustration: no 360° photographs were
captured or rendered during the study.

Participants conducted the experiment in a standing position, and could move around
the virtual scenes by walking normally within a tracking space about 2 m wide and 2 m
long. The head-mounted display used for the study was a HTC Vive Pro. The scenes were
displayed using Unity version 2019.2.15f, using a computer with a NVIDIA GeForce GTX
1070 GPU. The experiment lasted between 15 and 20 min for each user.

3.4.3. Participants, Ethics, and Safety

We conducted the study on N = 18 participants—12 male and 6 female. Users were
aged between 19 and 39 years old (Mdn = 21, SD = 1.08). Many were university students
enrolled in an ongoing course on virtual reality, and most thus had prior experience with
VR head-mounted displays. Participation in the study was not mandatory for the course
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on VR, and users took part in the study anonymously, with no record of their name in the
collected data.

We recruited participants on the university campus by way of an online form. In this
form, we provided details on the study protocol and on the way we would use the recorded
data. Interested users then replied to the form by selecting an option stating that they
wished to take part and indicating their preferred time slot. We obtained approval to lead
our user study after submitting our protocol and registration form to the relevant ethics
and safety committee of our institution—specifically, the Health, Safety, and Environment
(HSE) officer.

We also adapted our protocol to prevent risks related to the ongoing pandemic.
Participants were thus required to wear a face mask to take part in the experiment, and were
provided with hand sanitizer as they entered the study room. A safe distance was also
consistently kept between the experimenter and the participant. Additionally, to ensure
as little interaction with the experimenter as possible, participants were asked the study
questions while still in VR, instead of being given a post-test questionnaire to fill out by
hand. We do not believe that this change hinders the results in a meaningful way: in
particular, previous work in the literature has shown that completing questionnaires while
in VR does not significantly change measures of presence [8]. Finally, we sanitized the VR
head-mounted displays between each participant using CleanBox UVC decontamination
systems, and ventilated the room regularly by opening the windows.

3.5. Study Conditions and Measures
3.5.1. Independent Variable: ViewRadius

To study H1, we considered as a first independent variable the fade radius of the
viewing volume. This variable was used in the “Museum” scene captured using our camera
rig, thereby constraining the viewing volume as users moved away from the center of
capture. It was chosen as a between-subjects variable, in order to be able to ask participants
which rendering method they preferred without the answer being biased due to different
viewing volume sizes.

Specifically, we gave this variable one of three levels in the study:

• 20 cm: In our scene, this was the empirical limit until which the rendering method
was capable of producing noticeable view-dependent effects, given our 30 cm capture
radius. This value is also relevant because it is close to the radii used in recent
works [1,7].

• 50 cm: This was an intermediate radius, which we expected would not be perceived
as being extremely constraining. However, within the second half of the correspond-
ing viewing volume in our sample scene, view-dependent effects were no longer
accurately rendered.

• 100 cm: This was the volume which we considered to be a reasonable upper bound,
given the size of our tracking space.

Whichever its value, the scene linearly faded to black when moving beyond this
radius, over a fixed 5 cm distance. This is illustrated in Figure 6.
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Figure 6. User’s view in the “Museum” scene rendered with view-dependent effects and a view radius of 20 cm. From left
to right, the user’s head has moved to x = 0 cm, x = 10 cm, x = 20 cm, and x = 22.5 cm. Notice how the view fades
out (at x = 25 cm, it would be entirely black), as well as how the reflection on the window moves in front of the items
inside the glass case.

3.5.2. Independent Variable: RenderType

To study H2, we considered as a second independent variable the rendering condition.
It was chosen as a within-subjects variable, in order to ask participants their preferred solu-
tion. This variable was used in both the “Museum” and “Pyrite” scenes, which displayed
different types of view-dependent effects: the pyrite exhibited mirror-like reflections on its
different facets, while the museum scene presented more subtle effects such as transparency
and reflectivity on the glass display cases. Each scene could thus be rendered either with
view-dependent highlights (using unstructured lumigraph rendering) or without (using
only a global texture map).

3.5.3. Dependent Variables: Questionnaire

In the course of the study, we essentially aimed to measure users’ perception of
visual realism and presence. To do so, we built upon several relevant questionnaires
from the literature to create a study form with multiple Likert-type items. We provide an
overview of this questionnaire in Table 1. We notably included questions from previous
works investigating visual realism, comfort, and general preference [7,12] (questions 1–3,
9, and 10). We also included questions related to our more specific question of viewing
volume size (questions 4 and 5). Finally, to measure presence, we used the three-item SUS
questionnaire from the literature [19] (questions 6–8), which was seen as more practical
than longer forms given that participants answered from within VR. All questions were on
7-point scales, with short descriptions provided for the scales’ extremes.
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Table 1. Study questionnaire, with “MP” if asked in both the “Museum” and “Pyrite” scenes, and “M”
if only asked in the former.

1. How visually realistic was the scene? MP
2. If you perceived visual artifacts in the reconstruction, to what extent did you
find them disturbing?

MP

3. How visually comfortable was the scene? MP
4. How comfortable were you moving around in the scene? M
5. Did you feel constrained in your movements? M
6. To what extent did you feel like you were there, in the scene? M
7. To what extent did the scene become the reality for you? M
8. Did you feel more like you were seeing images of a place, or visiting a place? M
9. Did you feel nausea, vertigo, or headache? M
10. Overall, which method did you prefer? (after seeing the scene rendered with
and without view-dependent effects)

MP

4. Results

We analyzed the recorded observations by conducting the relevant analysis of variance
(ANOVA) tests, followed by pairwise t-tests to refine the analysis when appropriate. We
used a significance level of 5%, and applied the Bonferroni correction to adjust p-values.
Statistical testing was computed in R.

4.1. Experiment 1: “Pyrite” Scene

To analyze the observations in the “Pyrite” scene, we conducted a repeated-measures
ANOVA test with RenderType as a within-subjects factor. This analysis validated a statisti-
cally significant main effect of RenderType on VisualComfort (question 3): F(1,17) = 8.774,
p.adj < 0.01.

Users thus found the scene to be more visually comfortable when there were no
rendered view-dependent highlights (M = 6.00, SD = 1.08) than when these were rendered
(M = 4.67, SD = 1.57), as illustrated in Figure 7.
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Figure 7. In the “Pyrite” scene, visual comfort (higher is more comfortable) was shown to significantly differ based on
rendering type.
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In terms of preference (question 10), 8 users reported preferring the replica in the
condition with view-dependent highlights, and 10 users in the condition without. A χ2 test
on these scores did not show a significant preference for one method over the other.

4.2. Experiment 2: “Museum” Scene

To analyze the observations in the “Pyrite” scene, we conducted a two-way mixed
ANOVA test with ViewRadius as a between-subjects factor and RenderType as a within-
subjects factor.

As illustrated in Figure 8, this analysis validated a statistically significant main effect
of RenderType on:

• VisualRealism (question 1): F(1,15) = 4.661, p.adj < 0.05. Users thus found the scene to
be more visually realistic when there were rendered highlights (M = 5.89, SD = 0.90)
than when these were not rendered (M = 5.22, SD = 1.40).

• Artifacts (question 2, higher is more comfortable): F(1,15) = 5.046, p.adj < 0.05. Users
were thus more disturbed by artifacts when there were rendered view-dependent
highlights (M = 2.72, SD = 1.23) than when these were not rendered (M = 3.56,
SD = 1.20).

• Presence (questions 6–8): F(1,15) = 9.023, p.adj < 0.01. Users thus felt a stronger
sense of presence when there were rendered view-dependent highlights (M = 5.39,
SD = 1.04) than when these were not rendered (M = 4.76, SD = 1.36). Leading the
test on each individual component showed a significant impact on the response to
question 7 in particular.

Additionally, as illustrated in Figure 9, this analysis validated a statistically significant
main effect of ViewRadius on the sense of being Constrained (question 5, higher is more
free): F(2,15) = 5.242, p.adj < 0.05. Leading a pairwise t-test to refine the results confirmed
a significant difference both between the 20 cm and 100 cm conditions (p.adj < 0.001),
and between the 50 cm and 100 cm conditions (p.adj < 0.01). Users thus felt more
constrained in their motion when viewing the scene with a 20 cm fade radius (M = 3.14,
SD = 1.61) than with a 100 cm fade radius (M = 5.7, SD = 1.16), and similarly a 50 cm
fade radius (M = 3.50, SD = 1.51) was found to be more constraining than a 100 cm one.

Furthermore, as illustrated in Figure 10, our analysis validated a statistically significant
interaction between RenderType and ViewRadius on perceived Sickness (question 9):
F(2,15) = 4.341, p.adj < 0.05. Leading a pairwise t-test to refine the results confirmed
a significant difference both between the 20 cm and 100 cm conditions (p.adj < 0.05),
and between the 50 cm and 100 cm conditions (p.adj < 0.05) when considering scenes
rendered without view-dependent highlights. Specifically, in this rendering condition,
users reported feeling a significantly stronger sense of sickness when they had the larger
100 cm viewing volume to explore (M = 4.60, SD = 1.82) than in the restricted 20 cm
(M = 6.71, SD = 0.488) and 50 cm (M = 6.50, SD = 0.837) conditions.
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Figure 8. In the “Museum” scene, the following were shown to significantly differ based on rendering type: (a) visual
realism (higher is more realistic); (b) perception of artifacts (higher is less disturbing); (c) presence (higher is stronger).
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Figure 9. Perceived constraint during motion (higher is more free to move around) was shown to
significantly differ based on viewing radius in the “Museum” scene.
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Figure 10. Perceived cybersickness (higher is less sick) was shown to significantly differ based on the
interaction between rendering condition and viewing radius in the “Museum” scene.

Finally, in terms of preference (question 10), 13 users reported preferring the replica in
the condition with view-dependent highlights, and 5 users in the condition without. A χ2

test did not show a significant preference for one method over the other.

5. Discussion
5.1. Results Analysis

In the “Pyrite” scene, our analysis shows that the mineral was perceived as being less
comfortable to look at when rendered with view-dependent highlights. This result was
also consistent with additional comments made by many participants, with several noting
that the reflections made the object flicker even when performing little motion, thereby
causing discomfort. Overall, most participants thus found the mineral with highlights to
be more visually realistic, but less comfortable to look at, which likely explains the lack of
consensus in terms of preference. Interestingly, some participants even found the mineral
to be less realistic when rendered with highlights, as the transitions between reflections
from different images were deemed too rough and exaggerated.

In contrast, the more subtle view-dependent effects in the “Museum” scene seem
to have elicited more consistently positive responses from users, and the scene rendered
with view-dependent effects seems to have been preferred overall by the participants in
our sample group. In particular, the environment was found to be significantly more
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visually realistic when rendered with view-dependent reflections: several participants
thus commented that details seemed crisper in this condition, and the reflections on the
glass windows and on the minerals were mostly found to be convincing. Additionally,
this condition elicited higher presence scores, which we believe is likely also linked to the
increase in perceived resolution and visual realism. On the other hand, rendering the scene
with unstructured lumigraph rendering instead of a fixed texture map caused viewers
to perceive more artifacts: this is consistent with observations from previous works that
underline the importance of mitigating such artifacts [1,5], as these visual inaccuracies are
bound to appear when applying image-based rendering methods.

Finally, the results of our analysis underline that making the scene fade out at closer
ranges does indeed make viewers feel more constrained in their movements. Fade radii of
20 cm and 50 cm were thus perceived as similarly quite constraining, while the radius of
100 cm—that roughly corresponded to the physical bounds of our tracking space—was
perceived as less of a barrier. This is consistent with user comments, which underlined
eagerness to move around to explore the scene, and frustration when virtually stuck within
a small radius. More surprisingly, our analysis also seems to show that rendering the
scene without highlights and with a large viewing volume caused several users to perceive
stronger symptoms of cybersickness, which can perhaps be interpreted as a result of
viewers moving further away from the central viewpoint to explore the scene. In any case,
the size of the viewing volume did not seem to have had an impact on viewers’ perception
of presence, which was instead more impacted by the choice of a rendering method.

5.2. Hypothesis Validation

Based on the results of our analysis, we thus cannot validate H1. Indeed, the fade
radius did not appear to have an impact on perceived presence: even when viewers were
constrained to stay within a small viewing volume, they reported feeling a sense of “being
there”, with levels similar to those reported in larger viewing volumes. In this way, it
seems that viewers’ mental construct of being in a place does not require the place to be
visible at all times. Perhaps this result can be interpreted by analogy with the fact that
the real world around us “disappears” regularly when we close our eyes, yet does not
feel less real because of it, because we know by experience that opening our eyes again
will make the world appear once more. In the same way, perhaps viewers feel that the
virtual world still exists around them even though it disappears beyond a given range
of motion, simply because the place consistently re-appears when they move back to the
central viewpoint: they can regularly check that the world exists by moving back to this
viewpoint, confirming that it is not an intangible, fleeting world that stops existing beyond
a given range, but rather a world upon which a dark veil is placed beyond this range,
the world itself still existing in spite of it.

On the other hand, our analysis is quite consistent with H2, and the results of our
experiment in the “Museum” scene confirm that rendering view-dependent highlights
can significantly enhance viewers’ perception of visual realism. However, our results
on the “Pyrite” scene also lead us to exert caution: the added visual accuracy does not
appear to always be perceived as enhancing the scene’s realism, as some reflections may
be perceived as being too exaggerated or visually uncomfortable to seem realistic. Conse-
quently, additional research should lead to a better understanding of the conditions under
which view-dependent effects are perceived as realistic when rendered with image-based
techniques, i.e., whether this depends on the type of effect, sampling density, or other
aspects of the rendering method that still have to be investigated.

5.3. Paths for Future Work

Our results encourage several paths for future work. In particular, the observation that
viewing volume size does not appear to impact presence is interesting, as it may encourage
focusing on rendering higher-quality views (fewer artifacts, more realistic effects) within
small viewing volumes rather than necessarily augmenting the size of the volume itself.
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Additional studies could also be led to evaluate image-based rendering methods on a wider
array of scenes and with larger sample sizes, in order to better understand the conditions
under which view-dependent effects are appreciated, preferred over global texture maps,
and perceived as being realistically rendered.

As for the capture process, further testing could be led to evaluate the extent to which
supplementing the rotations with additional captures in translation could help 3D recon-
struction by consolidating parallax. Several different angle layouts (both cylindrical and
spherical) could also be tested, and the resulting reconstructions compared. Furthermore,
coverage at the zenith could be improved by adding cameras facing upwards. Other
paths for improvement also include using a battery instead of the current power supply,
and switching to higher-quality cameras.

Additionally, future works could reproduce the study with high-dynamic-range (HDR)
data, by capturing multiple exposures and rendering the data on an adapted display or
using a tone-mapping operator. Indeed, using HDR data may be significant, because pho-
tographs with a limited dynamic range may cause areas with highlights to be oversaturated
and may thus be the source of noticeable artifacts during rendering. In this way, it could be
interesting to lead a user study investigating the extent to which viewers perceive fewer
artifacts when using HDR data as input. Future research could also focus on the choice of a
tone-mapping operator, which could be selected either using objective criteria or based on
user study results (to obtain a perceptive-driven metric).

6. Conclusions

In this paper we presented our development of a custom solution for multi-view
capture, which we applied in a museum context to investigate the impact of viewing
volume size and view-dependent effects on participants’ perception of presence and visual
realism. Our analysis confirms that view-dependent image-based rendering methods can
be applied to significantly enhance a scene’s visual realism and elicit a stronger sense
of presence, although some drawbacks remain that should encourage future work on
this subject.
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