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Featured Application: This work proposes a common framework for developing robust Power-
Flow solvers that may find multiple applications in power system analysis tools.

Abstract: This paper presents a novel Power-Flow solution paradigm based on the structure of the
members of the Runge–Kutta family. Solution approaches based on the introduced solution paradigm
are intrinsically robust and can achieve high-order convergences rates. It is demonstrated that some
well-known Power-Flow solution methods are in fact special cases of the developed framework.
Explicit and embedded formulations are discussed, and two novel solution methodologies based on
the Explicit Heun and Embedded Heun–Euler’s methods are developed. The introduced solution
techniques are validated in the EU PEGASE systems, considering different starting points and loading
levels. Results show that the developed methods are quite reliable and efficient, outperforming other
robust and standard methodologies. On the basis of the results obtained, we can affirm that the
introduced solution paradigm constitutes a promising framework for developing novel Power-Flow
solution techniques.

Keywords: Power-Flow analysis; high-order methods; ill-conditioned systems; Runge–Kutta formulas

1. Introduction
1.1. Motivation

The Power-Flow (PF) is one of the main computational tools in power system analysis.
It solves the nonlinear model of a power system for a given power generation/consumption
profile. Nowadays, the Newton–Raphson (NR) is still the most widely used technique
for solving the nonlinear equations involved in the PF problem. This is because of its
simplicity, easy codification in standard programming languages, acceptable robustness,
and quadratic convergence. These features typically bring superior characteristics with
respect to (w.r.t.) other conventional PF solvers.

The PF problems are customary categorized as well or ill-conditioned. Conventionally,
a PF problem is said to be ill-conditioned when its solution by using standard techniques
such as NR is hardly reachable [1]. This has supposed an important barrier for the wide ap-
plication of Newton-like techniques; nevertheless, this issue has not been very problematic
due to most PF cases being well-conditioned. However, ill-conditioned cases are becoming
more frequent [2]. Solving these kinds of problems is still challenging due to the difficulties
showed by standard methods or the low degree of efficiency manifested by most of the
available robust PF solution techniques. In this context, developing novel efficient and
robust PF solution approaches is still interesting, relevant, and demanding.
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1.2. Literature Review

PF solutions in ill-conditioned cases have been widely studied since Iwamoto and
Tamura developed a robust step size-based solution methodology in [3]. For each iteration
of this methodology, an optimal factor is calculated that modifies the Newton’s increment
vector so that it evolves, reducing the sum of squares of the residual. This approach,
although quite robust, is very inefficient because the solution is approached very slowly [4].
In addition, this methodology is only suitable when the PF equations are formulated in
rectangular coordinates [3]; however, polar formulations have been explored [5].

Since NR considers a first-order truncation of the Taylor series truncation of PF
equations, its accurate and reliability can be enhanced by using a second-order expansion.
This approach arises in the so-called second-order PF solution methods, which have not
been widely used in industry applications due to the expensive calculation of the Hessian
matrix. The author of [6] proposed an elegant variant of the second-order methodologies
that avoids the explicit computation of the Hessian matrix.

Milano proposed a common framework between the NR-based solution of the PF
and the Forward Euler methodology in [1]. On the basis of this analogy, it is established
that any explicit numerical method can be adapted for developing robust PF solution
techniques. This idea has been widely exploited by the authors in several references [7–11].
The implicit formulation of this paradigm has been recently proposed in [12].

In [2,13], a dynamic solution paradigm for solving the PF was proposed. It takes
advantage of the computational integration routines, so that a widely convergent method-
ology is obtained. However, its computational cost is still very expensive, which limits its
application in realistic large-scale systems.

The Levenberg method has been exploited for PF analysis in several references [14–16].
Although these techniques might be very efficient and convergence is normally ensured (at
least in the least squares sense), the obtained value may not correspond with the explicit
solution of the PF equations [14], which might bring accuracy issues.

Recently, several efforts have been made in order to adapt the Holomorphic Embed-
ding Method to the solution of the PF equations (see e.g., [17] and references therein). The
Holomorphic Embedding Method represents an infinite number of formulations, each one
with different numerical properties. An alternative point of view was proposed by the
authors in [18]. It takes advantage of the homotopy theorem which, in combination with
other efficient numerical techniques, arises in a novel family of robust and efficient PF
solution methods.

1.3. Contributions and Paper Organization

This paper arises from a careful study of the work developed in [6]. As commented,
this reference proposes a second-order methodology that avoids the explicit computation
of the Hessian matrix. This technique was called NR with Jacobian adjustments (NRJ).
The authors observed that NRJ could be also interpreted as the adaptation of the Explicit
Midpoint method to the PF analysis, but in a different way compared with the Midpoint
PF solution procedure considered in [1,10]. Keeping this in mind, any other member of the
Runge–Kutta family [19] could be adapted in a similar way to the PF problem, so that a huge
variety of novel PF solution methods can be developed based on the introduced solution
framework. This idea, although it presents some similitudes with the work developed
in [1], brings two main advantages with respect to this reference:

• Methodologies developed in this work are intrinsically robust, which means, unlike
those in [1,7–12], it is not necessary to include a discrete step size in the formulation to
improve their convergence properties.

• Methodologies based on the introduced solution paradigm achieve, at least, a quadratic
convergence rate, which makes them competitive with standard solvers such as NR.

The latter point is especially relevant since PF solution techniques based on the
proposed solution framework might be also high order Newton-like methods, which is
reflected in the superior convergence characteristics in comparison with NR and other
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robust PF methods. In this paper, Explicit and Embedded formulations of the developed
solution paradigm are discussed, and two novel robust and efficient PF solution tech-
niques with cubic order of convergence are developed. In order to validate the developed
methodologies, they have been tested in several realistic systems based on the European
Transmission system.

The remainder of this paper is organized as follows. Section 2 introduces the devel-
oped common framework for developing high-order robust PF solution methods. Two
novel solution techniques based on the introduced solution paradigm are developed in
Section 3. Several numerical experiments and results are presented in Section 4. Finally,
the paper is concluded in Section 5.

2. The Developed Solution Framework for PF Analysis
2.1. Analogy between NRJ and the Explicit Midpoint Method

Let us consider the PF problem in polar coordinates as a set of nonlinear equations
as follows:

g(x) = 0 (1)

where g : Rn 7−→ Rn are the PF equations and x ∈ Rn is the PF state vector. Due to strong
nonlinearities in (1), its solution must be achieved by using iterative techniques. The most
popular one in PF analysis is NR, which is performed as follows:

x(k+1) = x(k) −
[
g
′
(

x(k)
)]−1

g
(

x(k)
)

(2)

where [∗]−1 : Rn 7→ Rn is the inverse operator, the superscript denotes the kth iteration of
the iterative procedure, and g

′ ∈ Rn×n is the Jacobian matrix of the PF equations, which is
formed by the first partial derivatives of g w.r.t. x. In contrast to (2), NRJ poses a two-step
iterative scheme for solving the set in Equation (1) described by: y(k)

2 = x(k) − 1
2

[
g
′
(

x(k)
)]−1

g
(

x(k)
)

x(k+1) = x(k) −
[
g
′
(

y(k)
2

)]−1
g
(

x(k)
) . (3)

In [10], the Explicit Midpoint rule [19] was exploited for solving the PF equations on
the basis of the Continuous Newton’s principle. This technique poses a two-stage iterative
solver, which is given by the mapping in (4). y(k)

2 = x(k) +
(

1
2 ·∆t

)
f
(

x(k)
)

x(k+1) = x(k) + ∆tf
(

y(k)
2

) (4)

where ∆t ∈ R+ is the step size (or truncation) and f : Rn 7−→ Rn is given by:

f(x) = −
[
g
′
(x)
]−1

g(x). (5)

Further insight on mappings (3) and (4) reveals a clear analogy between these two
solvers. In fact, the iterative map (3) could be rewritten as follows: y(k)

2 = x(k) + 1
2 h
(

x(k), x(k)
)

x(k+1) = x(k) + h
(

y(k)
2 , x(k)

) (6)

where the step size has vanished and the auxiliary function h : Rn 7−→ Rn is defined by:

h(y, x) = −
[
g
′
(y)
]−1

g(x). (7)
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The analogy described above reveals that NRJ and the Explicit Midpoint rule are actu-
ally equivalent mappings. Keeping this in mind, NRJ may be seen as the application of the
Explicit Midpoint method for solving the function h, whereas the different methodologies
proposed in [1,10] are devoted to solving f. In the same way, NR could be assimilated as
the direct application of the Explicit Euler methodology for solving (7).

2.2. The Novel Family of Robust PF Techniques

In the previous section, we showed that NR and NRJ can be seen as the application
of the Explicit Euler and Midpoint techniques for solving (7). This analogy suggests that
any other member of the family of Explicit Runge–Kutta methods can be adapted to be
applied to the PF problem. Similar to the generic form of the Runge–Kutta methods (e.g.,
see [10] (Equation (11)), we could develop a generic form for the application of this family
of numerical methods to the PF problem, as follows:

y(k)
2 = x(k) + a2|1h

(
x(k), x(k)

)
y(k)

3 = x(k) + a3|1h
(

x(k), x(k)
)
+ a3|2h

(
y(k)

2 , x(k)
)

...

y(k)
p = x(k) + ap|1h

(
x(k), x(k)

)
+

p
∑

i = 2

{
ap|ih

(
y(k)

i , x(k)
)}

x(k+1) = x(k) + b1h
(

x(k), x(k)
)
+ ∑m

i = 2

{
bih
(

y(k)
i , x(k)

)}
(8)

where the a and b values ∈ R. In essence, these parameters are introduced to copy
the standard structure of the Runge–Kutta methods, which are broadly defined by the
total number of stages involved (p), the value of the elements of the Runge–Kutta matrix
(a values) and weights (b values) [19]. Conventionally, the Runge–Kutta methods are
presented by their so-called Butcher tableaus [19] (p. 95), which succinctly collects all the
necessary information to completely define a Runge–Kutta technique, as follows:

A =


0

a2|1 a2|2
...

. . .
ap|1 · · · ap|p−1 ap|p

 ∈ Rp×p (9)

b = [b1, b2, . . . , bm] ∈ Rm. (10)

It is worth mentioning that (9) is lower triangular, since we are dealing with explicit
Runge–Kutta formulas (the implicit formulation of (8), although possible, may be com-
putationally expensive, since it would require the factorization of the inverse of (7) [1]).
In addition, it is worth noting that nodes [19] are not included in the formulation devel-
oped in this paper. This is because the application of the Runge–Kutta formulas to PF
analysis is developed from the assimilation of the set of equations (1) as an autonomous
set of differential equations. In such formulations, the nodes of a numerical method lack
importance [19].

One can note that (8) can be adapted to any Explicit Runge–Kutta formula. At this
point, readers can easily check that both NR and NRJ are actually special cases of (8). Thus,
for NR, one has:

A =

[
0 0
1 0

]
, b = [1, 0]. (11)

While NRJ is fully described by:

A =

[
0 0

1/2 0

]
, b = [0, 1]. (12)
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Interested readers can easily check in the vast literature that (11) and (12) correspond
with the Runge–Kutta matrix and weight vectors of the Explicit Euler and Midpoint
techniques, respectively.

2.3. Embedded Formulation

The solution paradigm established in the previous section allows considering any
explicit numerical method for developing robust PF solution techniques. However, not only
explicit numerical integration techniques are available in the literature. The Embedded
Runge–Kutta techniques arise as an alternative of Explicit methods. Such methodologies
allow accurately estimating the local truncation error of a single step and properly adapting
the step size to obtain high accuracy [19]. In this case, due to the step size having van-
ished in the developing formulation, its ability to estimate the local truncation error lacks
importance; nonetheless, it is still relevant to rewrite (8) into its Embedded counterpart
as follows:

y(k)
2 = x(k) + a2|1h

(
x(k), x(k)

)
y(k)

3 = x(k) + a3|1h
(

x(k), x(k)
)
+ a3|2h

(
y(k)

2 , x(k)
)

...

y(k)
p = x(k) + ap|1h

(
x(k), x(k)

)
+

p
∑

i = 2

{
ap|ih

(
y(k)

i , x(k)
)}

x̂(k) = x(k) + b∗1h
(

x(k), x(k)
)
+ ∑m

i = 2

{
bih
(

y(k)
i , x(k)

)}
x(k+1) = x̂(k) +

(
b1 − b∗1

)
h
(

x(k), x(k)
)
+ ∑m

i = 2

{(
bi − b∗i

)
h
(

y(k)
i , x(k)

)}
(13)

where b∗ values ∈ R. Unlike paradigm (8), each weight in (13) is described by a pair of
parameters (b and b∗). In this case, two numerical methods are nested, each contributing
their own characteristic weights. In numerical analysis, this arrangement is very useful for
achieving higher accuracy, while in our case, these parameters have been introduced just for
copying the standard structure of the Embedded Runge–Kutta formulas [19] (p. 204). Thus,
instead of directly calculating the value of the state vector for the k + 1 iteration through a
single step arrangement, formulation (13) firstly calculates an approximation of the state
vector x̂ that is posteriorly refined by means of other numerical methods defined by the
b∗ values (see [20] for further details). This way, any PF solver based on the developed
paradigm (13) could be defined by two matrixes as follows:

A =


0

a2|1 a2|2
... ap|1 · · ·

ap|1
. . . ap|p−1 ap|p

 ∈ Rp×p (14)

B =

[
b∗1 , b∗2 , . . . , b∗m
b1, b2, . . . , bm

]
∈ R2×m. (15)

It is worth noting that unlike the techniques developed in [1,7–12], any truncation of
the Newton’s increment vector based on the influence of the step size is considered in the
developed solution frameworks. It means that the developed solution techniques are (as
shown in Section 4) intrinsically robust. This point is relevant, since the influence of the
step size vanishes, facilitating its codification and application in industry tools.

2.4. Handling Equipment Limits

Handling equipment limits (such as those imposed by e.g., generators, on-load tap
changers, etc.) is an important topic in PF analysis. The developed solution frameworks
(8) and (13) do not directly take into account these limits; however, they could be easily
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incorporated. In this case, we have considered the same strategy used in [21]. Particulariz-
ing to the case of reactive limits in generation units, this approach consists of checking the
reactive limits of all generators after a PF solution is calculated. Then, if any limit has been
violated, those buses are converted to PQ, and the violated limit is taken as the reactive
power injection of this new PQ bus. Then, taking the obtained solution as a starting point,
the process is repeated until a feasible solution is reached. This strategy is described in the
flowchart of Figure 1. One should note that other control parameters such as transformer
tap changers can be taken into account using similar strategies. It is worth mentioning that
the developed solution framework is versatile enough to easily incorporate other strategies,
such as that described in [2].

Figure 1. Flowchart of the considered strategy for handling with reactive limits in generation units.

2.5. Stability of the Developed Solution Paradigms

In order to study the stability of the mappings (8) and (13), let us introduce the
following definition:

Definition 1: Hyperbolic points: a fixed point x∗ of a map G : C ⊂ Rn → Rn is hyperbolic, if the
Jacobian of the equation

.
G = G(x)− x at x∗ has no eigenvalues with a zero real part. In addition,

x∗ is asymptotically stable if all the eigenvalues of the Jacobian of
.

G at x∗ have a modulus ≤ 1. A
hyperbolic point can be:

• Sink: if all the eigenvalues of the Jacobian of
.

G have a negative real part.

• Source: if at least one of the eigenvalues of the Jacobian of
.

G has a positive real part.

Contrarily, a fixed point is said to be unstable if it is not stable.

By Definition 1, one requires a PF solution (i.e., x∗ such that g(x∗) = 0) to be
asymptotically stable. In addition, we desire from x∗ to be a sink. By using definition
1, we can study the numerical stability of the developed solution frameworks, which is
performed in the following lemma.

Lemma 1: a solution of the PF equations (i.e., x∗ such that g(x∗) = 0) is a sink for the nonlinear
solution paradigms (8) and (13), if ∑m

i = 1 bi ≥ 0 and ∑m
i = 1

(
bi − b∗i

)
≥ 0, respectively.

Proof of Lemma 1. By differentiating (7) with respect x one obtains:

∇xh = −∇x

[
g
′
(y)
]−1

g(x)−
[
g
′
(y)
]−1

g
′
(x). (16)
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One can easily check that at an equilibrium point (i.e., x∗ such that g(x∗) = 0), the developed
solution paradigms (8) and (13) take the form:

yi|x∗ = x∗, ∀i. (17)

Substituting (17) into (16), one obtains:

∇xh|x∗ = −∇x

[
g
′
(x∗)

]−1
g(x∗)−

[
g
′
(x∗)

]−1
g
′
(x∗) = −I (18)

where I ∈ Rn×n is the identity matrix. Then, one can replace (18) into the differential equation
associated with the mapping (8) obtaining:

∇x

(
x(k+1) − x(k)

)∣∣∣
x∗

= −
m

∑
i = 1
{biI}. (19)

While for the paradigm (13), one has:

∇x

(
x(k+1) − x̂(k)

)∣∣∣
x∗

= −
m

∑
i = 1
{(bi − b∗i )I}. (20)

Equations (19) and (20) show that at the equilibrium point, all the eigenvalues of the Jacobian
of the differential equations associated with the developed solution paradigms do not have imaginary
parts. In addition, their real parts are equal to−∑m

i = 1{bi} in the case of (8) and−∑m
i = 1

{
bi − b∗i

}
for the mapping (13). Therefore, the equilibrium point x∗ is asymptotically stable for the paradigm
(8) if:

m

∑
i = 1

bi ≥ 0. (21)

While for the mapping (13), the following inequality must hold:

m

∑
i = 1

(bi − b∗i ) ≥ 0 (22)

�

3. Developed PF Solvers

For the sake of exemplifying, we have developed two novel robust techniques based
on the introduced solution paradigms defined by (8) and (13).

Firstly, we have taken the Explicit Heun’s method for solving (7), which brings the
following iterative procedure for solving the PF equations: y(k)

2 = x(k) − h
(

x(k), x(k)
)

x(k+1) = x(k) − 1
2

[
h
(

x(k), x(k)
)
+ h

(
y(k)

2 , x(k)
)] . (23)

On the other hand, taking the developed formulation (13) and considering the Embed-
ded Heun–Euler method, the following iterative procedure for solving the PF equations
is introduced:

y(k)
2 = x(k) − h

(
x(k), x(k)

)
x̂(k) = x(k) − (1− 0)h

(
x(k), x(k)

)
x(k+1) = x̂(k) −

(
1− 1

2

)
h
(

x(k), x(k)
)
−
(

0− 1
2

)
h
(

y(k)
2 , x(k)

) . (24)
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The developed PF solution techniques require two matrix evaluations (and factor-
izations) along with a function evaluation each iteration. In addition, they achieve cubic
convergence (see Appendix A). As a result of these features, one can guess that the devel-
oped techniques are more efficient than those presented in [1,9,10]. It is worth remarking on
the outstanding features of the developed methods since, besides their intrinsic robustness
characteristics that are empirically proved by results (see Section 4), they present a high
convergence rate. These two characteristics are very difficult to be found simultaneously in
a PF solver.

For the sake of summarizing, Table 1 shows the A matrix and b vectors (or B matrix), of
NR, NRJ, and the developed PF solution methods (23) and (24). To complete the section, the
PF solution procedure using any of the developed techniques is summarized in Algorithm
1 using pseudocode. This algorithm aims to serve as a guidance for easily implementing
the developed solvers in standard programming languages such as MATLAB or C. It is
worth mentioning that this algorithm can be adapted to NR and NRJ by just replacing
Equation (23) or (24) by (2) or (6), respectively. In addition, we have considered the failure
of our algorithms when they do not converge in a predetermined number of iterations
kmax. This situation usually indicates divergence. In the pseudocode of Algorithm (1),
the parameter tolerance makes mention of a predefined value beyond which it is assumed
that the calculated solution is accurate enough and the algorithm may be determined
successfully convergent. It is worth noting that the iterative nonlinear algorithms are
unable to calculate the exact solution as in the case of linear systems; therefore, it is
customary to establish a threshold for determining when the correct solution is sufficiently
approached. Typical values for convergence tolerances in PF studies are fixed below
10−4 [7–11].

Table 1. Definition of some PF solvers based on the developed solution paradigms using ma-
trix/vector notation.

Solver Analogy A b or B

NR (2) Explicit Euler
[

0 0
1 0

]
[1, 0]

NRJ (6) Explicit Midpoint
[

0 0
1/2 0

]
[0, 1]

(23) Explicit Heun
[

0 0
1 0

]
[1/2, 1/2]

(24) Embedded
Heun–Euler

[
0 0
1 0

] [
1/2 1/2

1 0

]

Algorithm 1: Developed PF solution techniques

1: Set iteration counter: k← 0
2: Initial variable guess: x(k) ← x(0)

3: # Iterations
4: while ‖g

(
x(k)

)
‖

∞
> tolerance do

5: Solve (23) # or (24)
6: Update iteration counter: k← k + 1
7: if k ≥ kmax then
8: break # fail
9: end if
10: end do
11: return solution x(k)

4. Numerical Experiments

A variety of numerical experiments have been carried out in order to compare the
performance of the developed techniques with other well-known PF solvers.
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The developed Explicit Heun and Embedded Heun–Euler solution approaches (Equa-
tions (23) and (24), respectively) are compared with the standard NR, the Reverse Bulirsch–
Stoer solver (RBS) [9], the Newton–Raphson with Jacobian adjustments (NRJ) [6], and
the implicit implementation of the Continuous Newton’s method using the Backward-
Euler technique (BEM) [12]. In this latter case, we have used the implementation labelled
‘Implicit-Continuous Newton Method with approximated Hessian and the solution of the
inner loop is approximated by its first iteration (ICNM-J1)’ in reference [12].

All simulations have been obtained using Matpower [22] and running on a 3 GHz Intel
Core i5-8500 personal laptop (8.00 GB RAM). In all experiments, a convergence tolerance
of 10−5 and kmax = 2000 have been considered. The maximum number of iterations was
tuned high enough to only discriminate the divergence cases. In order to avoid the impact
of parallel computational activities, the reported execution times have been calculated
taken as the average values of 1000 simulations. To determine the goodness of the solutions
calculated, they have been compared with those obtained using NR and the default starting
point provided in Matpower. Thereby, if both solutions differ more than 0.1 per unit (p.u.),
the obtained solution is considered inaccurate.

4.1. Studied Systems

Five realistic systems based on the European Transmission system from the EU PE-
GASE project have been considered [23,24]. These meshed networks range from 89 to
13,569 buses, thus comprising a wide variety of scenarios. For the sake of self-sufficiency,
Table 2 reports the main characteristics of the studied systems. A starting point, built
by modifying the correct solution of the studied cases using a Gaussian distribution and
a determined standard deviation, has been considered. These starting guesses aim at
emulating a real situation in which an available system solution is used for initializing the
PF analysis. In our opinion, this approach is more realistic than the conventional flat start,
because the iterative algorithm starts from an explicit solution of the system; this way, the
starting point could be considered more “natural” than a flat guess. We call the reader’s
attention toward a similar approach that has been also considered in [12]. In order to enable
the reproducibility of the results reported, the studied systems with the considered starting
points can be found in [25].

Table 2. Main characteristics of the studied systems.

System Buses Branches Generators
Load n

MW MVar

89-bus 89 210 12 5727.9 1374.9 165
1354-bus 1354 1991 260 73,059.7 13,401.4 2447
2869-bus 2869 4582 510 132,437.3 29,007.8 5227
9241-bus 9241 16,049 1445 312,354.1 73,581.6 17,036

13659-bus 13,659 20,467 4092 381,431.9 98,523.4 23,225

4.2. Convergence Rates for Base Cases

Our first test is devoted to comparing the convergence rates for base cases. Table 3
provides the total iterations for the studied systems. As observed, NR failed in all studied
cases, which denotes a high degree of ill-conditioning [1]. RBS only successfully solved the
89- and 1354-bus cases, while NRJ failed in the 9241- and 13659-bus cases. On the other
hand, BEM converged to the low voltage solution in the 13659-bus system. The developed
PF solvers successfully solved all the studied cases. In addition, our proposals usually
required less iterations than the remainder of the methodologies. These results serve to
empirically demonstrate the robustness characteristic and efficiency salient features of the
developed PF solvers.
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Table 3. Total iterations for base cases.

Method 89-Bus 1354-Bus 2869-Bus 9241-Bus 13659-Bus

NR Fail Fail Fail Fail Fail
RBS 13 13 Fail Fail Fail
BEM 14 13 13 14 14 *
NRJ 7 5 5 Fail Fail

Equation (23) 5 5 5 6 6
Equation (24) 5 5 5 6 6

* Low convergence solution.

4.3. Convergence Rates with Reactive Limits

Next, we explore the ability of the tested methods to solve the studied systems with
reactive limits. To do that, the strategy described in Section 2.4. has been implemented
within the considered algorithms. Table 4 reports the total iterations for the studied systems.
Similar conclusions as for the base case can be extracted for this scenario.

Table 4. Total iterations with reactive limits.

Method 89-Bus 1354-Bus 2869-Bus 9241-Bus 13659-Bus

NR Fail Fail Fail Fail Fail
RBS 13 32 Fail Fail Fail
BEM 14 32 40 42 25 *
NRJ 7 8 9 Fail Fail

Equation (23) 5 8 9 10 7
Equation (24) 5 8 9 10 7

* Low convergence solution.

4.4. Solution Times

In this case, we are interested in comparing the computational efficiency of the tested
PF solvers. This is done by comparing their solution times. Tables 5 and 6 provide the
solution times for the cases reported in Tables 2 and 3, respectively. As observed, those
solvers based on the developed solution paradigm were the most competitive techniques,
outperforming RBS and BEM in all studied systems.

Table 5. Solution times(s) for base cases.

Method 89-Bus 1354-Bus 2869-Bus 9241-Bus 13659-Bus

RBS 0.05 0.34 – – –
BEM 0.02 0.11 0.25 0.87 1.17
NRJ 0.02 0.08 0.18 – –

Equation (23) 0.01 0.08 0.18 0.72 1.00
Equation (24) 0.01 0.08 0.18 0.72 1.00

Table 6. Solution times(s) with reactive limits.

Method 89-Bus 1354-Bus 2869-Bus 9241-Bus 13659-Bus

RBS 0.05 0.88 – – –
BEM 0.02 0.28 0.76 2.68 2.08
NRJ 0.02 0.13 0.33 – –

Equation (23) 0.01 0.13 0.33 1.24 1.15
Equation (24) 0.01 0.13 0.33 1.24 1.15

Competitive results obtained with NRJ and the solution techniques based on
Equations (23) and (24) are undoubtedly due to them typically requiring less factorizations
than other solvers. In this regard, it is worth commenting that the factorization of the
Jacobian matrix is, by far, the heaviest calculation in PF analysis [1]. This fact is studied in
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Tables 7 and 8, where the total factorizations required for the cases analysed in Tables 2
and 3, respectively, are provided.

Table 7. Total factorizations for base cases.

Method 89-Bus 1354-Bus 2869-Bus 9241-Bus 13659-Bus

RBS 32 32 – – –
BEM 14 13 13 14 14
NRJ 14 10 10 – –

Equation (23) 10 10 10 12 12
Equation (24) 10 10 10 12 12

Table 8. Total factorizations with reactive limits.

Method 89-Bus 1354-Bus 2869-Bus 9241-Bus 13659-Bus

RBS 32 90 – – –
BEM 14 64 80 84 50
NRJ 14 16 18 – –

Equation (23) 10 16 18 20 14
Equation (24) 10 16 18 20 14

4.5. Influence of the Loading Level

It is well known that the loading level may affect the overall performance of a PF
solver. Typically, PF solvers require more iterations as the loading level grows. In some
cases, this factor may even provoke instability. Figure 2 shows the total iterations of the
studied solvers for different loading levels without reactive limits. The loading levels for
the studied cases have been modified by multiplying the injected active and reactive power
at PQ buses along with the injected reactive power at PV buses by a real positive factor
(called loading level). As observed, our solvers and NRJ normally required less iterations
than BEM and RBS. Nevertheless, it is worth noting that the developed techniques required
fewer iterations than NRJ for high loading levels. To provide a clearer interpretation of the
Figure 2, Table 9 reports the total iterations required by the different solvers only at the
maximum loadability point.

Figure 2. Total number of iterations for high loading levels.
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Table 9. Total number of iterations at the maximum loadability point.

Method 89-Bus 1354-Bus 2869-Bus 9241-Bus 13659-Bus

RBS 13 13 – – –
BEM 14 15 13 15 –
NRJ 8 7 6 – –

Equation (23) 6 6 5 6 8
Equation (24) 6 6 5 6 8

5. Conclusions and Future Works

Inspired by the similitude observed between the methodology described in [6] and
the Explicit Midpoint method, we have developed a novel framework for developing
efficient and robust PF solution approaches based on Runge–Kutta formulas. This solution
paradigm allows adapting any member of the Runge–Kutta family to the PF problem.
Although this idea is similar to that described by Milano in [1], the developed framework
presents two important advantages:

• The influence of the step size vanishes from the formulation, which means that the
developed solution paradigm is intrinsically robust.

• High convergence rates can be achieved, even higher than two.

Explicit and Embedded formulations of the developed solution paradigm have been
discussed, and two PF solution techniques based on the Explicit Heun and Embedded
Heun–Euler’s methods with cubic order of convergence have been developed.

The developed techniques have been validated using the EU PEGASE systems consid-
ering different demanding scenarios. Results have been compared with those obtained with
other well-known robust and conventional PF solutions approaches. Our proposals turned
out to be more stable and efficient than the other tested techniques, which occasionally
showed an unstable behaviour or a high computational cost.

On the basis of the results obtained, it is concluded that the introduced solution
paradigm constitutes a promising framework for developing novel PF solution techniques.
This opens the door for further applying the developed solution paradigms. Future
works should be focused on developing and validating other PF solution techniques,
applying other members of the Runge–Kutta family to the developed solution framework.
Similarly, analogies between the introduced solution paradigm and other families of
numerical integration techniques such as Adams–Bashforth’s methods [8] or Bulirsch–
Stoer’s scheme [9] can be found and, consequently, other high-order robust PF solution
approaches can be developed. We expect the emergence of this kind of techniques.

The developed solution techniques may be also adapted to other Power System
tools such as the Continuation Power-Flow [26]. Here, their robustness along its high
convergence order may bring very good results. Future works should study the application
of the introduced PF solution techniques to this problem.
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Appendix A Proof of Cubic Convergence of the Developed Solvers

In this section, we prove that the developed PF solution techniques present a cubic
convergence rate. To this end, we use the Taylor series technique (e.g., see [27]).

Theorem A1. Let g be sufficiently differentiable at each point of an open neighborhood D of r ∈ Rn;
this is a solution of the system g(x) = 0. Let us suppose that g(x) is continuous and nonsingular
in x. Then, the developed method (23) converges to r with order three.

Proof of Theorem A1. Taylor expansion of g(x) and g
′
(x) about r yields:

g
(

x(k)
)

= g
′
(r)
[
e(k) + C2e(k)

2
+ C3e(k)

3]
+ O

(
e(k)

4)
(A1)

g
′
(

x(k)
)

= g
′
(r)
[
I + 2C2e(k) + 3C3e(k)

2]
+ O

(
e(k)

3)
(A2)

where e(k) = x(k) − r ∈ Rn, ei = (e, e, . . . , e)︸ ︷︷ ︸
i−times

, Cj = (1/j!)
[
g
′
(r)
]−1

g(j)(r) ∈ Li(Rn,Rn),

g(j) ∈ L(Rn × . . .×Rn,Rn) and
[
g
′
(r)
]−1
∈ L(Rn). Now, let us assume that:

[
g
′
(

x(k)
)]−1

=
[
c1I + c2e(k) + c3e(k)

2][
g
′
(r)
]−1

+ O
(

e(k)
3)

(A3)

where c′s ∈ R. Considering the following inverse definition:[
g
′
(

x(k)
)]−1

g
′
(

x(k)
)

= g
′
(

x(k)
)[

g
′
(

x(k)
)]−1

= I (A4)

and solving the resulting linear system, one obtains:[
g
′
(

x(k)
)]−1

=
[
I− 2C2e(k) +

(
4C2

2 − 3C3

)
e(k)

2][
g
′
(r)
]−1

+ O
(

e(k)
4)

. (A5)

Now, defining e(k)y2
= y(k)

2 − r, we can write:

e(k)y2
= x(k) −

[
g
′
(

x(k)
)]−1

g
(

x(k)
)
− r = e(k) −

[
g
′
(

x(k)
)]−1

g
(

x(k)
)

=
(

2C3 − 2C2
2

)
e(k)

3
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2
+ O

(
e(k)

4)
. (A6)

Therefore, as in (A1) and (A5), the Taylor expansions of g
(

y(k)
2

)
and

[
g
′
(

y(k)
2

)]−1
about r

are given by:
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)
e(k)

4][
g
′
(r)
]−1

+ O
(

e(k)
5)
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Finally, we calculate the error function at k + 1 as follows:
e(k+1) = x(k) − 1

2

[g
′ (

x(k)
)]−1

g
(

x(k)
)
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[
g
′ (

y(k)2

)]−1
g
(
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′ (
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(
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)
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[
g
′ (

y(k)2

)]−1
g
(

x(k)
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1
2

C3e(k)
3
+ O

(
e(k)

4)
. (A9)

As observed in (A9), the error function decreases cubically for each iteration, and therefore, the
proof is completed. �
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Theorem A2. Let g be sufficiently differentiable at each point of an open neighborhood D of r ∈ Rn;
this is a solution of the system g(x) = 0. Let us suppose that g(x) is continuous and nonsingular
in x. Then, the developed method (24) converges to r with order three.

Proof of Theorem A2. Taking the Taylor expansions of g
(

x(k)
)

and
[
g
′
(

x(k)
)]−1

about r from

(A1) and (A2), respectively, let us define e(k)x̂ = x̂(k) − r. This way, we can write:
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At this point, we can easily calculate:
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where the Taylor expansion of
[
g
′
(

y(k)
2

)]−1
was already calculated by (A8). Developing and

rearranging Equation (A11), one obtains:

e(k+1) =

(
2C2

2 −
3
2

C3

)
e(k)

3
+ O

(
e(k)

4)
. (A12)

As observed in (A12), the error function decreases cubically for each iteration, and therefore,
the proof is completed. �

References
1. Milano, F. Continuous Newton’s Method for Power Flow Analysis. IEEE Trans. Power Syst. 2009, 24, 50–57. [CrossRef]
2. Xie, N.; Torelli, F.; Bompard, E.; Vaccaro, A. Dynamic computing paradigm for comprehensive power flow analysis. IET Gener.

Transmiss. Distrib. 2013, 7, 832–842. [CrossRef]
3. Iwamoto, S.; Tamura, Y. A load flow calculation method for ill-conditioned power systems. IEEE Trans. Power Appar. Syst. 1981,

PAS-100, 1736–1743. [CrossRef]
4. Milano, F. Power System Modelling and Scripting; Springer: New York, NY, USA, 2010.
5. Braz, L.M.C.; Castro, C.A.; Murati, C.A.F. A critical evaluation of step size optimization based load flow methods. IEEE Trans.

Power Syst. 2000, 15, 202–207. [CrossRef]
6. Lagace, P.J. Power flow methods for improving convergence. In Proceedings of the IECON 2012—38th Annual Conference on

IEEE Industrial Electronics Society, Montreal, QC, USA, 25–28 October 2012; pp. 1387–1392. [CrossRef]
7. Tostado-Véliz, M.; Kamel, S.; Jurado, F. Development of combined Runge–Kutta Broyden’s load flow approach for well- and

ill-conditioned power systems. IET Gener. Transmiss. Distrib. 2018, 12, 5723–5729. [CrossRef]
8. Tostado-Véliz, M.; Kamel, S.; Jurado, F. Development of different load flow methods for solving large-scale ill-conditioned

systems. Int. Trans. Elect. Energy Syst. 2019, 29, e2784. [CrossRef]
9. Tostado-Véliz, M.; Kamel, S.; Jurado, F. A Robust Power Flow Algorithm Based on Bulirsch-Stoer Method. IEEE Trans. Power Syst.

2019, 34, 3081–3089. [CrossRef]
10. Tostado-Véliz, M.; Kamel, S.; Jurado, F. Comparison of various robust and efficient load-flow techniques based on Runge-Kutta

formulas. Elect. Power Syst. Res. 2019, 174, 105881. [CrossRef]
11. Tostado-Véliz, M.; Kamel, S.; Jurado, F. A powerful power-flow method based on Composite Newton-Cotes formula for

ill-conditioned power systems. Int. J. Elect. Power Energy Syst. 2020, 116, 105558. [CrossRef]
12. Milano, F. Implicit Continuous Newton Method for Power Flow Analysis. IEEE Trans. Power Syst. 2019, 34, 3309–3311. [CrossRef]
13. Xie, N.; Bompard, E.; Napoli, R.; Torelli, F. Widely convergent method for finding solutions of simultaneous nonlinear equations.

Elect. Power Syst. Res. 2012, 83, 9–18. [CrossRef]
14. Milano, F. Analogy and Convergence of Levenberg’s and Lyapunov-Based Methods for Power Flow Analysis. IEEE Trans. Power

Syst. 2016, 31, 1663–1664. [CrossRef]
15. Pourbagher, R.; Derakhshandeh, S.Y. Application of high-order Levenberg-Marquardt method for solving the power flow problem

in the ill-conditioned systems. IET Gener. Transmiss. Distrib. 2016, 10, 3017–3022. [CrossRef]

http://doi.org/10.1109/TPWRS.2008.2004820
http://doi.org/10.1049/iet-gtd.2012.0350
http://doi.org/10.1109/TPAS.1981.316511
http://doi.org/10.1109/59.852122
http://doi.org/10.1109/IECON.2012.6388538
http://doi.org/10.1049/iet-gtd.2018.5633
http://doi.org/10.1002/etep.2784
http://doi.org/10.1109/TPWRS.2019.2900513
http://doi.org/10.1016/j.epsr.2019.105881
http://doi.org/10.1016/j.ijepes.2019.105558
http://doi.org/10.1109/TPWRS.2019.2912485
http://doi.org/10.1016/j.epsr.2011.09.002
http://doi.org/10.1109/TPWRS.2015.2415455
http://doi.org/10.1049/iet-gtd.2016.0064


Appl. Sci. 2021, 11, 6147 15 of 15

16. Tostado, M.; Kamel, S.; Jurado, F. An effective load-flow approach based on Gauss-Newton formulation. Int. J. Elect. Power Energy
Syst. 2019, 113, 573–581. [CrossRef]

17. Rao, S.; Feng, Y.; Tylavsky, D.J.; Subramanian, M.K. The Holomorphic Embedding Method Applied to the Power-Flow Problem.
IEEE Trans. Power Syst. 2016, 31, 3816–3828. [CrossRef]

18. Tostado, M.; Kamel, S.; Jurado, F. Several robust and efficient load flow techniques based on combined approach for ill-conditioned
power systems. Int. J. Elect. Power Energy Syst. 2019, 110, 349–356. [CrossRef]

19. Butcher, J.C. Numerical Methods for Ordinary Differential Equations; Wiley: Hoboken, NJ, USA, 2003.
20. Tostado-Véliz, M.; Kamel, S.; Jurado, F. Promising Framework Based on Multistep Continuous Newton Scheme for Developing

Robust PF Methods. IET Gener. Transmiss. Distrib. 2020, 14, 265–274. [CrossRef]
21. Tostado-Véliz, M.; Kamel, S.; Jurado, F. Robust and efficient approach based on Richardson extrapolation for solving badly

initialised/ill-conditioned power-flow problems. IET Gener. Transmiss. Distrib. 2019, 13, 3524–3533. [CrossRef]
22. Zimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. Matpower: Steady-State Operations, Planning and Analysis Tools for

Power Systems Research and Education. IEEE Trans. Power Syst. 2011, 26, 12–19. [CrossRef]
23. Josz, C.; Fliscounakis, S.; Maeght, J.; Panciatici, P. AC power flow data in MATPOWER and QCQP format: ITesla, RTE snapshots,

and PEGASE. arXiv 2016, arXiv:1603.01533. Available online: http://arxiv.org/abs/1603.01533 (accessed on 1 June 2021).
24. Fliscounakis, S.; Panciatici, P.; Capitanescu, F.; Wehenkel, L. Contingency Ranking With Respect to Overloads in Very Large

Power Systems Taking Into Account Uncertainty, Preventive, and Corrective Actions. IEEE Trans. Power Syst. 2013, 28,
4909–4917. [CrossRef]

25. Modified Matpower EU PEGASE Systems. Available online: https://zenodo.org/record/3553615 (accessed on 1 June 2021). [CrossRef]
26. Ajjarapu, V.; Christy, C. The continuation power flow: A tool for steady state voltage stability analysis. IEEE Trans. Power Syst.

1992, 7, 416–423. [CrossRef]
27. Cordero, A.; Villalba, E.G.; Torregrosa, J.R.; Triguero-Navarro, P. Convergence and Stability of a Parametric Class of Iterative

Schemes for Solving Nonlinear Systems. Mathematics 2021, 9, 86. [CrossRef]

http://doi.org/10.1016/j.ijepes.2019.06.006
http://doi.org/10.1109/TPWRS.2015.2503423
http://doi.org/10.1016/j.ijepes.2019.03.035
http://doi.org/10.1049/iet-gtd.2019.1077
http://doi.org/10.1049/iet-gtd.2018.6786
http://doi.org/10.1109/TPWRS.2010.2051168
http://arxiv.org/abs/1603.01533
http://doi.org/10.1109/TPWRS.2013.2251015
https://zenodo.org/record/3553615
http://doi.org/10.5281/zenodo.3553615
http://doi.org/10.1109/59.141737
http://doi.org/10.3390/math9010086

	Introduction 
	Motivation 
	Literature Review 
	Contributions and Paper Organization 

	The Developed Solution Framework for PF Analysis 
	Analogy between NRJ and the Explicit Midpoint Method 
	The Novel Family of Robust PF Techniques 
	Embedded Formulation 
	Handling Equipment Limits 
	Stability of the Developed Solution Paradigms 

	Developed PF Solvers 
	Numerical Experiments 
	Studied Systems 
	Convergence Rates for Base Cases 
	Convergence Rates with Reactive Limits 
	Solution Times 
	Influence of the Loading Level 

	Conclusions and Future Works 
	Proof of Cubic Convergence of the Developed Solvers 
	References

