
applied
sciences

Article

Improvements to Supercomputing Service Availability Based
on Data Analysis

Jae-Kook Lee , Min-Woo Kwon, Do-Sik An, Junweon Yoon , Taeyoung Hong, Joon Woo, Sung-Jun Kim
and Guohua Li *

����������
�������

Citation: Lee, J.-K.; Kwon, M.-W.;

An, D.-S.; Yoon, J.; Hong, T.; Woo, J.;

Kim, S.-J.; Li, G. Improvements to

Supercomputing Service Availability

Based on Data Analysis. Appl. Sci.

2021, 11, 6166. https://doi.org/

10.3390/app11136166

Academic Editor: Antonio J. Pena

Received: 3 June 2021

Accepted: 28 June 2021

Published: 2 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

National Supercomputing Center, Korea Institute of Science and Technology Information, 245 Daehak-ro,
Yuseong-gu, Daejeon 34141, Korea; jklee@kisti.re.kr (J.-K.L.); mwkwon81@kisti.re.kr (M.-W.K.);
dsan@kisti.re.kr (D.-S.A.); jwyoon@kisti.re.kr (J.Y.); tyhong@kisti.re.kr (T.H.); wjnadia@kisti.re.kr (J.W.);
sjkim@kisti.re.kr (S.-J.K.)
* Correspondence: ghlee@kisti.re.kr; Tel.: +82-42-869-1689

Abstract: As the demand for high-performance computing (HPC) resources has increased in the field
of computational science, an inevitable consideration is service availability in large cluster systems
such as supercomputers. In particular, the factor that most affects availability in supercomputing
services is the job scheduler utilized for allocating resources. Consequent to submitting user data
through the job scheduler for data analysis, 25.6% of jobs failed because of program errors, scheduler
errors, or I/O errors. Based on this analysis, we propose a K-hook method for scheduling to increase
the success rate of job submissions and improve the availability of supercomputing services. By
applying this method, the job-submission success rate was improved by 15% without negatively
affecting users’ waiting time. We also achieved a mean time between interrupts (MTBI) of 24.3 days
and maintained average system availability at 97%. As this research was verified on the Nurion
supercomputer in a real service environment, the value of the research is expected to be found in
significant service improvements.

Keywords: high-performance computing; supercomputing service; data analysis; service availability;
resource scheduler; resource utilization

1. Introduction

Supercomputers are used to perform computationally intensive simulations and
analyses in fields such as climate research, molecular modeling, physical simulation,
cryptography, geophysical modeling, automotive and aerospace design, financial modeling,
and data mining. Ensuring the availability of large cluster systems, such as supercomputers,
is challenging. Many organizations also operate a supercomputer to analyze the job
scheduling log data of the supercomputing users. They can then find the causes of problems
and remedy them to improve service availability [1–5].

In [1], in the job-scheduling log, a large majority of jobs was reported as failures due to
user behaviors such as leaving bugs in code, incorrect configurations, or operation errors.
To reduce the job failure rate, similarity-based event-filtering analysis was applied, which
indicated that the mean time between interrupts (MTBI) was about 3.5 days. In [2], the
authors designed their own log analysis tool with a novel filtering method to effectively re-
duce fatal events and reached a mean time between fatal events (MTBFE) of approximately
1.3 days on their cluster system. In [3], failure categorization was performed by analyzing
a five-year failure record to determine the causes of failure on users’ jobs. From analyzing
these papers, we found that the types of data sources used for the logs are different because
the system configurations of supercomputers are complex. Although all data generated
through job scheduling were analyzed, the causes of job failures also differed depending
on the services provided or on queue policies. From this perspective, to increase service
availability, the issues to be resolved are as follows: (1) to analyze user-submitted job data

Appl. Sci. 2021, 11, 6166. https://doi.org/10.3390/app11136166 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6159-3124
https://orcid.org/0000-0001-6094-8969
https://orcid.org/0000-0002-7423-4542
https://orcid.org/0000-0003-3314-3887
https://doi.org/10.3390/app11136166
https://doi.org/10.3390/app11136166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11136166
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11136166?type=check_update&version=3

Appl. Sci. 2021, 11, 6166 2 of 12

on the causes of job failures by application category, and (2) to improve service availability
under conditions that do not increase user job waiting time.

In this study, we analyzed in more detail the success and failure rates of jobs using
collected user-submitted job data and examined the causes of job failure. To provide high
service availability while maintaining system stability, we applied a K-hook with schedul-
ing to increase the job-submission success rate. We describe our operational technique;
present our system’s MTBI, which is an indicator of system stability [6–8]; and analyze our
system availability statistics.

The rest of this paper is organized as follows: Section 2 describes the system con-
figuration, which includes the hardware and software structures of the Nurion system,
and Section 3 provides the main problem statements. Section 4 introduces the proposed
method, which increases the service availability. Section 5 analyzes the results of applying
our method. Finally, the conclusions are presented in Section 6.

2. System Configuration
2.1. Hardware Configuration

The Nurion system is a cluster-type supercomputer [9], the hardware architecture of
which is illustrated in Figure 1. It consists of various infrastructure nodes connected by a
high-performance interconnect, including computing nodes, storage systems, login nodes,
management nodes, datemover (DM) nodes, and web servers.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 12

to increase service availability, the issues to be resolved are as follows: (1) to analyze user-
submitted job data on the causes of job failures by application category, and (2) to improve
service availability under conditions that do not increase user job waiting time.

In this study, we analyzed in more detail the success and failure rates of jobs using
collected user-submitted job data and examined the causes of job failure. To provide high
service availability while maintaining system stability, we applied a K-hook with sched-
uling to increase the job-submission success rate. We describe our operational technique;
present our system’s MTBI, which is an indicator of system stability [6–8]; and analyze
our system availability statistics.

The rest of this paper is organized as follows: Section 2 describes the system config-
uration, which includes the hardware and software structures of the Nurion system, and
Section 3 provides the main problem statements. Section 4 introduces the proposed
method, which increases the service availability. Section 5 analyzes the results of applying
our method. Finally, the conclusions are presented in Section 6.

2. System Configuration
2.1. Hardware Configuration

The Nurion system is a cluster-type supercomputer [9], the hardware architecture of
which is illustrated in Figure 1. It consists of various infrastructure nodes connected by a
high-performance interconnect, including computing nodes, storage systems, login
nodes, management nodes, datemover (DM) nodes, and web servers.

Figure 1. Hardware architecture of the Nurion supercomputer.

The computing nodes that perform parallel processes at high speeds consist of an
8305 Intel many-core processor Knights Landing Nodes (KNLs) [10,11] and a 132 Xeon
server processor Skylake Nodes (SKLs) [12]. Each KNL node has 68 cores per socket and
96 GB (16 GB × 6) memory, while each SKL node has two sockets, each of which has 20
cores and 192 GB (16 GB × 12) memory. The interconnection network uses a 100 Gbps Intel
Omni-Path Architecture (OPA) [13], and the storage uses a Lustre parallel file system [14],
consisting of a user home directory (/home01), an application directory (/apps), and a user
working directory for global shared scratch (/scratch) with 21 PB or more available space.
To improve the speed of programs using large-scale bulk data, a burst buffer
(/scratch_ime) with 800 TB or more storage capacity was deployed to provide file in-
put/output (I/O) at a maximum speed of 800 GB/s. Tape storage with a capacity of 10 PB
or more was developed to backup important system data and for long-term storage of
user data. This was connected to the DM node, which handles data transfer through the
fiber channel (FC) network. The infrastructure nodes, such as the login nodes, for users of
the supercomputing service and the management node for system administrator access,

Figure 1. Hardware architecture of the Nurion supercomputer.

The computing nodes that perform parallel processes at high speeds consist of an
8305 Intel many-core processor Knights Landing Nodes (KNLs) [10,11] and a 132 Xeon
server processor Skylake Nodes (SKLs) [12]. Each KNL node has 68 cores per socket
and 96 GB (16 GB × 6) memory, while each SKL node has two sockets, each of which
has 20 cores and 192 GB (16 GB × 12) memory. The interconnection network uses a
100 Gbps Intel Omni-Path Architecture (OPA) [13], and the storage uses a Lustre parallel
file system [14], consisting of a user home directory (/home01), an application directory
(/apps), and a user working directory for global shared scratch (/scratch) with 21 PB or
more available space. To improve the speed of programs using large-scale bulk data, a
burst buffer (/scratch_ime) with 800 TB or more storage capacity was deployed to provide
file input/output (I/O) at a maximum speed of 800 GB/s. Tape storage with a capacity of
10 PB or more was developed to backup important system data and for long-term storage
of user data. This was connected to the DM node, which handles data transfer through the

Appl. Sci. 2021, 11, 6166 3 of 12

fiber channel (FC) network. The infrastructure nodes, such as the login nodes, for users of
the supercomputing service and the management node for system administrator access, are
connected to the Korea Research Environment Open NETwork (KREONET) [15] through a
10 Gbps Ethernet.

2.2. Software Configuration

Nurion is a Linux-based system that uses Bright Cluster Management (BCM) software
for provisioning and managing each node. In addition, a batch scheduler (PBS Pro) is used
to manage user-submitted jobs efficiently, and Intel OPA management software is used to
manage the interconnection network. Lustre is used as the parallel file system; it uses DDN
IME with burst-buffer software for high-performance I/O. To support the execution of
various user programs, a range of compilers and message passing interface (MPI) libraries
are provided, and commercial software, such as ABAQUS, ANSYS, and GAUSSIAN, can
be used.

We used the scheduler’s queue, which is a group of computing nodes that provide
particular services depending on the user’s purpose. Based on the node type, for KNL, we
divided the submissions into exclusive, normal, long, flat, and debug queues. For SKL,
we divided them into commercial and norm_skl queues. The job-submit policy for each
queue is defined by the maximum time (wall-clock time (WCT)), the maximum number
of submitted jobs, and the maximum number of running jobs per user. User-submitted
jobs are executed in the order of priorities that are periodically calculated based on user
jobs’ wait time, requested resource size, and the predefined queue priorities in which jobs
reside. All submitted jobs follow the job-submit policies in Table 1. An exclusive queue
is for dedicated resources that support large projects and group research. Normal is a
general resource queue for both free service users (creative research field, national strategy
field, and innovation support field) and paid service users. Long is a general resource
queue that requires long-term work and can be used for up to 120 h (5 days). Flat is also a
general resource queue with a flat memory that can designate MCDRAM and DDR4 for up
to 102 GB of memory use. Debugging is a queue for debugging KNL nodes, in which a
general resource queue and interactive work can be used for debugging (shared resources).
Commercial is a general resource queue for commercial applications (shared resources).
Norm_skl is a general resource queue on SKL nodes, which plays the same role as the KNL
normal queue.

Table 1. Job-submit policies by queues.

Type Queue Total Nodes Total CPU Cores Wall Clock Limit (Hours) Max. Submit Jobs Max. Running Jobs

KNL

exclusive 2600 176,800 unlimited 100 100
normal 4970 337,960 48 40 20

long 300 20,400 120 20 10
flat 180 12,240 48 20 10

debug 20 1360 48 2 2

SKL
commercial 118 4720 48 6 2
norm_skl 118 4720 48 10 5

From the user perspective, users can submit jobs according to this supercomputer
queue policy. In this process, waiting time is an important factor for users. The users’
waiting time is controlled by setting the maximum number of submitted jobs and maximum
number of running jobs for each queue. An appropriate configuration for the maximum
number of submitted jobs and running jobs is essential because it is an environment that
provides supercomputing services to users.

3. Problem Statement

When a user’s job fails, the scheduler notifies the user through a failure message by
mail. This message contains only a simple summary; for detailed error messages, the *.log

Appl. Sci. 2021, 11, 6166 4 of 12

and *.err files are referred to in the user home directory. We collected the log data from the
scheduler server and output the statistics as follows.

The main factors that influence the job failure rate are summarized in Figure 2. Failure
due to program errors accounted for the largest percentage, 44.4%, of the total. Next, PBS
scheduler errors, such as job script errors and WCT limit errors, accounted for 37%; and
I/O errors, due to incorrect file permissions, incorrect files, or directory specifications,
accounted for 12.6%. Failures due to hardware errors such as memory allocation errors or
system bus errors accounted for 0.6%, errors due to the user’s forced termination signal
accounted for 2.3%, and other unidentifiable errors accounted for 3.1%. These statistics
were obtained from analyzing the error codes of job failures.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 12

3. Problem Statement
When a user’s job fails, the scheduler notifies the user through a failure message by

mail. This message contains only a simple summary; for detailed error messages, the *.log
and *.err files are referred to in the user home directory. We collected the log data from
the scheduler server and output the statistics as follows.

The main factors that influence the job failure rate are summarized in Figure 2. Fail-
ure due to program errors accounted for the largest percentage, 44.4%, of the total. Next,
PBS scheduler errors, such as job script errors and WCT limit errors, accounted for 37%;
and I/O errors, due to incorrect file permissions, incorrect files, or directory specifications,
accounted for 12.6%. Failures due to hardware errors such as memory allocation errors or
system bus errors accounted for 0.6%, errors due to the user’s forced termination signal
accounted for 2.3%, and other unidentifiable errors accounted for 3.1%. These statistics
were obtained from analyzing the error codes of job failures.

Figure 2. Classification of the cause of failed jobs by error codes.

A detailed analysis of each item is shown in Table 2. For PBS error, “job deletion with
qdel includes walltime limit” occurred most frequently, at 36.37%. In this case, most of the
jobs submitted by users either exceed the walltime limit in the queue policy or are can-
celed by the user arbitrarily with the qdel command. Therefore, we excluded this cause of
job failure from the target to be solved. For program errors, “operation not permitted”
occurred most frequently, at 41.01%. By further analyzing this case, we found that when
communication with the LDAP server fails, the operation does not work normally because
of I/O ownership and r/w/x permission issues of the process. For I/O errors, “no such file
or directory” occurred most frequently, at 10.37%. In this case, analysis showed that the
cause of the problem was a file system mount error (OPA connection). For H/W errors,
“no such device or directory” occurred the most (0.31%). One cause of this problem is that
MPI communication occurs between compute nodes. Another cause is that most of it over-
uses the memory resource. The compute nodes are of the diskless type to ensure that all
computation data will be allocated on the memory. If the data are loaded into memory
because of previously executed jobs, an I/O message indicating insufficient memory re-
sources is returned. For user errors, “termination signal” occurred most frequently, at
2.05%. From this statistic, we attempted to add a prologue hook before scheduling a re-
source and an epilogue hook after a job is completed.

0

20

40

60

80

100

PBS error Program error I/O error H/W error User error etc

Pe
rc

en
ta

ge
 o

f e
rro

r c
od

es
 (%

)

Percentage of error codes

Figure 2. Classification of the cause of failed jobs by error codes.

A detailed analysis of each item is shown in Table 2. For PBS error, “job deletion
with qdel includes walltime limit” occurred most frequently, at 36.37%. In this case, most
of the jobs submitted by users either exceed the walltime limit in the queue policy or
are canceled by the user arbitrarily with the qdel command. Therefore, we excluded
this cause of job failure from the target to be solved. For program errors, “operation
not permitted” occurred most frequently, at 41.01%. By further analyzing this case, we
found that when communication with the LDAP server fails, the operation does not work
normally because of I/O ownership and r/w/x permission issues of the process. For I/O
errors, “no such file or directory” occurred most frequently, at 10.37%. In this case, analysis
showed that the cause of the problem was a file system mount error (OPA connection).
For H/W errors, “no such device or directory” occurred the most (0.31%). One cause of
this problem is that MPI communication occurs between compute nodes. Another cause
is that most of it overuses the memory resource. The compute nodes are of the diskless
type to ensure that all computation data will be allocated on the memory. If the data
are loaded into memory because of previously executed jobs, an I/O message indicating
insufficient memory resources is returned. For user errors, “termination signal” occurred
most frequently, at 2.05%. From this statistic, we attempted to add a prologue hook before
scheduling a resource and an epilogue hook after a job is completed.

Appl. Sci. 2021, 11, 6166 5 of 12

Table 2. Detailed description of the causes of job failures.

Item The Cause of Job Failure Percentage (%)

PBS error

Job was requeued (if rerunnable) or deleted (if not) 0.01
Job execution failed, do retry 0.04

Job execution failed, before files, no retry 0.12
Job deletion with qdel includes walltime limit 36.37

Licensed CPUs exceeded 0.09
Undefined attribute 0.36

PBS etc. 0.001

Program error

Operation not permitted 41.01
Argument list was too long 0.04

Exec format error 0.47
Command not found 1.91

Stack overflow 0.56
Segmentation fault 0.28

Floating-point exception 0.07
Illegal instruction 0.1

I/O error

Operation requires sequential file organization and access 0.41
I/O procedure was truncated 0.005

No such file or directory 10.37
Input/output error 0.2
Bad file descriptor 1.34

Too many open files 0.24

H/W error

No such device or address 0.31
No child processes 0.01

Resource temporarily unavailable 0.26
Cannot allocate memory 0.03

Bus error 0.01

User error
Abort signal 0.18
Kill signal 0.09

Termination signal 2.05

etc. etc. 3.07

4. Method

We attempted to solve this problem by adding K-hook functions to crisis scheduling
to increase the success rate of job submissions based on the analysis of errors that occur in
job submissions. The overall workflow of scheduling with K-hook and a detailed flowchart
are described in this section.

4.1. Workflow with K-Hook

We designed and implemented the workflow shown in Figure 3. Users submit jobs
through the command line interface and submit job requests to the login nodes. Each
request is sent to the daemon based on the server_priv configuration file and communicates
with the compute nodes through the scheduler daemon and communication daemon based
on the scheduling policy written in sched_priv and communication policy written in
comm_priv on the PBS scheduler node. Based on the resource request transmitted through
the communication daemon, the user’s job is executed by exec_job on the resource-allocated
compute nodes through the MoM daemon based on the mom_priv configuration file. We
added K-hook to MoM running on the compute nodes rather than Server and Scheduler on
PBS Pro scheduler nodes. The reason was to reduce the load of the scheduler nodes, which
handle thousands of compute nodes in a huge HPC environment. As our supercomputer
scheduled over 8000 compute nodes, we added K-hook to MoM on compute nodes. When a
job is submitted, it is checked with the functions defined through K-hook, and if it does not
pass then the node is processed offline, and the Server is notified through Communication.
Server again attempts to allocate this job request to another node through Scheduler. This
principle increases the success rate of job submission. The offline nodes are rebooted while
attempting to recover through the self-recovery script we wrote.

Appl. Sci. 2021, 11, 6166 6 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 12

the scheduler nodes, which handle thousands of compute nodes in a huge HPC environ-
ment. As our supercomputer scheduled over 8000 compute nodes, we added K-hook to
MoM on compute nodes. When a job is submitted, it is checked with the functions defined
through K-hook, and if it does not pass then the node is processed offline, and the Server
is notified through Communication. Server again attempts to allocate this job request to
another node through Scheduler. This principle increases the success rate of job submis-
sion. The offline nodes are rebooted while attempting to recover through the self-recovery
script we wrote.

Figure 3. An overall workflow of scheduling with K-hook.

In this process, adding K-hooks may increase the user’s waiting time. If a job fails,
the user does not have to wait but must resubmit the job instead. We attempted to solve
the problem of increased waiting time caused by adding a K-hook in various ways. One
approach involved setting the maximum number of submitted jobs and executed jobs in
the job submission policy. As our supercomputer sets different policies for each queue,
we verified that waiting time does not increase with K-hooks by each queue.

K-hook uses Python plugins provided by PBSPro hook. The main functions of K-
hook are implemented in a bash script, which is called through PBSPro hooks in Python.
The bash script can be extensible to any other batch schedulers.

4.2. Flowchart with K-Hook
Scheduling flows in large-scale, high-performance computing systems are complex.

In particular, resource and job scheduling for thousands of computing nodes in our su-
percomputing environment is even more complex. Figure 4 shows a flowchart of sched-
uling with K-hooks. This flowchart is based on the default settings of PBS Pro scheduling.
When a job is submitted, this job will be in a queue with queue_job by Server. After Server
queues the job, it is moved or modified depending on the configurations with modify_job
and move_job. When a job is moved, it turns to run_job and is sent by Server to the MoM
daemon in the compute nodes.

When the MoM receives a job, the user’s job execution starts from this moment with
execjob_begin. We applied K-hook with a memory size check function to execjob_begin.
Before executing execjob_prologue, we implemented and applied three functions to exec-
job_begin. First, we checked the communication with the LDAP server. Communication
failure causes an error in which the submitted job does not operate normally because of
ownership and r/w/x permission issues. This function solves the error message of “Oper-
ation not permitted” in Program Error of classification (Table 2). Second, when the job is
executed on a multi-node, communication between nodes is checked. If communication

Figure 3. An overall workflow of scheduling with K-hook.

In this process, adding K-hooks may increase the user’s waiting time. If a job fails,
the user does not have to wait but must resubmit the job instead. We attempted to solve
the problem of increased waiting time caused by adding a K-hook in various ways. One
approach involved setting the maximum number of submitted jobs and executed jobs in
the job submission policy. As our supercomputer sets different policies for each queue, we
verified that waiting time does not increase with K-hooks by each queue.

K-hook uses Python plugins provided by PBSPro hook. The main functions of K-hook
are implemented in a bash script, which is called through PBSPro hooks in Python. The
bash script can be extensible to any other batch schedulers.

4.2. Flowchart with K-Hook

Scheduling flows in large-scale, high-performance computing systems are complex.
In particular, resource and job scheduling for thousands of computing nodes in our super-
computing environment is even more complex. Figure 4 shows a flowchart of scheduling
with K-hooks. This flowchart is based on the default settings of PBS Pro scheduling. When
a job is submitted, this job will be in a queue with queue_job by Server. After Server queues
the job, it is moved or modified depending on the configurations with modify_job and
move_job. When a job is moved, it turns to run_job and is sent by Server to the MoM
daemon in the compute nodes.

When the MoM receives a job, the user’s job execution starts from this moment with
execjob_begin. We applied K-hook with a memory size check function to execjob_begin.
Before executing execjob_prologue, we implemented and applied three functions to ex-
ecjob_begin. First, we checked the communication with the LDAP server. Communication
failure causes an error in which the submitted job does not operate normally because
of ownership and r/w/x permission issues. This function solves the error message of
“Operation not permitted” in Program Error of classification (Table 2). Second, when the job
is executed on a multi-node, communication between nodes is checked. If communication
between nodes does not work properly within a limited time, in the worst case, the job
process will be killed. This function solves the error message of “No such device or address”
in H/W error of classification (Table 2). Third, the memory space of computing nodes is
checked. The computing node in Nurion is a diskless system, and all files stored on the
local node are loaded in memory. Therefore, the local file (in the/tmp directory) created by
the previous user’s job might run out of memory, which can cause memory errors notified
as “Resource temporarily unavailable” or “Cannot allocate memory” in H/W error of
classification (Table 2).

When the execution of execjob_begin with K-hook is applied and completed, MoM
runs the job as a top shell and user program. If the user’s program is a parallel process, such

Appl. Sci. 2021, 11, 6166 7 of 12

as MPI, it is executed through tm_spawn and pbs_attach. After the job runs successfully,
MoM kills the job and, through execjob_epliogue, the job is cleaned up. After this, we
added K-hook functions to execjob_end to help increase the success rate.

We implemented and applied three functions to execjob_end. First, we checked the
mount points of the Lustre storage. All computing nodes in Nurion mount the Lustre
storage, consisting of a home directory (/home01), an application directory (/apps), and
a scratch directory (/scratch), to perform a user’s job. If any of these are not mounted
properly, problems may occur with the jobs on these nodes. This function solves the error
message, “No such file or directory”, which occurred the most in I/O error classification
(Table 2). Second, a check was performed for zombie processes, which can occur after a
job ends. Zombie processes, which remain “dead” on computing nodes, can degrade the
computational performance when the next user’s job is assigned. Finally, the STREAM
benchmark test was conducted to measure memory bandwidth. By applying K-hook to
execjob_end, it is possible to understand comprehensively the status of the computing
node and perform offline procedures when an error occurs consistently, and therefore for
the administrator to check the status of the node and take appropriate action.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 12

between nodes does not work properly within a limited time, in the worst case, the job
process will be killed. This function solves the error message of “No such device or ad-
dress” in H/W error of classification (Table 2). Third, the memory space of computing
nodes is checked. The computing node in Nurion is a diskless system, and all files stored
on the local node are loaded in memory. Therefore, the local file (in the/tmp directory)
created by the previous user’s job might run out of memory, which can cause memory
errors notified as “Resource temporarily unavailable” or “Cannot allocate memory” in
H/W error of classification (Table 2).

Figure 4. A flowchart of scheduling with K-hook.

When the execution of execjob_begin with K-hook is applied and completed, MoM
runs the job as a top shell and user program. If the user’s program is a parallel process,
such as MPI, it is executed through tm_spawn and pbs_attach. After the job runs success-
fully, MoM kills the job and, through execjob_epliogue, the job is cleaned up. After this,
we added K-hook functions to execjob_end to help increase the success rate.

We implemented and applied three functions to execjob_end. First, we checked the
mount points of the Lustre storage. All computing nodes in Nurion mount the Lustre
storage, consisting of a home directory (/home01), an application directory (/apps), and a
scratch directory (/scratch), to perform a user’s job. If any of these are not mounted
properly, problems may occur with the jobs on these nodes. This function solves the error
message, “No such file or directory”, which occurred the most in I/O error classification
(Table 2). Second, a check was performed for zombie processes, which can occur after a
job ends. Zombie processes, which remain “dead” on computing nodes, can degrade the
computational performance when the next user’s job is assigned. Finally, the STREAM

Figure 4. A flowchart of scheduling with K-hook.

Appl. Sci. 2021, 11, 6166 8 of 12

5. Result

We confirmed that the success rate increased by comparing the results before and after
applying K-hook to scheduling. We also confirmed whether waiting time increased by
adding these functions through data analysis. In addition, the suitability of our method
was verified by calculating the MBTI and system availability, which were used as indicators
for the supercomputing service.

5.1. Evaluation of Summitted-Job Success Rate

K-hook was applied to the scheduling at the end of May 2019. We graphed the average
job-submission success rate from January to May and the job-submission success rate from
June to December, as shown in Figure 5. The left y-axis shows the number of submitted
jobs, and the right y-axis shows the job success rate. The bar graph shows the submitted
jobs count, and the line with points indicates the job-submission success rate. It can be
seen that the job success rate does not affect the number of jobs. The blue line indicates
the average success rate before applying K-hook, and the red line indicates the average
success rate after applying K-hook. The average success rate before application was 74.4%,
but the average success rate after application was 85.6%, which is an improvement of
15%. By analyzing the reason for the improved job success rate, the K-hook functions
were defined based on the analysis of the existing failure error message, and the detected
node information was changed to offline and transmitted to the scheduler, reducing the
failure rate.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 12

benchmark test was conducted to measure memory bandwidth. By applying K-hook to
execjob_end, it is possible to understand comprehensively the status of the computing
node and perform offline procedures when an error occurs consistently, and therefore for
the administrator to check the status of the node and take appropriate action.

5. Result
We confirmed that the success rate increased by comparing the results before and

after applying K-hook to scheduling. We also confirmed whether waiting time increased
by adding these functions through data analysis. In addition, the suitability of our method
was verified by calculating the MBTI and system availability, which were used as indica-
tors for the supercomputing service.

5.1. Evaluation of Summitted-Job Success Rate
K-hook was applied to the scheduling at the end of May 2019. We graphed the aver-

age job-submission success rate from January to May and the job-submission success rate
from June to December, as shown in Figure 5. The left y-axis shows the number of sub-
mitted jobs, and the right y-axis shows the job success rate. The bar graph shows the sub-
mitted jobs count, and the line with points indicates the job-submission success rate. It can
be seen that the job success rate does not affect the number of jobs. The blue line indicates
the average success rate before applying K-hook, and the red line indicates the average
success rate after applying K-hook. The average success rate before application was 74.4%,
but the average success rate after application was 85.6%, which is an improvement of 15%.
By analyzing the reason for the improved job success rate, the K-hook functions were de-
fined based on the analysis of the existing failure error message, and the detected node
information was changed to offline and transmitted to the scheduler, reducing the failure
rate.

Figure 5. Comparison of job success rate before and after applying K-hook with scheduling.

5.2. Analysis of Waiting Time for Main Queues
As described in the previous section, adding K-hooks may increase users’ waiting

time. We modified the queue policy to reduce the waiting time of users. In terms of service
availability, we reduced the maximum number of submitted jobs and executed jobs to
increase job success rate without affecting waiting time. Figure 6 shows the results of an-
alyzing the waiting time for main queues by modifying the policy at the time of adding
K-hooks. The main queues to which many computing resources were allocated are the
normal, exclusive, norm_skl, and commercial queues. We analyzed the waiting times of

0.0

5.0k

10.0k

15.0k

20.0k

25.0k

30.0k

01
/Ja

n
01

/Feb

01
/M

ar

01
/A

pr

01
/M

ay
01

/Ju
n

01
/Ju

l

01
/A

ug
01

/Sep
01

/O
ct

01
/N

ov
01

/D
ec

31
/D

ec
0

20

40

60

80

100

N
um

be
r o

f s
ub

m
itt

ed
 jo

bs
 (c

ou
nt

)

Ra
tio

 o
f s

uc
ce

ss
 jo

bs
 (%

)

Jobs
Success rate

Average success rate before applied
Average success rate after applied

Figure 5. Comparison of job success rate before and after applying K-hook with scheduling.

5.2. Analysis of Waiting Time for Main Queues

As described in the previous section, adding K-hooks may increase users’ waiting
time. We modified the queue policy to reduce the waiting time of users. In terms of service
availability, we reduced the maximum number of submitted jobs and executed jobs to
increase job success rate without affecting waiting time. Figure 6 shows the results of
analyzing the waiting time for main queues by modifying the policy at the time of adding
K-hooks. The main queues to which many computing resources were allocated are the
normal, exclusive, norm_skl, and commercial queues. We analyzed the waiting times of
these four main queues monthly to confirm that our method does not affect waiting times.
The left y-axis shows the number of jobs and the right y-axis represents the waiting time
(second) by month. The bar graph shows the number of jobs, the jagged line indicates
the waiting time, the blue line shows the average waiting time before application, and the
red line shows the average waiting time after application. In the normal queue shown in
Figure 6a, the average waiting time after application was 1376.9 s, which is 34% lower than

Appl. Sci. 2021, 11, 6166 9 of 12

before K-hook was applied. In the exclusive queue shown in Figure 6b, the average waiting
time after application was 14,412.1 s, a reduction of 48.9%. In the norm_skl queue shown
in Figure 6c, the average waiting time after application was 1582.9 s, a reduction of 80.1%
In the commercial queue shown in Figure 6d, the average waiting time after application
was 5416 s, a reduction of 10.5%.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 12

these four main queues monthly to confirm that our method does not affect waiting times.
The left y-axis shows the number of jobs and the right y-axis represents the waiting time
(second) by month. The bar graph shows the number of jobs, the jagged line indicates the
waiting time, the blue line shows the average waiting time before application, and the red
line shows the average waiting time after application. In the normal queue shown in Fig-
ure 6a, the average waiting time after application was 1376.9 s, which is 34% lower than
before K-hook was applied. In the exclusive queue shown in Figure 6b, the average wait-
ing time after application was 14,412.1 s, a reduction of 48.9%. In the norm_skl queue
shown in Figure 6c, the average waiting time after application was 1582.9 s, a reduction
of 80.1% In the commercial queue shown in Figure 6d, the average waiting time after ap-
plication was 5416 s, a reduction of 10.5%.

Figure 6. Comparison of the waiting time before and after applying K-hook with scheduling by main queues. (a) Normal
queue and (b) exclusive queue in KNL type. (c) Norm_skl queue and (d) commercial queue in SKL type.

These results show that from the user’s perspective, the waiting time does not in-
crease because of our method being applied to each queue. Although it cannot be gener-
alized due to the unique characteristics of the user’s jobs, this is an attempt to satisfy the
job success rate from the operator’s perspective and ensure the user’s convenience. As this
is a real service supercomputing environment, we could not compare the before and after
scenarios perfectly. Because the job submitted status of users may be different every
month, some months may have numerous jobs, and some may have fewer. Therefore, we
analyzed the waiting time as a rough trend by displaying the monthly average for one
year on a graph.

0.0

50.0k

100.0k

150.0k

200.0k

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.0

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

8.0k

9.0k

N
um

be
r o

f j
ob

s (
co

un
t)

W
ai

t t
im

e
(s

ec
on

ds
)

(a) Normal queue

Jobs
Wait time

Average wait time before applied
Average wait time after applied

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.0

10.0k

20.0k

30.0k

40.0k

50.0k

60.0k

N
um

be
r o

f j
ob

s (
co

un
t)

W
ai

t t
im

e
(s

ec
on

ds
)

(b) Exclusive queue

Jobs
Wait time

Average wait time before applied
Average wait time after applied

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.0

10.0k

20.0k

30.0k

40.0k

50.0k

60.0k

N
um

be
r o

f j
ob

s (
co

un
t)

W
ai

t t
im

e
(s

ec
on

ds
)

(c) Norm skl queue

Jobs
Wait time

Average wait time before applied
Average wait time after applied

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.0

10.0k

20.0k

30.0k

40.0k

50.0k

60.0k

N
um

be
r o

f j
ob

s (
co

un
t)

W
ai

t t
im

e
(s

ec
on

ds
)

(d) Commercial queue

Jobs
Wait time

Average wait time before applied
Average wait time after applied

Figure 6. Comparison of the waiting time before and after applying K-hook with scheduling by main queues. (a) Normal
queue and (b) exclusive queue in KNL type. (c) Norm_skl queue and (d) commercial queue in SKL type.

These results show that from the user’s perspective, the waiting time does not increase
because of our method being applied to each queue. Although it cannot be generalized due
to the unique characteristics of the user’s jobs, this is an attempt to satisfy the job success
rate from the operator’s perspective and ensure the user’s convenience. As this is a real
service supercomputing environment, we could not compare the before and after scenarios
perfectly. Because the job submitted status of users may be different every month, some
months may have numerous jobs, and some may have fewer. Therefore, we analyzed the
waiting time as a rough trend by displaying the monthly average for one year on a graph.

5.3. MTBI of Supercomputing Service

The MTBI, which represents the average time between interrupts (more specifically,
the average time for which the system operates continuously without interruption) and

Appl. Sci. 2021, 11, 6166 10 of 12

MTBF, which represents the average time between failures of the system, are usually used
as indicators of system reliability. The MTBI was calculated using Equation (1).

MTBIservice =
production time

number o f service interrupts
(1)

In 2019, regular monthly maintenance was conducted on the Nurion system to reduce
failures. Despite this, three service interruptions occurred in June and July because of
parallel file system failures. Table 3 summarizes the number of interrupts for each month
due to system failure, including the periodic downtime in 2019. The table shows that the
Nurion system experienced 15 interrupts in 2019, and its MTBI was 24.3 days (=365/15).

Table 3. The number of system interruptions for maintenance.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Interrupts 1 1 1 1 1 3 2 1 1 1 1 15

This indirectly shows that the Nurion system operated in a remarkably stable manner
during the first year of use. Figure 7 shows the monthly system utilization and service
availability rates. System utilization is the ratio of the total CPU time consumed by users’
jobs to the total CPU time of all available nodes. It is the ratio of the production time
(operation time of all 8437 nodes minus planned maintenance time minus failure time)
to total time. The system availability rate is the fraction of a period in which an item
is in a condition to perform its intended function upon demand. This was calculated
using Equation (2). The bar graph in Figure 7 shows that the system utilization gradually
increased. In addition, system availability was maintained at an average of 97% or more.

Availabilitysystem (%) =
uptime

total time
× 100 (2)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 12

5.3. MTBI of Supercomputing Service
The MTBI, which represents the average time between interrupts (more specifically,

the average time for which the system operates continuously without interruption) and
MTBF, which represents the average time between failures of the system, are usually used
as indicators of system reliability. The MTBI was calculated using Equation (1). 𝑀𝑇𝐵𝐼 = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑠 (1)

In 2019, regular monthly maintenance was conducted on the Nurion system to re-
duce failures. Despite this, three service interruptions occurred in June and July because
of parallel file system failures. Table 3 summarizes the number of interrupts for each
month due to system failure, including the periodic downtime in 2019. The table shows
that the Nurion system experienced 15 interrupts in 2019, and its MTBI was 24.3 days
(=365/15).

Table 3. The number of system interruptions for maintenance.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Interrupts 1 1 1 1 1 3 2 1 1 1 1 15

This indirectly shows that the Nurion system operated in a remarkably stable manner
during the first year of use. Figure 7 shows the monthly system utilization and service
availability rates. System utilization is the ratio of the total CPU time consumed by users’
jobs to the total CPU time of all available nodes. It is the ratio of the production time (op-
eration time of all 8437 nodes minus planned maintenance time minus failure time) to
total time. The system availability rate is the fraction of a period in which an item is in a
condition to perform its intended function upon demand. This was calculated using Equa-
tion (2). The bar graph in Figure 7 shows that the system utilization gradually increased.
In addition, system availability was maintained at an average of 97% or more. 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) = 𝑢𝑝𝑡𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 × 100 (2)

Figure 7. Utilization (bar graph, left y-axis) and availability (line graph, right y-axis) rates of the
Nurion system in 2019.

 0

 20

 40

 60

 80

 100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
 0

 20

 40

 60

 80

 100

Sy
ste

m
 U

sa
ge

(%
)

A
va

ila
bi

lit
y(

%
)

Month

system usage
system availability

Figure 7. Utilization (bar graph, left y-axis) and availability (line graph, right y-axis) rates of the
Nurion system in 2019.

Appl. Sci. 2021, 11, 6166 11 of 12

6. Conclusions

Designing job scheduling in HPC environments for supercomputing services is highly
complex. In particular, scheduling for large-scale resources emphasizes efficient operation
and the improvement of service availability. We analyzed the frequent occurrence of job
submission errors based on the operational data of supercomputer Nurion for several
months. By analyzing these error codes in detail, a method named K-hook was developed
to increase the job-submission success rate and was added to the scheduling architecture.
Consequent to applying the K-hook method to scheduling, the job-submission success rate
was improved by 15% without negatively affecting the user’s waiting time. The method
proposed in this paper is being applied in an environment that provides actual services and
is expected to provide both quality service and valuable research insights. In the future,
we will continue exploring innovations that apply intelligent and automated technologies
through a deeper analysis of user data generated from supercomputer operations to reduce
users’ waiting time and improve service availability.

Author Contributions: Conceptualization, J.-K.L. and M.-W.K.; methodology, D.-S.A.; software,
M.-W.K. and D.-S.A.; validation, J.Y. and J.W.; formal analysis, J.-K.L.; investigation, S.-J.K.; resources,
J.W. and T.H.; data curation, G.L.; writing—original draft preparation, J.-K.L.; writing—review and
editing, G.L.; visualization, M.-W.K.; J.Y.; project administration, T.H.; funding acquisition, T.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research has been performed as a project of Project No. K-21-L02-C01-S01 (The
national flagship supercomputer infrastructure construction and service) supported by the KOREA
INSTITUTE of SCIENCE and TECHNOLOGY INFORMATION (KISTI).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: This study has been performed as a sub-project of KISTI’s project “The national
flagship supercomputer infrastructure construction and service”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Di, S.; Guo, H.; Pershey, E.; Snir, M.; Cappello, F. Characterizing and Understanding HPC Job Failures over the 2K-day Life of

IBM BlueGene/Q System. In Proceedings of the 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Portland, OR, USA, 24–27 June 2019; pp. 473–484.

2. Di, S.; Guo, H.; Gupta, R.; Pershey, E.R.; Snir, M.; Cappello, F. Exploring properties and correlations of fatal events in a large-scale
hpc system. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 361–374. [CrossRef]

3. Rojas, E.; Meneses, E.; Jones, T.; Maxwell, D. Analyzing a five-year failure record of a leadership-class supercomputer. In
Proceedings of the 31st International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD),
Campo Grande, Brazil, 15–18 October 2019; pp. 196–203.

4. Wang, F.; Oral, S.; Sen, S.; Imam, N. Learning from Five-year Resource-Utilization Data of Titan System. In Proceedings of the
2019 IEEE International Conference on Cluster Computing (CLUSTER), Albuquerque, NM, USA, 23–26 September 2019; pp. 1–6.

5. Yamamoto, K.; Uno, A.; Murai, H.; Tsukamoto, T.; Shoji, F.; Matsui, S.; Sekizawa, R.; Sueyasu, F.; Uchiyama, H.; Okamoto, M.; et al.
The K computer operations: Experiences and statistics. Procedia Comput. Sci. 2014, 29, 576–585. [CrossRef]

6. Wang, C.; Mueller, F.; Engelmann, C.; Scott, S.L. Proactive process-level live migration in HPC environments. In Proceedings of
the SC’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, Austin, TX, USA, 15–21 November 2008.

7. Hsu, C.H.; Feng, W.C. A power-aware run-time system for high-performance computing. In Proceedings of the SC’05: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, Seattle, WA, USA, 12–18 November 2005.

8. Geist, A.; Reed, D. A survey of high-performance computing scaling challenges. Int. J. High Perform. Comput. Appl. 2017, 31,
104–113. [CrossRef]

9. Yoon, J.; Hong, T.; Park, C.; Noh, S.Y.; Yu, H. Log Analysis-Based Resource and Execution Time Improvement in HPC: A Case
Study. Appl. Sci. 2020, 10, 2634. [CrossRef]

http://doi.org/10.1109/TPDS.2018.2864184
http://doi.org/10.1016/j.procs.2014.05.052
http://doi.org/10.1177/1094342015597083
http://doi.org/10.3390/app10072634

Appl. Sci. 2021, 11, 6166 12 of 12

10. Wagner, M.; López, V.; Morillo, J.; Cavazzoni, C.; Affinito, F.; Giménez, J.; Labarta, J. Performance analysis and optimization of
the fftxlib on the intel knights landing architecture. In Proceedings of the 46th International Conference on Parallel Processing
Workshops (ICPPW), Bristol, UK, 14–17 August 2017; pp. 243–250. [CrossRef]

11. Kang, J.H.; Kwon, O.K.; Ryu, H.; Jeong, J.; Lim, K. Performance evaluation of scientific applications on Intel Xeon Phi Knights
Landing clusters. In Proceedings of the 2018 International Conference on High Performance Computing & Simulation (HPCS),
Orleans, France, 16–20 July 2018; pp. 338–341. [CrossRef]

12. Hammond, S.; Vaughan, C.; Hughes, C. Evaluating the Intel Skylake Xeon processor for HPC workloads. In Proceedings of the
2018 International Conference on High Performance Computing & Simulation (HPCS), Orleans, France, 16–20 July 2018; pp.
342–349. [CrossRef]

13. Birrittella, M.S.; Debbage, M.; Huggahalli, R.; Kunz, J.; Lovett, T.; Rimmer, T.; Underwood, K.D.; Zak, R.C. Intel® Omni-path
architecture: Enabling scalable, high performance fabrics. In Proceedings of the IEEE 23rd Annual Symposium on High-
Performance Interconnects, Santa Clara, CA, USA, 26–28 August 2015; pp. 1–9. [CrossRef]

14. Salunkhe, R.; Kadam, A.D.; Jayakumar, N.; Joshi, S. Luster a scalable architecture file system: A research implementation on
active storage array framework with Luster file system. In Proceedings of the International Conference on Electrical, Electronics,
and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 1073–1081. [CrossRef]

15. Kim, J.; Kim, D. KREONET-GENI future internet testbed. In Proceedings of the 7th International Conference on Networked
Computing and Advanced Information Management, Gyeongju, Korea, 21–23 June 2011; pp. 121–122.

http://doi.org/10.1109/ICPPW.2017.44
http://doi.org/10.1109/HPCS.2018.00063
http://doi.org/10.1109/HPCS.2018.00064
http://doi.org/10.1109/HOTI.2015.22
http://doi.org/10.1109/ICEEOT.2016.7754852

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration

	Problem Statement
	Method
	Workflow with K-Hook
	Flowchart with K-Hook

	Result
	Evaluation of Summitted-Job Success Rate
	Analysis of Waiting Time for Main Queues
	MTBI of Supercomputing Service

	Conclusions
	References

