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Abstract: Meta-model sre generally applied to approximate multi-objective optimization, reliability
analysis, reliability based design optimization, etc., not only in order to improve the efficiencies of
numerical calculation and convergence, but also to facilitate the analysis of design sensitivity. The
radial basis function neural network (RBFNN) is the meta-model employing hidden layer of radial
units and output layer of linear units, and characterized by relatively fast training, generalization
and compact type of networks. It is important to minimize some scattered noisy data to approximate
the design space to prevent local minima in the gradient based optimization or the reliability analysis
using the RBFNN. Since the noisy data must be smoothed out in order for the RBFNN to be applied
as the meta-model to any actual structural design problem, the smoothing parameter must be
properly determined. This study aims to identify the effect of various learning parameters including
the spline smoothing parameter on the RBFNN performance regarding the design approximation.
An actual rotor blade design problem was considered to investigate the characteristics of RBFNN
approximation with respect to the range of spline smoothing parameter, the number of training data,
and the number of hidden layers. In the RBFNN approximation of the rotor blade design, design
sensitivity characteristics such as main effects were also evaluated including the performance analysis
according to the variation of learning parameters. From the evaluation results of learning parameters
in the rotor blade design, it was found that the number of training data had larger influence on the
RBFNN meta-model accuracy than the spline smoothing parameter while the number of hidden
layers had little effect on the performances of RBFNN meta-model.

Keywords: radial basis function neural network; learning parameter; design sensitivity; design
approximation; rotor blade design

1. Introduction

The radial basis function neural network (RBFNN) is one of artificial neural network
(ANN) methods employing a hidden layer of radial units and an output layer of linear
units, and characterized by relatively fast training, generalization and compact type of
network [1]. RBFNN has been widely used in surface and/or image constructions that
typically consist of bulky size of data in the order of thousands or even millions of points.
It also has been known to be suitable for highly nonlinear function approximate problems.
The RBFNN has been recognized as useful method in various fields such as pattern recog-
nition, automatic control, signal processing, approximate optimization and so on [2–5].
Meta-models are generally applied to approximate multi-objective optimization, reliabil-
ity analysis, reliability-based design optimization, etc., not only in order to improve the
efficiencies of numerical calculation and convergence, but also to facilitate the analysis
of design sensitivity. The RBFNN has been usefully applied as the meta-model in design
approximation. A sequential approximate robust design optimization with the RBFNN
was proposed to find a robust optimal solution with a small number of function evalua-
tions, not identifying a set of Pareto-optimal solution using multi-objective evolutionary
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algorithms [6]. To further reduce the computational expense of metamodel-based design
optimization, a novel sequential RBF-based optimization method using virtual sample
generation was proposed employing the virtual sample generation mechanism to improve
the optimization efficiency [7]. However, the role of learning parameters in the RBFNN
meta-model was hardly investigated in the design approximation and its application to the
optimization or the reliability analysis. The reason for that the role of learning parameters
in the RBFNN meta-model was not investigated closely in design approximation is that
the review of parameters affecting the accuracy of the meta-model was overlooked due
to the extensive numerical calculation process of optimization or reliability analysis. In
Section 2.1, the author reviewed several references in which the RBFNN meta-model was
utilized for the design optimizations and the reliability analyses, and it was found that
the role of learning parameters in the RBFNN meta-model was hardly investigated in the
design approximation. In general, the values of parameters in RBFNN meta-model have
been applied empirically or adjusted through simple estimation of the accuracy of RBFNN
meta-model or comparison with the results of other meta-models.

This study aims to identify the effect of various learning parameters such as the spline
smoothing parameter (SSP), the number of training data, and the number of hidden layers
on the performances of RBFNN meta-model regarding the design approximation of rotor
blade. In particular, it is important to minimize the scattered noisy data to approximate a
design space to prevent local minimum in gradient based optimization or reliability analysis
using the RBFNN meta-model. Since the noisy data must be smoothed out in order for the
RBFNN to be applied as the meta-model to an actual structural design problem, the SSP
must be properly determined. In case of applying the RBFNN to approximate the design
space, how to determine the learning parameters such as the SSP, training data, and hidden
layers is important in the structural design application to enhance the performances of
the meta-model. An actual rotor blade design problem was considered to investigate the
characteristics of RBFNN approximation with respect to the range of SSP, the number of
training data, and the number of hidden layers. In the rotor blade design approximation
with the RBFNN, design sensitivity characteristics such as main effects were also evaluated
including the performance analysis according to the variation of learning parameters. The
present study briefly reviewed the RBFNN and its smoothing parameter theories, and
then carried out the rotor blade design approximation using the RBFNN. The rotor blade
design approximation included fitting of meta-models, the design sensitivity analysis, the
performance analyses. The overall performances of RBFNN meta-model were evaluated
using two standard accuracy measures—root mean square error and maximum error. From
the design approximation results of rotor blades, it was found that the number of training
data had larger influence on the RBFNN meta-model accuracy than the SSP while the
number of hidden layers had little effect on the performances of RBFNN meta-model. Such
study results help to suggest a reference index that can reasonably apply the learning
parameter value in case of adopting the RBFNN to the design approximation. This paper is
comprised of the following: Section 2 addresses literature survey related to the RBFNN and
its theoretical backgrounds; Section 3 addresses the results and discusses the characteristics
of the rotor blade design approximation with the RBFNN; Section 4 presents the concluding
remarks of this study.

2. RBFNN Approximation Method
2.1. RBFNN Meta-Model in Design Approximation

RBFNN is originally developed to fit irregular topographic contours of geographi-
cal data [8]. RBFNN is originally generated by the same methodology but classified by
various types of the basis functions. The accuracy of RBFNN model mainly depends on
the applied basis function type for a given set of training and testing data. The most
commonly used basis functions are linear, cubic, thin-plate spline, Gaussian, multiquadric,
and inverse multiquadric functions [9]. In the research literature on RBFNN, it is applied
to approximate global surfaces smoothly interpolating a given scattered data points [10].
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As concerns optimization, RBFNN is used to solve global optimum problems where the
objective function is nonlinear and nonconvex [11]. The approximate quality of RBFNN is
compared with other meta-methods such as response surface methodology (RSM), Kriging
and so on [12,13]. RBFNN model is enhanced by adding extra terms to a regular RBFNN
model to increase its flexibility, based on which an optimal model could be searched for [14].
RBFNN approximation is extended using leave-one-out cross validation algorithm that
can be applied in the setting of iterated moving least squares approximation and for RBF
pseudo-spectral methods for the solution of partial differential equations [15]. Structure
design studies that utilize meta-models have been conducted in various industrial fields.
Structural analysis was performed using finite element method to review the initial design
of structural safety of passive type deck support frame which was developed for the float-
over installation of offshore plant, and an approximate optimization was performed using
various meta-models to obtain the most efficient optimum design results [16]. Reliability
analysis was performed by applying the general Monte Carlo simulation (MCS) and the
Sobol sequence method, which is one of the quasi-MCS methods, to derive an efficient reli-
ability evaluation method to ensure the structural design safety of automatic salt collector,
and then the probability of reliability based on the sampling method and the accuracy of
the Kriging metamodeling were compared [17]. To verify the suitability of the sensitivity
analysis results of structural members and the exploration of design of experiments (DOE)-
based automatic ocean salt collector improvement cases, meta-modeling using the response
surface method was conducted for each DOE technique, and the meta-model accuracy
generated from each DOE technique was examined [18]. A novel and cheap technique
was developed for finding robust optimal solutions, called confidence-based robust multi-
objective optimization, using a Pareto dominance operator to differentiate search agents
of meta-heuristics based on both levels of robustness and confidence [19]. An optimum
design of investigated an optimal design plan to minimize design risks by applying the
constraint-feasible moving least-squares method, which is a conservative approximation
model. A new RBDO process was identified to ensure the constraint feasibility in the mov-
ing least squares method, and devised constraint feasibility test to quantitatively realize
the feasibility of approximate constraint functions [20]. As such, many references have
reported various studies related to approximate design optimization using the RBFNN,
but the role of the learning parameters including the SSP in the RBFNN application has
barely been identified. Previous studies on the SSP were also mostly theoretical studies or
application studies to signal processing and image approximation [15,21–23]. Based on the
aeroelastic analysis, the design enhancement of wing structure was carried out by targeting
an optimal wing structure able to withstand flight loads, and simultaneously with stiffness
and inertia distributions leading to a configuration free from flutter within the flight enve-
lope [24]. In the design strategy for the wing structure that aimed at finding a first optimal
solution in terms of the thickness of composite components, two-level optimization was
carried out [25]. This study aims to suggest the reference index that can reasonably apply
the learning parameters such as the range of spline smoothing parameter, the number
of training data, and the number of hidden layers in case of adopting the RBFNN to the
design approximation problems.

2.2. Theoretical Background of RBFNN and SPP

A brain is composed of networks of neurons. A typical neuron receives an input,
which is either excitation or inhabitation, from many other neurons. As its net excitation
reaches a certain level, the neuron fires. The firing is propagated through a branching axon
to many other neurons, where it in turn acts as input to those neurons. The neuron’s firing
is thought of its output as a binary or continuous valued quantity. The neural network
models are algorithms for cognitive tasks, such as learning and optimization, which are
based on concepts derived from research in the nature of the brain. In the neural network
model, the neurons are generally organized into layers. The inputs to the neural network
model are presented to the input layer, and the outputs are generated as signals of the
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output layer. Since the numeric activations and signals comprise vectors, the input vector
applied to the input layer generates an output signals vector across the output layer. These
signals pass through one or more intermediate or hidden layers which transform the signals
depending upon the neuron signal functions [26–28].

In this study, RBFNN was used to generate a meta-model that can be applied to
approximate design optimization, and the performances of the generated meta-model were
evaluated according to the variation of the learning parameters such as the SSP value, the
number of training data, and the number of hidden layers. RBFNN has been developed for
scattered multivariate data interpolation [1,8]. This technique uses linear combinations of a
radial symmetric function based on Euclidean distance to approximate response functions.
Let x1, · · · , xn ∈ Ω ⊂ Rn be a given set of nodes, and a set of any RBF basis function, g(x),
is to be:

gj(x) = φ
(
||x− xj||

)
∈ R, j = 1, · · · , n (1)

In Equation (1), φ is power spline basis function and the norm ||x− xj|| is Euclidean
distance. By using of Euclidean distance, the data of input layer are classified as homoge-
neous cluster. Power spline basis function is expressed as follows:

φ = rcj (2)

where c is a shape function variable with positive constant value.
Given interpolation data y1, · · · , yn ∈ R at data points x1, · · · , xn ∈ Ω ⊂ Rn, RBFNN

interpolant f ′(x) through the network learning process as shown in Figure 1 is defined
as follows:

f ′(x) =
n

∑
j=1

αjgj(x) + αn+1 (3)

This study adopted one layer, two layers, and three layers respectively in the neural
network architecture in order to evaluate the effect of the number of hidden layers on
the performance of RBFNN for the rotor blade design approximation. The interpolant is
obtained by solving the system of n + 1 linear equation as follows:

n

∑
j=1

αjgj(xi) + αn+1 = yi, i = 1, · · · , n (4)

for n + 1 unknown expansion coefficients αj.
The SSP is a parameter value used to relax the over-fitting feature that happens in a

meta-model approximated via the RBFNN in case of passing through every single data
point over whole design space. Its primary purpose is to smooth out noisy data. By
not going through every data point, meta-model can be effectively fitted as a smoothing
function and employed in an approximate optimization that may be easier to solve. The
value specified by the SSP averages the output values of data points that are clustered in
the normalized filter domain. The SSP trades smoothness of the fitted function against
fidelity to the data and can be expressed by the following equation:

min ρ||s||2 + 1
n

n

∑
i=1

(
s(xi)− f ′(xi)

)2 (5)

where ρ is positive smoothing control parameter and the norm ||s|| is smoothness penalty.
From Equation (5), larger value of ρ increases the amount of smoothness relative to the
average deviation from the data squared. The value of SSP is estimated generally through
iterative evaluation to minimize the maximum deviation while satisfying the accuracy of a
given RBFNN meta-model in the approximate design optimization.
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The overall performance was evaluated using two standard accuracy measures—root
mean square error (RMSE) and maximum error (MAX). RMSE provides an overall error
measure over the entire solution space and is defined as follows:

RMSE =

√
1
n

n

∑
i=1

( f (xi)− f ′(xi))
2 (6)

The MAX is indicative of local deviations and also expressed as follows:

MAX = max
i

∣∣ f (xi)− f ′(xi)
∣∣ (7)

where f (xi) denotes the exact function value for the test point xi, f ′(xi) is the corresponding
predicted value using the meta-model, and n is the number of test points chosen for
calculating the error measure [29,30]. Ideally, it would be favorable that both of error
measures are to be as small as possible for higher accuracy. The RMSE is the accuracy
measure commonly used in case of dealing with the difference between the predicted
value of the meta-model and the actual response value and is suitable for expressing
the overall accuracy of the meta-model. The RMSE is used for the loss function in the
training process. On the other hand, because the MAX calculates the maximum error
among the predicted values of the meta-model, local accuracy can be confirmed. Since
the RBFNN can be applied not only to linear design space but also to approximation of
highly nonlinear design space, both the overall accuracy and the local accuracy should
be reviewed simultaneously. Therefore, it is reasonable to evaluate the accuracy of the
RBFNN meta-model by applying both the RMSE and the MAX. For the rotor blade design
problem, statistical analysis was also performed to evaluate the main effects of design
variables on the output responses of design performance functions. Since RBFNN is the
interpolant meta-model, results such as RSME and MAX are feature values for the meta-
model accuracy, and the feature values depend on of the learning parameters such as the
SSP value, the number of training data, and the number of hidden layers. Therefore, in
case that new variables are to be applied in the design process, the learning parameters
should be redefined. Hyperparameters used for the RBFNN modeling were summarized
in Table 1.
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Table 1. Hyperparameter values.

Hyperparameter Value

Learning rate 0.7
Number of training iteration 10

Number of hidden layers 1 to 3
Weight initialization −1/25, 1/25

Spline smoothing parameter 0.0 to 0.1

In Table 1, the learning rate determines how fast it moves in the direction of the
gradient. The number of training iterations was used to determine the early stopping of
learning and applied to prevent overfitting.

2.3. Mathematical Example

Although it would be a special case that a high nonlinear problem such as mathe-
matical example exists in an actual structural design problem, Ackley’s path function was
considered as the mathematical example for the accuracy evaluation of RBFNN meta-model
regarding to the SSP. Consider the following Ackley’s path function with two variables [31]:

f (x) = −20exp

−0.2

√
x2

1 + x2
2

2

− exp
{

cos[2π(x1)] + cos[2π(x2)]

2

}
+ 20 + e (8)

− 2.0 ≤ x1, x2 ≤ 2.0

where f (x) is the mathematical function that presents a high nonlinearity with multimodal,
and x1 and x2 are design variables. Both 200 training data and 30 testing data were
randomly generated within the range of the design variables, for this function, and then
the RBFNN based meta-models were fitted on 2-D and 3-D design spaces as shown in
Figures 2 and 3.
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apply the SSP value in order to guarantee the accuracy of RBFNN meta-model. As shown 
in Figure 4b, Local deviation was slightly changed except 0.075 of SSP value. The MAX 
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Figure 3. Meta-model on 3-D design space for Ackley’s path function.

From Figures 2 and 3, it was clearly understood that the mathematical example has
highly nonlinearity, and the RBFNN was apt for approximating such multimodal problem
with large size training and testing data. As concerns the SSP, error analyses were carried
out to evaluate the variation of performance according to the SSP values. The SSP values
were varied from zero to 0.1 with 0.025 step size, and the accuracy measures of RBFNN
meta-model such as RMSE and MAX were calculated using Equations (6) and (7). Their
results were presented in Table 1 and Figure 4.
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As shown in Table 2 and Figure 4, the RMSE results were distributed from 0.154 to
0.218 according to the variation of SSP. The RMSE results were varied slightly until the SSP
value was increased up to 0.05, whereas the RMSE values were increased significantly as
the SSP value exceeded 0.05. The RMSE results also showed the inferior overall accuracy
according to the increment of SSP. When approximating a design space with very high
nonlinearity such as the mathematical example, very careful selection is necessary to apply
the SSP value in order to guarantee the accuracy of RBFNN meta-model. As shown in
Figure 4b, Local deviation was slightly changed except 0.075 of SSP value. The MAX value
at 0.075 of SSP value was increased by 24% comparing to the result at 0.0 of SSP value. The
abrupt increment of the MAX at 0.075 of SSP value was due to the highly nonlinearity of
the Ackley’s path function.
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Table 2. Results of accuracy according to variation of SSP in Ackley’s path function.

SSP Value RMSE MAX

0.0 0.1542 0.5198
0.025 0.1594 0.5249
0.050 0.1635 0.5172
0.075 0.1876 0.6416

0.1 0.2176 0.5316

The characteristics of error scattering for the RBFNN meta-model were also evaluated
according to the SSP values. The results of error scattering analyses were shown in Figure 5.
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Similar to the RMSE results, the error scattering results were varied slightly until the
SSP value was increased up to 0.05, whereas the error scattering points deviated from the
actual values were increased significantly as the SSP value exceeded 0.05. As shown in
Figure 5d,e, the error scattering points were deviated widely according to the increment
of SSP.
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3. Rotor Blade Design Approximation with RBFNN

In the rotor blade design, it is important to minimize the distance between aerody-
namic and shear centers in order to reduce both the flutter instability and the restrictions on
the flight envelope. Also, the weight of rotor blade should be improved while the structural
stiffness properties are almost maintained at the level of the baseline design. The design
optimization problem of rotor blade can be formulated as follows:

Minimize f = |α− γ| (9)

subject to
m

mbase
≤ 1

0.95 ≤ GJ
GJbase

≤ 1.05

0.95 ≤ EI22

(EI22)base
≤ 1.05

0.95 ≤ EI33

(EI33)base
≤ 1.05

where α is the aerodynamic center, and γ is the shear center. The properties GJ, EI22 and
EI33 are torsional, flap-wise bending, and chord-wise bending stiffnesses, respectively. The
notation m is mass per unit length. The subscript base denotes the value representing the
baseline model. An application of optimization methods to the structural design problems
of rotor blade often requires a large amount of numerical costs. An alternative for reducing
the numerical cost in the process of design optimization is to employ the meta-model by
establishing the accurate levels of approximate objective and constraint functions over
the exploratory design space. Using rationally constructed meta-models, near-optimal
approximate solutions can be obtained in addition to the estimation of design behaviors,
that is, the sensitivity-like information.

The practical design problem of rotor blade was chosen to investigate the characteris-
tics of the RBFNN approximation with respect to the learning parameters such as the range
of spline smoothing parameter, the number of training data, and the number of hidden
layers. The RBFNN based meta-models were generated for the rotor blade design problem.
The architecture of RBFNN consisted of one to three layers in the hidden layers to evaluate
the effect of the number of hidden layers on the performance of RBFNN. The number of
neurons in that layer was defined as the mean of the neurons in the input and output
layers referring to the related research book [28]. Each neural network in the RBFNN
was trained by back-propagation algorithm which is one of the most reliable algorithms
having such characteristics as the simplicity of implementation and the ability to quickly
generate networks that have the capability to generalize [28]. Error analyses were carried
out to evaluate the variation of performance according to the variation learning parameters.
In order to complete the RBFNN meta-modeling for the rotor blade design problem, the
calculation time was 8.3 h using a server equipped with six core Intel Xeon CPUs and 128
GB RAM.

In order to investigate the characteristics of the RBFNN approximation with respect to
the learning parameters for the practical design problem with a number of performance
functions, the design problem of composite rotor blade was explored [32]. The composite
rotor blade was designed to use for the tilt rotor aircraft combines the advantages of
vertical takeoff and landing capabilities. The design performance functions of rotor blade
were calculated a rotor blade cross-sectional modeling and analysis program, which is
Variational Asymptotic Beam Section (VABS) [33] developing for analyzing the composite
blade structure using an equivalent beam model. In the VABS program, the cross-sectional
stiffness matrix is calculated from a two-dimensional finite element discretization. In
this study, the VABS was used for obtaining both training and testing data for use in
RBFNN based meta-modeling. Regarding to the cross-section of rotor blade with specific
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geometry information, a NURBS curve was generated for a given number of points, and
the non-uniform rational B-spline (NURBS) was transformed into the cross-section of rotor
blades with specific geometry data. Such information was adopted to calculate the design
performance functions of rotor blade by VABS. The structure design configuration and the
design variables of the rotor blade were shown in Figure 6.
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Figure 6. Structure design configuration and design variables of rotor blade.

As shown in Figure 6, the design variables were thicknesses of D-spar (hD), skin (hskin),
and web (hweb), as well as the web location (dloc) and the web connection orientation (dang).
Both initial values and design range for the design variables were represented in Table 3.

Table 3. Initial value and design range in design variable.

Design Variable Lower Bound Initial Design Upper Bound

hD (in.) 0.3 0.35 0.4
hskin (in.) 0.03 0.04 0.05
hweb (in.) 0.01 0.04 0.05
dloc (in.) −9.0 −8.4 −7.0

dang (deg.) 60 90 120

In the calculation of design performances, the chord length was considered 20.2 in.,
and the aerodynamic center was at the quarter chord. In the structure design problem
of composite rotor blade, the distance between aerodynamic and shear centers should be
minimized to avoid flutter instability of the rotor blade, and to avert the restrictions on
the flight envelope. As design performance functions, the structural mass of rotor blade
should be minimized while some important internal structural stiffness properties such
as torsional (GJ), flap-wise bending (EI22) and chord-wise bending stiffnesses (EI33) were
almost maintained at the level of the initial design, i.e., within ±5% variations.

In the present study, the RBFNN-based approximation was carried out for the design
performance functions. With 500 training data and 90 testing data, the RBFNN based meta-
models were fitted for each design performance function. The fitted RBFNN meta-models
of rotor blade design are shown in Figures 7–11.
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From the meta-modeling results, remarkable multi-modal variations were found in
the relations between two design variables (hweb and dang) and the design performance
functions. In other design variables such as the thicknesses of D-spar (hD), the skin (hskin)
and the web location, their meta-modeling results represented almost linear characteristics.
Statistical analyses were also performed to evaluate the main effects of design variables
on the responses of design performance functions. The results of statistical analyses were
shown in Figure 12.

The main effects of hD and dloc among the design performance functions were higher
than other design variables. The most sensitive design variable on the mass and the
EI22 was the hD, and the main effect values on the mass and the EI22 were 47% and 44%,
respectively. The most sensitive design variable on the GJ and the EI33 was the dloc, and the
main effect values on the GJ and the EI33 were−52% and−48%, respectively. The statistical
results also showed that dloc and dang had negative effects on all the design performance
functions while other design variables had positive effects. From the main effect results, it
was found that the design performances of rotor blade were increased as the hD value was
increased and the dloc value was decreased.

The error analyses were carried out to evaluate the variation of performance according
to the variation of learning parameters such as the SSP value, the number of training data,
and the number of hidden layers. The SSP values were varied from zero to 0.1 with 0.025
step size, and the accuracy measures such as RMSE and MAX were analyzed. Their results
were represented in Table 4 and Figures 13 and 14.

As shown in Table 4 and Figure 13, the RMSEs of Mass, GJ, EI22, and EI33 were
distributed in the range of 0.00590 to 0.00593, 0.00645 to 0.00647, 0.02021 to 0.02026, and
0.02375 to 0.02384, respectively, according to the variation of SSP. The MAXs of Mass, GJ,
EI22, and EI33 were distributed in the range of 0.02473 to 0.02483, 0.01567 to 0.01589, 0.09622
to 0.09637, and 0.09031 to 0.09046, respectively, as represented in Table 4 and Figure 14.
From the results of error analyses, it was clear that the variation of accuracy occurred in
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the slight magnitude because the rotor blade design problem had relatively a low multi-
modal variation as represented in the meta-modeling results and the statistical analysis.
Although the influence of SSP was not significant in the RBFNN approximation of the
actual rotor blade design problem, it could be seen that the accuracy of the approximation
was increased based on RMSE as the SSP was applied in the range of 0.075 to 0.1. The
results of error scattering were also evaluated according to the SSP values. The results of
error scattering analyses were shown in Figure 15.
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Table 4. Results of accuracy according to variation of SPP.

Error Type SSP Value Mass GJ EI22 EI33

RMSE

0.0 0.00590 0.00646 0.02023 0.02375
0.025 0.00593 0.00647 0.02026 0.02384
0.050 0.00592 0.00647 0.02026 0.02383
0.075 0.00592 0.00645 0.02025 0.02382

0.1 0.00592 0.00645 0.02021 0.02380

MAX

0.0 0.02473 0.01567 0.09622 0.09031
0.025 0.02483 0.01598 0.09641 0.09053
0.050 0.02482 0.01594 0.09638 0.09050
0.075 0.02481 0.01589 0.09636 0.09047

0.1 0.02483 0.01589 0.09637 0.09046
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Figure 15. Error scattering analysis for design performance functions.

Figure 15 showed only for the zero SSP, and it was sufficient to represent the char-
acteristics of error scattering because the variation of accuracy is tiny in the rotor blade
design problem.

In the context of the error analyses of rotor blade design problem, the perfor-
mance characteristics according to the variation of the number of training data were
secondly evaluated. The initial number of 500 training data was varied up to 200 training
data with 100 data step size. The results of RMSE and MAX were shown in Table 5 and
Figures 16 and 17.

Table 5. Results of accuracy according to variation of training data.

Error Type # of Training Data Mass GJ EI22 EI33

RMSE

500 0.00590 0.00646 0.02023 0.02375
400 0.00618 0.00693 0.02178 0.02521
300 0.00631 0.00733 0.02326 0.02539
200 0.00643 0.00737 0.02334 0.02787

MAX

500 0.02473 0.01567 0.09622 0.09031
400 0.02499 0.01592 0.10349 0.09434
300 0.02498 0.01845 0.09126 0.08605
200 0.02509 0.01979 0.08138 0.08316
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The results of Table 5 and Figure 16 represented that the RMSEs of Mass, GJ, EI22
and EI33 were distributed in the range of 0.00590 to 0.00643, 0.00646 to 0.00737, 0.02023 to
0.02334, and 0.02375 to 0.02787, respectively, according to the variation of training data.
It was found that the influence of the number of training data on the accuracy of the
meta-model in the rotor blade design was higher than that of the SSP. RMSEs for all the
design performance functions were enhanced as the number of training data was increased.
The MAXs of Mass, GJ, EI22 and EI33 were distributed in the range of 0.02473 to 0.02509,
0.01567 to 0.01977, 0.08138 to 0.09622, and 0.08316 to 0.09031, respectively, as represented in
Table 4. Among the MAX results, however, EI22 and EI33 were deteriorated as the number
of training data was increased, as shown in Figure 17. Such result was because some larger
deviation data was included in the set of training data.

From Table 5 and Figure 17, it was found that the number of training data had larger
influence on the RBFNN meta-model accuracy than the SSP in the approximation of rotor
blade design problem. From the results of the rotor design approximation, it was able to
conclude that the decrement of less than 100 times of number of design variables for the
number of training data showed the inferior accuracy due to insufficient learning data for
the RBFNN meta-model.

Among the learning parameters, the number of hidden layers were finally considered
to evaluate the performance effects on the rotor blade design approximation. The error
analyses were carried out applying one layer, two layers, and three layers to the RBFNN,
respectively. In such those cases, 0.0 and 500 were applied in common for the SSP value and
the number of training data. The results of RMSE and MAX were represented in Table 6
and Figures 18 and 19.

The results of Table 6 and Figure 18 represented that the RMSEs of Mass, GJ, EI22,
and EI33 were distributed in the range of 0.00590 to 0.00591, 0.00645 to 0.00649, 0.02023
to 0.02025, and 0.02375 to 0.02377, respectively, according to the variation of hidden layer.
The MAXs of Mass, GJ, EI22, and EI33 were distributed in the range of 0.02473 to 0.02491,
0.01567 to 0.01597, 0.09622 to 0.09627, and 0.09031 to 0.09041, respectively, as represented
in Table 6 and Figure 19. It was found that the influence of the number of hidden layers on
the accuracy of the meta-model in the rotor blade design was scarcely detected comparing
with the SSP and the number of training data. Although the effect of the number of hidden
layers on the accuracy of the meta-model was insignificant, the RMSEs for all the design
performance functions tended to slightly improve as the number of hidden layers was
increased. The MAX results were also similar to the RSME results in case of the variation
of the number of hidden layers.

Table 6. Results of accuracy according to variation of hidden layer.

Error Type # of Hidden Layers Mass GJ EI22 EI33

RMSE
1 0.00590 0.00649 0.02025 0.02377
2 0.00591 0.00645 0.02022 0.02375
3 0.00590 0.00646 0.02023 0.02375

MAX
1 0.02491 0.01597 0.09627 0.09041
2 0.02477 0.01569 0.09621 0.09033
3 0.02473 0.01567 0.09622 0.09031
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4. Closing Remarks

This study identified the effect of various learning parameters such as the range of SSP,
the number of training data, and the number of hidden layers on performances of RBFNN
meta-model with respect to the design approximation. The rotor blade design problems
were considered to review the characteristics of RBFNN approximation according to the
variation of the learning parameters.

The RBFNN based meta-models were generated for the rotor blade design as the
actual design problem. In the actual design problem of rotor blade with a number of
performance functions, both the error analysis and the statistical analysis were performed.
In the error analysis, two accuracy measures (RMSE and MAX) were used to evaluate
the performance of RBFNN. With 500 training data and 90 testing data, RBFNN based
meta-models of the rotor blade were fitted for each design performance function. From
the statistical analysis results of the rotor design problem, it was found that the design
performances of rotor blade were increased as the D-spar thickness was increased and the
web location was decreased. In the results of the statistical analysis, it was also confirmed
that the most sensitive design variable on both the mass and the flap-wise bending stiffness
was the D-spar thickness while the most sensitive design variable on the torsional and
chord-wise bending stiffnesses was the web location.

In regard of the learning parameters variation, first the SSP values were varied from
zero to 0.1 with 0.025 step size, secondly the initial number of 500 training data was varied
up to 200 training data with 100 data step size, and finally the RBFNN architecture was
composed of one layer, two layers, and three layers respectively. From the results of the
error analysis on the rotor design problem, it was found that the number of training data
had larger influence on the RBFNN meta-model accuracy than the SSP variation while
the number of hidden layers had little effect on the performances of RBFNN meta-model.
Although the influence of SSP was not significant in the RBFNN approximation of the
actual rotor blade design problem, it could be seen that the accuracy of the approximation
was increased based on RMSE as the SSP was applied in the range of 0.075 to 0.1. From the
results of the number of training data in the rotor blade design approximation, it was able
to conclude that the decrement of less than 100 times of number of design variables for
the number of training data showed the inferior accuracy due to insufficient learning data
for the RBFNN meta-model. It was also found that RMSEs for all the design performance
functions were enhanced as the number of training data was increased in the rotor blade
design approximation. Regarding to the number of hidden layers, it was found that the
influence of the number of hidden layers on the accuracy of the meta-model in the rotor
blade design was scarcely detected comparing with the SSP and the number of training
data. Although the effect of the number of hidden layers on the accuracy of the meta-model
was insignificant, the RMSEs for all the design performance functions tended to slightly
improve as the number of hidden layers was increased. This study results can help to
suggest a reference index that can reasonably apply the learning parameter value in case of
adopting the RBFNN to the design approximation.

Even though the RBFNN meta-model was utilized for the design optimizations and
the reliability analyses, the role of learning parameters in the RBFNN meta-model was
hardly investigated in the design approximation. In most previous studies, the values of
parameters in RBFNN meta-model have been applied empirically or adjusted through
simple estimation of the accuracy of RBFNN meta-model or comparison with the results of
other meta-models. From this study results, the role of the important learning parameters
such as the SSP, the number of training data, and the number of hidden layers was identified
quantitatively using the rotor blade design problem. It was also clearly confirmed that the
number of training data had larger influence on the RBFNN meta-model accuracy than the
SSP variation while the number of hidden layers had little effect on the accuracy of RBFNN
meta-model in the rotor blade design.

Author will carry out the application of RBFNN meta-model to some deep multi-
modal practical design and multidisciplinary design problems in further study.
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