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Abstract: Supervised machine learning and its algorithms are a developing trend in the predic-
tion of rockfill material (RFM) mechanical properties. This study investigates supervised learning
algorithms—support vector machine (SVM), random forest (RF), AdaBoost, and k-nearest neighbor
(KNN) for the prediction of the RFM shear strength. A total of 165 RFM case studies with 13 key
material properties for rockfill characterization have been applied to construct and validate the
models. The performance of the SVM, RF, AdaBoost, and KNN models are assessed using statistical
parameters, including the coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE) coefficient,
root mean square error (RMSE), and ratio of the RMSE to the standard deviation of measured data
(RSR). The applications for the abovementioned models for predicting the shear strength of RFM
are compared and discussed. The analysis of the R2 together with NSE, RMSE, and RSR for the
RFM shear strength data set demonstrates that the SVM achieved a better prediction performance
with (R2 = 0.9655, NSE = 0.9639, RMSE = 0.1135, and RSR = 0.1899) succeeded by the RF model with
(R2 = 0.9545, NSE = 0.9542, RMSE = 0.1279, and RSR = 0.2140), the AdaBoost model with (R2 = 0.9390,
NSE = 0.9388, RMSE = 0.1478, and RSR = 0.2474), and the KNN with (R2 = 0.6233, NSE = 0.6180,
RMSE = 0.3693, and RSR = 0.6181). Furthermore, the sensitivity analysis result shows that normal
stress was the key parameter affecting the shear strength of RFM.

Keywords: AdaBoost; support vector machine; k-nearest neighbor; random forest; rockfill materials;
shear strength

1. Introduction

Rockfill materials (RFMs) are commonly used in civil engineering projects such as
rockfill dams, slopes, and embankments as construction materials for filling. This material
is either obtained from a river’s alluvial deposits or by blasting available rock [1,2]. RFMs
are widely being used in the construction of rockfill dams to trap the river water because
of their inherent flexibility, capacity to absorb large seismic energy, and adaptability to
various foundation conditions. The behavior of RFMs used in rockfill dams is important
for the safe and cost-effective construction of these structures. Generally, rockfill behaves
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like a Mohr/Coulomb material, albeit without cohesion and with relatively high internal
friction angles. Crushed rockfill, loosely layered, can behave like coarse sand. The shear
strength of both types of RFM is affected by many factors such as mineral composition, sur-
face structure, particle size, shape, relative density, individual particle strength, etc. [3–5].
Because of the variable jointing, angularity/roundness, and rock particle size distribution,
the RFM can be considered the most complex material [6]. In order to know the mechanical
properties of RFMs, extensive field and laboratory research is essential for understanding
RFM behavior and determining shear strength parameters in order to design safe and
cost-effective structures. In situ direct shear system was used to monitor the shear strength
of RFM, as well as the variation in the shear strength of rockfill along with the fill lift [7].
Linero [8] carried out some large-scale shear resistance experiments to simulate the mate-
rial’s original grain size distribution and the expected load level. RFM with a large particle
size (maximum particle size of 1200 mm) is incompatible in laboratory testing [9]. Owing
to restricting the effects of large particle sizes on test apparatus, such behavior makes it
much more difficult to design representative/realistic large-scale strength tests. Further-
more, determining the shear strength of RFM directly is considered a costly and difficult
process. Large-scale shear tests are often time-consuming and complex, and estimating
the nonlinear shear strength function without using an analytical method is difficult. As a
result, several researchers have attempted to determine the mechanical properties of RFM
using indirect methods based on machine learning (ML) techniques.

In recent years, several researchers used ML algorithms and achieved efficient suc-
cesses in different civil engineering and other sectors such as environmental [10], geotech-
nical [11–18], and other fields of science [19–28]. Numerous researchers have documented
the behavior of the RFM. Marsal [3], Mirachi et al. [4], Venkatachalam [5], Gupta [29],
Abbas [30], and Honkanadavar and Sharma [31] carried out laboratory experiments on
different rockfill materials and concluded that the behavior of stress-strain is nonlinear,
inelastic and based on the level of stress. They also noted that with an increase in max-
imum particle size for riverbed rockfill material, the angle of internal friction increases,
and a reverse pattern for quarried rockfill material is observed. Frossard et al. [32] pro-
posed a rational approach for assessing rockfill shear strength on the basis of size effects;
Honkanadavar and Gupta [9] developed power law to relate the shear strength parameter
to some index properties of riverbed RFM. Describing the mechanical behavior of rockfill
materials and challenges in large-scale strength tests have incited several approaches in
modeling the respective behavior of such soils. In this context, the artificial neural network
(ANN) approach used by Kaunda [33] needs fewer rockfill parameters and was found to
be more efficient in predicting RFM shear strength. Zhou et al. [34] have recently used
cubist and random forest regression algorithms and have found that both can deliver better
predictive RFM shear strength results than ANN and conventional regression models. This
field, however, continues to be further explored. Considering that large-scale strength
tests to characterize the shear strength are challenging, ML algorithms based on support
vector machine (SVM), random forest (RF), AdaBoost, and k-nearest neighbor (KNN)
models are proposed. Furthermore, the ML algorithms SVM, RF, AdaBoost, and KNN have
demonstrated excellent prediction efficiency in a variety of fields [35–39] because of their
generalization capability. The application in civil engineering field more significantly in
prediction of RFM shear strength is limited based on literature surveys.

The main intention of the present study is to explore the capability of using SVM, RF,
AdaBoost, and KNN algorithms to establish a more precise and parsimonious behavioral
model for predicting the RFM shear strength. A critical review of existing literature suggests
that despite the successful implementation of these techniques in various domains, their
implementation in the prediction of RFM shear strength is scarcely explored. One of the
primary significances of this study is that the data division in the training and testing data
sets has been made with due regard to statistical aspects such as maximum, minimum,
mean, and standard deviation. The splitting of the data sets is made to determine the
predictive capability and generalization performance of established models and later helps
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to better evaluate them. Additionally, sensitivity analysis is carried out to find the main
parameter influencing RFM shear strength. Concisely, the present study investigated and
expanded the scope of machine learning algorithms for the development of the RFM shear
strength model, which will provide theoretical support for researchers to establish a basis
in selecting optimal machine learning algorithms in improving the predictive performance
of RFM shear strength.

The rest of this article is structured as follows: The next section introduces the de-
scription of the used database and preliminaries of the algorithms used in the proposed
approach and discusses the model evaluation metrics. Development of SVM, RF, AdaBoost,
and KNN models are described in Section 3. Section 4 is dedicated to the performances
and comparison of proposed models. Finally, Section 5 draws conclusions and outlines
promising directions for future work.

2. Materials and Methods
2.1. Data Set

In this study, 165 samples of rockfill material (RFM) shear strength case history
acquired by Kaunda [33] presented in Table A1 in the Appendix A were used to develop
and evaluate the effectiveness of the proposed models. The RFM shear strength case
history data are summarized in Table 1, where D10, D30, D60, and D90 correspond to the
10%, 30%, 60%, and 90% passing sieve sizes, Cc and Cu refer to coefficients of uniformity
and curvature (Cc), respectively, FM and GM describe fineness modulus and gradation
modulus, respectively, R represents ISRM hardness rating, UCSmin and UCSmax (MPa)
indicate the minimum and maximum uniaxial compression strengths (MPa), γ is the dry
unit weight (kN/m3), σn is normal stress (MPa), and τ is the shear strength of RFM (MPa) as
the output variable. In this study, the output parameter selected to determine shear strength
was the shear stress value at the failure of test samples and was the single output variable.
The database was divided into two different sets, consisting of 80 percent (132 cases) and
20 percent (33 cases) of data, respectively, represented as training and testing sets. The
testing set was accustomed to determine when training should be stopped in order to
avoid overfitting. In order to achieve a consistent data splitting, different combinations
of training and testing sets were experienced. The abovementioned selection was in such
a way that the maximum (Max), minimum (Min), mean, and standard deviation of the
parameters were consistent in the training and testing data sets (Table 2).

Table 1. Rockfill materials shear strength case history data.

Case
No. Location D10/mm D30/mm D60/mm D90/mm Cc Cu GM FM R UCSmin/

MPa
UCSmax/
MPa

γ/
KNm−3 σn/MPa τ/MPa

1 Canada 0.02 0.94 4 18 11.05 200 4.78 4.19 1 1 5 15.4 0.022 0.013
2 Canada 0.02 0.94 4 18 11.05 200 4.78 4.19 1 1 5 15.4 0.044 0.025
3 Canada 0.02 0.94 4 18 11.05 200 4.78 4.19 1 1 5 15.4 0.088 0.049

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
163 Netherlands 11 15 23 32 0.89 2.09 1.48 7.48 5 100 250 16.8 0.028 0.048
164 Netherlands 11 15 23 32 0.89 2.09 1.48 7.48 5 100 250 16.8 0.055 0.082
165 Netherlands 11 15 23 32 0.89 2.09 1.48 7.48 5 100 250 16.8 0.108 0.143
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Table 2. Statistical parameters of the training and testing data sets.

Parameter Data Set Min Value Max Value Mean Standard
Deviation

D10 (mm)
Training 0.010 33.900 4.857 9.179

Testing 0.010 33.900 2.887 7.453

D30 (mm)
Training 0.560 42.400 8.465 10.577

Testing 0.560 42.400 5.442 9.050

D60 (mm)
Training 1.200 80.100 19.287 15.135

Testing 1.200 50.000 14.252 10.349

D90 (mm)
Training 2.600 100.000 40.386 22.018

Testing 2.600 99.000 38.091 24.289

CC
Training 0.100 22.270 2.199 3.075

Testing 0.100 22.270 3.226 4.492

CU
Training 1.360 1040.000 53.324 156.064

Testing 1.470 1040.000 134.510 294.958

GM
Training 0.200 6.000 2.788 1.243

Testing 0.200 6.000 3.365 1.331

FM
Training 3.000 8.800 6.250 1.261

Testing 3.000 8.800 5.709 1.374

R
Training 1.000 6.000 4.364 0.910

Testing 1.000 5.000 4.182 1.131

UCSmin (MPa)
Training 1.000 250.000 75.045 39.230

Testing 1.000 100.000 68.273 32.444

UCSmax (MPa)
Training 5.000 400.000 170.682 88.010

Testing 5.000 250.000 159.545 87.957

γ (KN/m3)
Training 9.320 38.900 20.766 4.605

Testing 9.320 38.900 20.932 5.854

σn (MPa)
Training 0.002 4.205 0.729 0.780

Testing 0.021 3.223 0.756 0.816

τ (MPa)
Training 0.005 3.921 0.660 0.662

Testing 0.024 2.492 0.668 0.619

2.2. Support Vector Machine

Boser, Guyon, and Vapnik were the first to formulate and introduce the support vector
machine (SVM) [40]. In the case of non-separable data, to accommodate errors for certain
objects i, the “ideal boundary” must be introduced:{

minimize
(

1
2 |δ|

2 + C∑n
i=1 ξi

)
under the constraints yi(b + δ·xi) + ξi ≥ 1 and ξi ≥ 0

(1)

where C is the penetrating parameter; δ and b are, respectively, the normal vector and the
bias of the hyperplane; and each ξi refers to the distance within object i and the respective
margin hyperplane [41,42].

Data are implicitly mapped to a higher-dimensional space through mercer kernels,
which can be broken down into a dot product to learn nonlinearly separable functions
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K
(

xi, xj
)
= ϕ(xi)·ϕ

(
xj
)

[42]. The kernel of the radial basis function (RBF) that is used
widely is listed below:

K
(

xi, xj
)
= exp

(
−σ‖xi − xj‖2

)
(2)

where σ is the kernel parameter.

2.3. Random Forest

The use of a large series of low-dimensional regression trees is the basis of the random
forest (RF). The theoretical development of RF is described by Breiman [43]. RF is an exam-
ple of ensemble learning, which requires the development of a large number of decision
trees to be implemented. In general, there are two types of decision trees: regression trees
and classification trees. Regression trees were designed in the RF model since the main
goal of this analysis was to predict the shear strength of RFM. Figure 1 depicts a general
architecture for RF analysis. The protocol for analysis can be divided into two stages:

Stage 1: To create a sequence of sub-data sets, the bootstrap statistical technique is
used to randomly sample from the initial data set (training data). The forest is then built
using regression trees based on these sub-data sets. Each tree is trained by choosing a set
of variables at random (a fixed number of descriptive variables selected from the random
subset). Two important parameters that can be adjusted during the training stage are the
number of trees (ntree) and the number of variables (mtry).

Stage 2: Once the model has been trained, a prediction can be made. In an ensemble
approach, input variables are evaluated for all regression trees first, and then the final
output is calculated by measuring the average value of each individual tree’s prediction.
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Figure 1. Schematic representation of RF analysis.

2.4. AdaBoost Algorithm

The sequential ensemble technique AdaBoost, or adaptive boosting, is based on the
concept of developing many poor learners using different training sub-sets drawn at
random from the original training data set. Weights are allocated during each training
session, and these are used to learn each hypothesis. The weights are used to calculate
the hypothesis error on the data set and are a measure of the relative importance of each
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instance. After each iteration, the weights are recalculated so that instances classified
wrongly by the previous hypothesis obtain higher weights. This allows the algorithm
to concentrate on instances that are more difficult to understand. The algorithm’s most
important task is to assign updated weights to instances that were wrongly labeled. In
regression, the instances represent a real-value error. The AdaBoost technique can be used
to mark the calculated error as an error or not an error by comparing it to a predefined
threshold prediction error. Instances that have made a greater mistake on previous learners
are more likely (i.e., have a higher probability) to be chosen for training the next base
learner. Finally, an ensemble estimate of the individual base learner predictions is made
using a weighted average or median [44].

2.5. k-Nearest Neighbor

The supervised ML algorithm k-nearest neighbor (KNN) can be used to solve both
classification and regression problems. It is, however, most commonly used in classification
problems [45]. In regression problems, the input data set consists of k that is nearest to
the training data sets deployed in the featured set. The output is dependent if KNN is
deployed to function as a regression algorithm. For KNN regression, the ensuing result is
the characteristic value for the object, which is the mean figure of k’s nearest neighbors. To
locate the k of a data point, a parameter such as Euclidean, Mahalanobis can be used as the
distance metric [46,47].

2.6. Performance Metric

The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE) coefficient, root
mean square error (RMSE), and the ratio of the RMSE to the standard deviation of measured
data (RSR) were taken into account to examine the predictive capacity of the models, as
shown in Equations (3)–(6) [48–50]:

R2 =

 ∑n
i=1
(
Oi −O

)(
Pi − P

)√
∑n

i=1
(
Oi −O

)2
√

∑n
i=1
(

Pi − P
)2

 (3)

NSE =
∑n

i=1
(
Oi −O

)2 −∑n
i=1(Pi −Oi)

2

∑n
i=1
(
Oi −O

)2 (4)

RMSE =

√
1
n

n

∑
i=1

(Pi −Oi)
2 (5)

RSR =
∑n

i=1(Oi − Pi)
2√

∑n
i=1
(
Oi −O

)2
(6)

where n is the number of observations under consideration, Oi is the ith observed value,
O is the mean observed value, Pi is the ith model-predicted value, and P is the mean
model-predicted value.

R-squared, also called the determination coefficient, describes the change in data as
the degree of fit. The normal “determination coefficient” range is (0–1). The model is
considered to be efficient if the R2 value is greater than 0.8 and is close to 1 [51]. The NSE is
a normalized statistic that controls the relative extent of the residual variance relative to the
variance of the data measured [52]. The NSE varies between −∞ and 1. When NSE = 1, it
presents a flawless match among observed and predicted values. Model predictive output
with a range of 0.75 < NSE ≤ 1.00, 0.65 < NSE ≤ 0.75, 0.50 < NSE ≤ 0.65, 0.40 < NSE ≤ 0.50,
or NSE≤ 0.4 is graded as very good, good, acceptable, or unacceptable, respectively [53,54].
The RMSE is the square root of the ratio of the square of the deviation between the observed
value and the true value of the number of observations n. The RMSE has a value greater
than or equal to 0, where 0 is a statistically perfect fit for the data observed [55–57]. The



Appl. Sci. 2021, 11, 6167 7 of 22

RSR is interpreted as the ratio of the measured data’s RMSE and standard deviation. The
RSR varies between an optimal value of 0 and a large positive value. A lower RSR presents
a lower RMSE, which indicates the model’s greater predictive efficiency. RSR classification
ranges are described as very good, good, acceptable, and unacceptable with ranges of
0.00 ≤ RSR ≤ 0.50, 0.50 ≤ RSR ≤ 0.60, 0.60 ≤ RSR ≤ 0.70, and RSR > 0.70, respectively [53].

3. Model Development to Predict RFM Shear Strength

The models for RFM shear strength prediction were developed using Orange soft-
ware, which is a popular open-source environment for statistical computing and data
visualization. All data processing is carried out using Orange software (version 3.13). The
most prevalent supervised learning classification algorithms are given by Orange. In the
package documentation manuals, one can find more information about input parameters,
implementation, and references.

The structure of the model was based on an input matrix identified by predictor vari-
ables, x = {D10, D30, D60, D90, Cc, Cu, GM, FM, R, UCSmin, UCSmax, γ, and σn} and output,
also called target variable (y), was the RFM shear strength. In every modeling process,
achieving a consistent data division and the appropriate size of the training and testing data
sets is the most important task. The statistical features, such as the minimum, maximum,
mean, and standard deviation of the data sets, have therefore been taken into account in the
splitting process. The statistical accuracy of the training and testing data sets optimizes the
performance of the models and ultimately helps to evaluate them better. On the remaining
data set, the proposed models were tested. In other words, to build and test the models,
132 and 33 data sets were used, respectively. To fairly assess the predictive performance of
the models, the data set used for the testing of all models was kept the same.

In order to optimize the RFM shear strength prediction, all the models (AdaBoost,
RF, SVM, and KNN) were tuned based on the trial and error process. Initially, the values
were chosen for model tuning parameters and gradually varied in experiments until the
best fitness measurements were achieved. Figure 2 shows the schematic diagram of the
proposed methodology. The optimization method aims to find the best parameters for
AdaBoost, RF, SVM, and KNN in order to achieve the best prediction accuracy. Some
critical hyperparameters in the AdaBoost, RF, SVM, and KNN algorithms are tuned in this
study, as shown in Table 3. The definitions of these hyperparameters are also clarified in
Table 3. The values for the tuning parameters of the models were first chosen and then
varied in the trials until the best fitness measures mentioned in Table 3 were achieved.

Table 3. Hyperparameter optimization results.

Algorithm Hyperparameter Explanation Optimal Value

AdaBoost

Number of estimators Number of trees 2

Learning rate It establishes the degree to which newly acquired information
can override previously acquired information 0.1

Boosting algorithm Updates the weight of the base estimator with probability
estimates or classification results (SAMME.R/SAMME) SAMME

Regression loss function Linear/square/exponential Linear

RF
Number of trees Number of trees in the forest 15

Limit depth of individual trees The depth to which the trees will be grown 03

SVM

Cost (C) Penalty term for loss and applies for classification and
regression tasks 8

Regression loss epsilon (ε) The distance between true and predicted values within which
no penalty is applied 0.1

Kernal type

Kernel is a function that transforms attribute space to a new
feature space to fit the maximum-margin hyperplane, thus
allowing the algorithm to construct the model with linear,

polynomial, RBF, and Sigmoid kernels

RBF
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Table 3. Cont.

Algorithm Hyperparameter Explanation Optimal Value

KNN

Number of neighbors Number of nearest neighbors 5

Metric Distance
parameter—Euclidean/Manhattan/Chebyshev/Mahalanobis Euclidean

Weight
Uniform—all points in each neighborhood are weighted

equally/distance—closer neighbors of a query point have a
greater influence than the neighbors further away

Uniform
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Figure 2. The flowchart of the methodology.

4. Results and Discussion

In this study, R2, NSE coefficient, RMSE, and RMSE to standard deviation of mea-
sured data are chosen as the criterion for defining the model’s output. The database
is split into a training data set and a testing data set to evaluate the performance of
the presented models. To make a fair comparison, all the models are developed by ap-
plying them to the same RFM shear strength training and testing data sets. Figure 3,
displays the scatter plot of the actual and the predicted RFM shear strength for the training
phase. The analysis of the R2 together with NSE, RMSE, and RSR for the RFM shear
strength data set demonstrates that the SVM achieved a better prediction performance
with (R2 = 0.9655, NSE = 0.9639, RMSE = 0.1135, and RSR = 0.1899) succeeded by the RF
model with (R2 = 0.9545, NSE = 0.9542, RMSE = 0.1279, and RSR = 0.2140), the AdaBoost
model with (R2 = 0.9390, NSE = 0.9388, RMSE = 0.1478, and RSR = 0.2474), and the KNN
with (R2 = 0.6233, NSE = 0.6180, RMSE = 0.3693, and RSR = 0.6181).

Figure 4, presenting the predicted RFM shear strength, is plotted with the actual RFM
shear strength data. According to the test data set, all models demonstrated very good
predictive potential (R2 > 0.8) with the exception of KNN, which displayed slightly worse
results (i.e., R2 = 0.6304) for the test data set. The result of R2 demonstrated that all SVM, RF,
and AdaBoost models except KNN are appropriate, but the SVM model performed better
because it had the highest R2 value (0.9656), and after that, the RF (0.9181) and AdaBoost
(0.8951) models. In comparison to the other models, the KNN model presented the worst
estimates with maximum dispersion (Figure 4).
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Figure 3. Scatter plots of actual vs. predicted RFM shear strength in training stage: (a) SVM, (b) RF, (c) AdaBoost, and
(d) KNN.

In addition, the NSE measure was ranked from highest to lowest predictive strength,
following the way: SVM (0.9654) > RF (0.9164) > AdaBoost (0.8835) > KNN (0.6076), which
is similar to R2. With regard to RMSE score, the SVM model also had the maximum
predictive ability by having the lowest RMSE (0.0153), succeeded by the models RF (0.0797),
AdaBoost (0.0941), and KNN (0.1727).

Finally, the reliability of all applied models was divided into four groups based on
RSR values: unsatisfactory, satisfactory, good, and very good with ranges of RSR > 0.70,
0.60 ≤ RSR ≤ 0.70, 0.50 ≤ RSR ≤ 0.60, and 0.00 ≤ RSR ≤ 0.50, respectively. The RSR value
therefore demonstrates very good results throughout all our established models except the
KNN model, whose performance is considered to be satisfactory. Figure 5 depicts the bar
graphs comparing the R2, NSE, RMSE, and RSR for the training and testing data sets of
all the models. The R2 defines the degree of co-linearity between our predicted and actual
data. The value of RMSE is more focused on large errors than on small errors. A lower RSR
indicates a lower RMSE, indicating the model’s better predictive efficiency. The SVM model
has high R2 and NSE while lower RMSE and RSR values, revealing that the SVM model is
preferable for predicting the RFM shear strength for the testing data. The SVM achieved a
better prediction performance with (R2 = 0.9655, RMSE = 0.0513 and mean absolute error
(MAE) = 0.0184) in comparison to the cubist method (R2 = 0.9645, RMSE = 0.0975, and MAE
= 0.0644) and ANN method (R2 = 0.9386, RMSE = 0.1320 and MAE = 0.0841) reported by
Zhou et al. [34] and Kaunda [33], respectively, for the test data. Additionally, the accuracy
of modeling determined by the linear regression method reported by Andjelkovic et al. [58]
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between measured and calculated values of shear strength (R2 = 0.836) was slightly lower
than the proposed SVM model. In general, the generalization and reliability of the SVM
algorithm perform well, and larger data sets can yield better prediction results.
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Figure 4. Scatter plots of actual vs. predicted RFM shear strength in testing stage: (a) SVM, (b) RF, (c) AdaBoost, and
(d) KNN.

In the present research, a sensitivity analysis was also conducted using Yang and
Zang’s [59] method to evaluate the influence of input parameters on RFM shear strength.
This approach has been used in several studies [60–63] and is formulated as:

rij =
∑n

m=1(yim × yom)√
∑n

m=1 yim
2∑n

m=1 yom2
(7)

where n is the number of data values (this study used 132 data values) and yim and yom
are the input and output parameters. The rij value ranged from zero to one for each input
parameter, and the highest rij values suggested the most efficient output parameter (which
was RFM shear strength in this study). The rij values for all input parameters are presented
in Figure 6. It can be seen from Figure 6 that the σn with rij is 0.990. Similar research of
sensitivity analyses on RFM shear strength was also implemented by Kaunda [33] and
Zhou et al. [34]. The findings demonstrated that normal stress is the most sensitive factor,
which shows agreement with the present mentioned results.
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Despite the fact that the proposed model produces desirable prediction results, certain
limitations should be addressed in the future.

(1) Similar to other machine learning methods, the major disadvantages of SVM, RF,
AdaBoost, and KNN models are sensitive to the fitness of the data set. Generally, if the
data set is small, the generalization and reliability of the model would be influenced.
However, the SVM, RF, and AdaBoost algorithms work with a limited data set, i.e.,
165 cases, except for KNN. The prediction performances could be better on a larger
data set. Furthermore, the developed models can always be updated to yield better
results as new data becomes available.

(2) Other qualitative indicators such as the Los Angeles abrasion value and lithology
may also have influences on the prediction results of the shear strength of RFM. Ac-
cordingly, it is significant to analyze the influence of these indicators on the prediction
results for improving performance.
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Figure 5. Comparison of R2, NSE, RMSE, and RSR values from the SVM, RF, AdaBoost, and KNN
models in (a) training phase and (b) testing phase.
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5. Conclusions

This study employed and examined the SVM, RF, AdaBoost, and KNN algorithms in
the RFM shear strength prediction problem. To construct and validate a new model on the
basis of the aforementioned algorithms, a comprehensive database containing 165 RFM case
studies was collected from the available literature. Thirteen different predictive variables
for rockfill characterization were selected as the input variables: D10 (mm), D30 (mm), D60
(mm), D90 (mm), Cc, Cu, GM, FM, R, UCSmin (MPa), γ (kN/m3), UCSmax (MPa), and σn
(MPa). The predictive performance of the proposed models is verified and compared. The
conclusions can be outlined as follows:

1. In this study, the SVM model (R2 = 0.9656, NSE = 0.9654, RMSE = 0.0153, and
RSR = 0.1861) successfully achieved a high level of modeling prediction efficiency
to RF (R2 = 0.9181, NSE = 0.9164, RMSE = 0.0797, and RSR = 0.2891), AdaBoost
(R2 = 0.8951, NSE = 0.8835, RMSE = 0.0941, and RSR = 0.3414), and KNN (R2 = 0.6304,
NSE = 0.6076, RMSE = 0.1727, and RSR = 0.6264) in the test data set. As the same
methodology (having the same training and test data sets) for structuring all models
is taken into consideration, the SVM model resulted the best and highest performance
in this aspect. This implies that this algorithm is robust in comparison with others in
RFM shear strength prediction.

2. The performance (in terms of R2) of the test data set for the SVM, RF, and AdaBoost
algorithms studied falls in the range of 0.9656–0.8951 across the three models with
13 input valuables. Results conclude that it is rational and feasible to estimate the
shear strength of RFM from the gradation, particle size, dry unit weight (γ), material
hardness, FM, and normal stress (σn).

3. Sensitivity analysis results revealed that normal stress (σn) was the key parameter
affecting the shear strength of RFM.

The findings show that the SVM model is a useful and accurate artificial intelligence
technique for predicting RFM shear strength and can be used in various fields. Further,
the generalization of the proposed approach for achieving improved performance results,
more experimental data should be collected in future research. Finally, RFM shear strength
prediction using advanced machine learning algorithms (i.e., deep learning) is left as a
future research topic.
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Notation
ANN Artificial neural network
AdaBoost Adaptive boosting
KNN k-nearest neighbor
NSE Nash–Sutcliffe efficiency coefficient
R2 Coefficient of determination
RF Random forest
RFM Rockfill material
RMSE Root mean square error

RSR
Ratio of RMSE to the standard deviation of the
measured data

ISRM International Society of Rock Mechanics
SVM Support vector machine
D10 Sieve size at 10 percent passing
D30 Sieve size at 30 percent passing
D60 Sieve size at 60 percent passing
D90 Sieve size at 90 percent passing
Cc Coefficient of curvature
Cu Coefficient of uniformity
GM Gradation modulus
FM Fineness modulus
R ISRM hardness rating
UCSmin Minimum uniaxial compression strength
γ Dry unit weight
UCSmax Maximum uniaxial compression strength
σn Normal stress
τ Shear strength
ϕ Angle of internal friction
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Appendix A

Table A1. Rockfill shear strength database.

Case
No. Location D10

(mm)
D30

(mm)
D60

(mm)
D90

(mm) Cc Cu GM FM R UCSmin
(MPa)

UCSmax
(MPa)

γ
(KN/m3)

σn
(MPa)

τ
(MPa)

1 Canada 0.02 0.94 4 18 11.05 200 4.78 4.19 1 1 5 15.4 0.022 0.013
2 Canada 0.02 0.94 4 18 11.05 200 4.78 4.19 1 1 5 15.4 0.044 0.025
3 Canada 0.02 0.94 4 18 11.05 200 4.78 4.19 1 1 5 15.4 0.088 0.049
4 Canada 0.03 2.1 6.6 18 22.27 220 4.22 4.73 1 1 5 38.9 0.022 0.013
5 Canada 0.03 2.1 6.6 18 22.27 220 4.22 4.73 1 1 5 38.9 0.044 0.024
6 Canada 0.03 2.1 6.6 18 22.27 220 4.22 4.73 1 1 5 38.9 0.088 0.048
7 Canada 0.09 0.92 3.2 10 2.94 35.56 5 3.94 1 1 5 37 0.022 0.014
8 Canada 0.09 0.92 3.2 10 2.94 35.56 5 3.94 1 1 5 37 0.044 0.027
9 Canada 0.09 0.92 3.2 10 2.94 35.56 5 3.94 1 1 5 37 0.088 0.053

10 U.K. 1 6 19 29 1.89 19 2.61 6.36 5 100 250 19.62 0.059 0.163
11 U.K. 1 6 19 29 1.89 19 2.61 6.36 5 100 250 19.62 0.098 0.218
12 U.K. 1 6 19 29 1.89 19 2.61 6.36 5 100 250 19.62 0.198 0.367
13 U.K. 1 6 19 29 1.89 19 2.61 6.36 5 100 250 19.62 0.299 0.513
14 U.K. 0.3 3.2 16 30 2.13 53.33 3.37 5.74 5 100 250 18.0504 0.058 0.15
15 U.K. 0.3 3.2 16 30 2.13 53.33 3.37 5.74 5 100 250 18.0504 0.097 0.204
16 U.K. 0.3 3.2 16 30 2.13 53.33 3.37 5.74 5 100 250 18.0504 0.195 0.33
17 U.K. 0.3 3.2 16 30 2.13 53.33 3.37 5.74 5 100 250 18.0504 0.297 0.456
18 U.K. 1 6 19 29 1.89 19 2.65 6.36 5 100 250 19.62 0.179 0.262
19 U.K. 1 6 19 29 1.89 19 2.65 6.36 5 100 250 19.62 0.538 0.697
20 U.K. 1 6 19 29 1.89 19 2.65 6.36 5 100 250 19.62 0.887 0.112
21 U.K. 0.3 3.2 16 30 2.13 53.33 3.37 5.74 5 100 250 18.0504 0.177 0.245
22 U.K. 0.3 3.2 16 30 2.13 53.33 3.37 5.74 5 100 250 18.0504 0.529 0.666
23 U.K. 0.3 3.2 16 30 2.13 53.33 3.37 5.74 5 100 250 18.0504 0.876 0.102
24 Iran 0.1 1.2 7.5 17.3 1.92 75 4.32 7.42 4 50 100 9.3195 0.101 0.16
25 Iran 0.1 1.2 7.5 17.3 1.92 75 4.32 7.42 4 50 100 9.3195 0.301 0.34
26 Iran 0.1 1.2 7.5 17.3 1.92 75 4.32 7.42 4 50 100 9.3195 0.503 0.5
27 Iran 0.4 2.8 11 30 1.78 27.5 3.38 5.6 4 50 100 9.3195 0.172 0.207
28 Iran 0.4 2.8 11 30 1.78 27.5 3.38 5.6 4 50 100 9.3195 0.497 0.476
29 Iran 0.4 2.8 11 30 1.78 27.5 3.38 5.6 4 50 100 9.3195 0.83 0.751
30 Japan 1.3 4.6 15 32 1.09 11.54 2.68 6.28 5 100 250 17.81496 0.094 0.136
31 Japan 1.3 4.6 15 32 1.09 11.54 2.68 6.28 5 100 250 17.81496 0.177 0.242
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Table A1. Cont.

Case
No. Location D10

(mm)
D30

(mm)
D60

(mm)
D90

(mm) Cc Cu GM FM R UCSmin
(MPa)

UCSmax
(MPa)

γ
(KN/m3)

σn
(MPa)

τ
(MPa)

32 Japan 1.3 4.6 15 32 1.09 11.54 2.68 6.28 5 100 250 17.81496 0.351 0.415
33 Japan 1.3 4.6 15 32 1.09 11.54 2.68 6.28 5 100 250 17.81496 0.512 0.552
34 Japan 0.6 2 16 30 0.42 26.67 3.24 5.86 4 50 100 21.8763 0.093 0.165
35 Japan 0.6 2 16 30 0.42 26.67 3.24 5.86 4 50 100 21.8763 0.182 0.308
36 Japan 0.6 2 16 30 0.42 26.67 3.24 5.86 4 50 100 21.8763 0.359 0.523
37 Japan 0.6 2 16 30 0.42 26.67 3.24 5.86 4 50 100 21.8763 0.535 0.744
38 Iran 0.4 2.9 9.7 31 2.17 24.25 3.41 5.57 4 50 100 21 0.177 0.214
39 Iran 0.4 2.9 9.7 31 2.17 24.25 3.41 5.57 4 50 100 21 0.514 0.525
40 Iran 0.4 2.9 9.7 31 2.17 24.25 3.41 5.57 4 50 100 21 0.839 0.773
41 Iran 0.4 2.9 9.7 31 2.17 24.25 3.41 5.57 4 50 100 21 1.172 1.07
42 Iran 0.4 2.9 9.7 31 2.17 24.25 3.41 5.57 4 50 100 21 1.494 1.312
43 Iran 0.4 2.9 9.7 31 2.17 24.25 3.41 5.57 4 50 100 21 1.97 1.648
44 Iran 0.4 2.9 9.7 31 2.17 24.25 3.41 5.57 4 50 100 20.8 0.18 0.24
45 Iran 0.4 2.9 9.7 31 2.17 24.25 3.41 5.57 4 50 100 20.8 0.5 0.447
46 Iran 0.4 2.9 9.7 31 2.17 24.25 3.41 5.57 4 50 100 20.8 0.821 0.689
47 Iran 0.4 2.9 9.7 31 2.17 24.25 3.41 5.57 4 50 100 20.8 1.142 0.93
48 Iran 0.5 2.8 9.7 30 1.62 19.4 3.43 5.61 5 100 250 21.1 0.487 0.39
49 Iran 0.5 2.8 9.7 30 1.62 19.4 3.43 5.61 5 100 250 21.1 0.972 0.766
50 Iran 0.5 2.8 9.7 30 1.62 19.4 3.43 5.61 5 100 250 21.1 1.448 1.11
51 Iran 0.2 2.5 19.4 42.2 1.61 97 3.19 5.77 5 100 250 21 0.168 0.157
52 Iran 0.2 2.5 19.4 42.2 1.61 97 3.19 5.77 5 100 250 21 0.373 0.634
53 Iran 0.2 2.5 19.4 42.2 1.61 97 3.19 5.77 5 100 250 21 0.731 1.088
54 Iran 0.2 2.5 19.4 42.2 1.61 97 3.19 5.77 5 100 250 21 0.906 1.258
55 Iran 0.2 2.5 19.4 42.2 1.61 97 3.19 5.77 5 100 250 21 1.262 1.699
56 Iran 0.2 2.5 19.4 42.2 1.61 97 3.19 5.77 5 100 250 21 1.437 1.883
57 Iran 0.4 3.3 10.3 33.3 2.64 25.75 3.32 5.64 4 50 100 21.8 0.092 0.14
58 Iran 0.4 3.3 10.3 33.3 2.64 25.75 3.32 5.64 4 50 100 21.8 0.179 0.23
59 Iran 0.4 3.3 10.3 33.3 2.64 25.75 3.32 5.64 4 50 100 21.8 0.344 0.357
60 Iran 0.4 3.3 10.3 33.3 2.64 25.75 3.32 5.64 4 50 100 21.8 0.514 0.52
61 Iran 0.4 3.3 10.3 33.3 2.64 25.75 3.32 5.64 4 50 100 21.8 0.859 0.887
62 Iran 0.4 3.3 10.3 33.3 2.64 25.75 3.32 5.64 4 50 100 21.8 1.186 1.149
63 Iran 1.2 2.1 4.2 25.3 0.88 3.5 3.63 5.34 4 50 100 21.8 0.092 0.147
64 Iran 1.2 2.1 4.2 25.3 0.88 3.5 3.63 5.34 4 50 100 21.8 0.178 0.22
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Table A1. Cont.

Case
No. Location D10

(mm)
D30

(mm)
D60

(mm)
D90

(mm) Cc Cu GM FM R UCSmin
(MPa)

UCSmax
(MPa)

γ
(KN/m3)

σn
(MPa)

τ
(MPa)

65 Iran 1.2 2.1 4.2 25.3 0.88 3.5 3.63 5.34 4 50 100 21.8 0.503 0.461
66 Iran 1.2 2.1 4.2 25.3 0.88 3.5 3.63 5.34 4 50 100 21.8 1.148 0.959
67 Iran 0.4 2.9 9.7 31 2.17 24.25 3.4 5.53 4 50 100 21 0.34 0.332
68 Iran 0.4 2.9 9.7 31 2.17 24.25 3.4 5.53 4 50 100 21 0.99 0.843
69 Iran 0.4 2.9 9.7 31 2.17 24.25 3.4 5.53 4 50 100 21 1.618 1.271
70 Iran 0.4 2.9 9.7 31 2.17 24.25 3.4 5.53 4 50 100 21 2.399 1.799
71 Iran 0.4 2.9 9.7 31 2.17 24.25 3.4 5.53 4 50 100 21.5 0.342 0.342
72 Iran 0.4 2.9 9.7 31 2.17 24.25 3.4 5.53 4 50 100 21.5 0.994 0.865
73 Iran 0.4 2.9 9.7 31 2.17 24.25 3.4 5.53 4 50 100 21.5 1.63 1.321
74 Iran 0.4 2.9 9.7 31 2.17 24.25 3.4 5.53 4 50 100 21.5 2.422 1.891
75 Australia 33.9 42.4 50 60.2 1.06 1.47 0.2 8.8 5 100 250 21.7 0.163 0.23
76 Australia 33.9 42.4 50 60.2 1.06 1.47 0.2 8.8 5 100 250 21.7 0.215 0.275
77 Australia 33.9 42.4 50 60.2 1.06 1.47 0.2 8.8 5 100 250 21.7 0.412 0.424
78 Australia 30 34 40.8 50 0.94 1.36 0.52 8.5 5 100 250 21.7 0.165 0.252
79 Australia 30 34 40.8 50 0.94 1.36 0.52 8.5 5 100 250 21.7 0.215 0.28
80 Australia 30 34 40.8 50 0.94 1.36 0.52 8.5 5 100 250 21.7 0.412 0.424
81 Germany 4 11.7 36.2 98.2 0.95 9.05 1.47 7.55 4 50 100 24.2 1.039 1.114
82 Germany 4 11.7 36.2 98.2 0.95 9.05 1.47 7.55 4 50 100 24.2 2.034 1.964
83 Germany 4 11.7 36.2 98.2 0.95 9.05 1.47 7.55 4 50 100 24.2 3.004 2.705
84 Germany 3 9.1 30.4 98.2 0.91 10.13 1.67 7.28 4 50 100 24.2 0.533 0.658
85 Germany 3 9.1 30.4 98.2 0.91 10.13 1.67 7.28 4 50 100 24.2 1.039 1.114
86 Germany 3 9.1 30.4 98.2 0.91 10.13 1.67 7.28 4 50 100 24.2 2.018 1.882
87 Germany 4.2 12.8 41.2 99 0.95 9.81 1.37 7.62 4 50 100 24.2 0.512 0.512
88 Germany 4.2 12.8 41.2 99 0.95 9.81 1.37 7.62 4 50 100 24.2 1.001 0.902
89 Germany 4.2 12.8 41.2 99 0.95 9.81 1.37 7.62 4 50 100 24.2 1.987 1.728
90 USA 0.9 3 18.8 99 0.53 20.89 2.64 6.35 5 100 250 21.7 0.861 0.898
91 USA 0.9 3 18.8 99 0.53 20.89 2.64 6.35 5 100 250 21.7 1.67 1.509
92 USA 0.9 3 18.8 99 0.53 20.89 2.64 6.35 5 100 250 21.7 4.049 3.198
93 U.K. 0.44 1.5 6.99 27.5 0.73 15.89 3.82 5.16 4 50 100 18.7 0.159 0.189
94 U.K. 0.44 1.5 6.99 27.5 0.73 15.89 3.82 5.16 4 50 100 18.7 0.471 0.424
95 U.K. 0.44 1.5 6.99 27.5 0.73 15.89 3.82 5.16 4 50 100 18.7 1.13 0.905
96 Iran 0.4 2.3 12.2 44.4 1.08 30.5 3.3 5.69 4 50 100 26.2 0.815 0.66
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Table A1. Cont.

Case
No. Location D10

(mm)
D30

(mm)
D60

(mm)
D90

(mm) Cc Cu GM FM R UCSmin
(MPa)

UCSmax
(MPa)

γ
(KN/m3)

σn
(MPa)

τ
(MPa)

97 Iran 0.4 2.3 12.2 44.4 1.08 30.5 3.3 5.69 4 50 100 18.7 0.794 0.577
98 Iran 0.4 2.3 12.2 44.4 1.08 30.5 3.3 5.69 5 100 250 24.5 0.994 0.864
99 India 0.5 1.5 4.6 15.6 0.98 9.2 4.22 4.8 4 50 100 24.5 1.384 0.881

100 India 0.95 2.8 12.5 34.9 0.66 13.16 3.02 5.97 4 50 100 24.5 1.369 0.836
101 India 1.3 4.6 18.9 55.9 0.86 14.54 2.4 6.54 4 50 100 24.5 1.358 0.803

102 Iran
(multiple) 0.5 3 10.4 31.2 1.73 20.8 3.36 5.63 4 50 100 26.2 1.056 0.625

103 Iran
(multiple) 0.4 2.8 9.2 30.1 2.13 23 3.42 5.53 4 50 100 24.5 0.501 0.451

104 Iran
(multiple) 0.4 2.8 9.2 30.1 2.13 23 3.42 5.53 4 50 100 24.5 0.986 0.827

105 Iran
(multiple) 0.4 2.8 9.2 30.1 2.13 23 3.42 5.53 4 50 100 24.5 1.479 1.241

106 Iran
(multiple) 0.5 3.3 10.2 31 2.14 20.4 3.28 5.7 5 100 250 24.5 0.485 0.379

107 Iran
(multiple) 0.5 3.3 10.2 31 2.14 20.4 3.28 5.7 5 100 250 24.5 0.808 0.631

108 Iran
(multiple) 0.5 3.3 10.2 31 2.14 20.4 3.28 5.7 5 100 250 24.5 1.131 0.884

109 Iran
(multiple) 0.4 2.8 10.4 31.2 1.88 26 3.4 5.58 4 50 100 18.7 0.808 0.631

110 Iran
(multiple) 0.4 2.8 10.4 31.2 1.88 26 3.4 5.58 4 50 100 18.7 1.131 0.884

111 USA 2.4 19.3 80.1 100 1.94 33.38 1.32 7.72 6 250 400 25.6 0.85 0.836
112 USA 2.4 19.3 80.1 100 1.94 33.38 1.32 7.72 6 250 400 25.6 1.695 1.637
113 USA 2.4 19.3 80.1 100 1.94 33.38 1.32 7.72 6 250 400 25.6 4.205 3.921

114 Iran
(multiple) 0.01 1 10.4 43.9 9.62 1040 4 4.93 4 50 100 24.2 0.241 0.183

115 Iran
(multiple) 0.01 1 10.4 43.9 9.62 1040 4 4.93 4 50 100 24.2 0.468 0.316

116 Iran
(multiple) 0.01 1 10.4 43.9 9.62 1040 4 4.93 4 50 100 24.2 0.921 0.582

117 Iran
(multiple) 0.01 1 10.4 43.9 9.62 1040 4 4.93 4 50 100 24.2 0.265 0.313
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Table A1. Cont.

Case
No. Location D10

(mm)
D30

(mm)
D60

(mm)
D90

(mm) Cc Cu GM FM R UCSmin
(MPa)

UCSmax
(MPa)

γ
(KN/m3)

σn
(MPa)

τ
(MPa)

118 Iran
(multiple) 0.01 1 10.4 43.9 9.62 1040 4 4.93 4 50 100 24.2 0.511 0.506

119 Iran
(multiple) 0.01 1 10.4 43.9 9.62 1040 4 4.93 4 50 100 24.2 1.001 0.902

120 USA 0.2 0.56 1.2 2.6 0.1 6 6 3 4 50 100 16.1 0.021 0.029
121 USA 0.2 0.56 1.2 2.6 0.1 6 6 3 4 50 100 16.1 0.042 0.051
122 USA 0.2 0.56 1.2 2.6 0.1 6 6 3 4 50 100 16.1 0.068 0.071
123 India 0.1 1.3 6.5 15 2.6 65 4.42 4.55 5 100 250 19.9 0.054 0.005
124 India 0.1 1.3 6.5 15 2.6 65 4.42 4.55 5 100 250 19.9 0.089 0.028
125 India 0.1 1.3 6.5 15 2.6 65 4.42 4.55 5 100 250 19.9 0.11 0.049
126 India 0.1 1.3 6.5 15 2.6 65 4.42 4.55 5 100 250 19.9 0.152 0.067
127 India 0.1 1.3 6.5 15 2.6 65 4.42 4.55 5 100 250 19.9 0.191 0.081
128 India 0.1 1.3 6.5 15 2.6 65 4.42 4.55 5 100 250 19.9 0.24 0.092
129 India 0.1 1 6.2 17 1.61 62 4.5 4.44 5 100 250 22.3 0.706 0.94
130 India 0.1 1 6.2 17 1.61 62 4.5 4.44 5 100 250 22.3 1.31 1.296
131 India 0.1 1 6.2 17 1.61 62 4.5 4.44 5 100 250 22.3 1.868 1.536
132 India 0.2 2.9 12.3 32 3.42 61.5 3.46 5.53 5 100 250 22.3 0.702 0.903
133 India 0.2 2.9 12.3 32 3.42 61.5 3.46 5.53 5 100 250 22.3 1.305 1.25
134 India 0.2 2.9 12.3 32 3.42 61.5 3.46 5.53 5 100 250 22.3 1.862 1.486
135 India 0.4 4.4 21.2 59.8 2.28 53 2.74 6.27 5 100 250 22.3 0.697 0.862
136 India 0.4 4.4 21.2 59.8 2.28 53 2.74 6.27 5 100 250 22.3 1.283 1.167
137 India 0.4 4.4 21.2 59.8 2.28 53 2.74 6.27 5 100 250 22.3 1.819 1.358
138 Australia 27.1 32.6 41.3 53 0.95 1.52 0.57 8.5 5 100 250 15.3 0.002 0.007
139 Australia 27.1 32.6 41.3 53 0.95 1.52 0.57 8.5 5 100 250 15.3 0.02 0.052
140 Australia 27.1 32.6 41.3 53 0.95 1.52 0.57 8.5 5 100 250 15.3 0.032 0.072
141 Australia 27.1 32.6 41.3 53 0.95 1.52 0.57 8.5 5 100 250 15.3 0.054 0.095
142 Australia 27.1 32.6 41.3 53 0.95 1.52 0.57 8.5 5 100 250 15.3 0.111 0.168
143 Australia 27.1 32.6 41.3 53 0.95 1.52 0.57 8.5 5 100 250 15.3 0.162 0.217
144 Australia 27.1 32.6 41.3 53 0.95 1.52 0.57 8.5 5 100 250 15.3 0.209 0.259
145 Australia 27.1 32.6 41.3 53 0.95 1.52 0.57 8.5 5 100 250 15.3 0.401 0.409
146 Australia 20.7 26.7 32.8 53 1.05 1.58 0.89 8.2 5 100 250 15.3 0.003 0.008
147 Australia 20.7 26.7 32.8 53 1.05 1.58 0.89 8.2 5 100 250 15.3 0.021 0.062
148 Australia 20.7 26.7 32.8 53 1.05 1.58 0.89 8.2 5 100 250 15.3 0.035 0.089
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Table A1. Cont.

Case
No. Location D10

(mm)
D30

(mm)
D60

(mm)
D90

(mm) Cc Cu GM FM R UCSmin
(MPa)

UCSmax
(MPa)

γ
(KN/m3)

σn
(MPa)

τ
(MPa)

149 Australia 20.7 26.7 32.8 53 1.05 1.58 0.89 8.2 5 100 250 15.3 0.058 0.116
150 Australia 20.7 26.7 32.8 53 1.05 1.58 0.89 8.2 5 100 250 15.3 0.115 0.191
151 Australia 20.7 26.7 32.8 53 1.05 1.58 0.89 8.2 5 100 250 15.3 0.155 0.206
152 Australia 20.7 26.7 32.8 53 1.05 1.58 0.89 8.2 5 100 250 15.3 0.209 0.259
153 Australia 20.7 26.7 32.8 53 1.05 1.58 0.89 8.2 5 100 250 15.3 0.394 0.401
154 Thailand 3.1 7.8 22 46.4 0.89 7.1 1.98 7.01 4 50 100 21 0.833 0.745
155 Thailand 3.1 7.8 22 46.4 0.89 7.1 1.98 7.01 4 50 100 21 1.649 1.407
156 Thailand 3.1 7.8 22 46.4 0.89 7.1 1.98 7.01 4 50 100 21 2.451 2.01
157 Thailand 3.1 7.8 22 46.4 0.89 7.1 1.98 7.01 4 50 100 21 3.223 2.492
158 Thailand 3.5 7.1 19.8 45.7 0.73 5.66 2.03 6.98 4 50 100 21 0.808 0.631
159 Thailand 3.5 7.1 19.8 45.7 0.73 5.66 2.03 6.98 4 50 100 21 1.592 1.169
160 Thailand 3.5 7.1 19.8 45.7 0.73 5.66 2.03 6.98 4 50 100 21 2.338 1.576
161 Thailand 3.5 7.1 19.8 45.7 0.73 5.66 2.03 6.98 4 50 100 21 3.14 2.178
162 Netherlands 11 15 23 32 0.89 2.09 1.48 7.48 5 100 250 16.8 0.014 0.028
163 Netherlands 11 15 23 32 0.89 2.09 1.48 7.48 5 100 250 16.8 0.028 0.048
164 Netherlands 11 15 23 32 0.89 2.09 1.48 7.48 5 100 250 16.8 0.055 0.082
165 Netherlands 11 15 23 32 0.89 2.09 1.48 7.48 5 100 250 16.8 0.108 0.143
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