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Abstract: There is a great need to implement preventive mechanisms against shootings and terrorist
acts in public spaces with a large influx of people. While surveillance cameras have become common,
the need for monitoring 24/7 and real-time response requires automatic detection methods. This
paper presents a study based on three convolutional neural network (CNN) models applied to the
automatic detection of handguns in video surveillance images. It aims to investigate the reduction of
false positives by including pose information associated with the way the handguns are held in the
images belonging to the training dataset. The results highlighted the best average precision (96.36%)
and recall (97.23%) obtained by RetinaNet fine-tuned with the unfrozen ResNet-50 backbone and the
best precision (96.23%) and F1 score values (93.36%) obtained by YOLOv3 when it was trained on the
dataset including pose information. This last architecture was the only one that showed a consistent
improvement—around 2%—when pose information was expressly considered during training.

Keywords: weapon detection; gun detection; computer vision; deep learning; building automation;
terrorism

1. Introduction

According to data collected in 2017 and published by the Small Arms Survey [1], the
percentage of firearms held by civilian worldwide was approximately 85% compared to
the 13% held by the army forces and 2% by law enforcement (see Figure 1). By country, the
number for the USA stands out with a total of 393,347 firearms—most of them unregistered—
for a total population of 326,474 inhabitants, representing 120.5 firearms per 100 inhabitants
and meaning that it ranks first in both the total number of firearms possessed by civilians
and in number of weapons per 100 inhabitants. Spain, with 7.5 firearms per 100 inhabitants
ranks 103 out of the 227 countries included in the aforementioned report. These data
together with the increase in terrorist attacks and shootings with civilian casualties in
regions that are not under armed conflict have raised the need to establish surveillance
mechanisms, especially in public spaces susceptible to a large influx of people [2] such as
transport terminals, educational, health, commercial, and leisure facilities, etc.
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Figure 1. Top firearm users in the world [1].

Surveillance in public spaces takes multiple forms (which can appear in combination):

1. CCTV video surveillance;
2. Patrol of security agents;
3. Scanning luggage through X-rays;
4. Active metal detection;
5. Individual frisking of people.

Video surveillance is an inexpensive method that allows covering large areas without
interfering with the flux of people. However, it faces major limitations such as those
arising from image capture speed, image resolution, scene light quality, and occlusions. In
addition, the task of monitoring images captured by CCTV systems requires a high level of
attention over long periods of time, which leads to unnoticed events because of human
operator fatigue.

For a firearm detection system to be efficient, it must have two characteristics:

1. Be able to perform real-time detection;
2. Have a very low rate of undetected visible weapons (false negative rate (FNR)).

The first of those requirements is determined by the maximum number of frames per
second (fps) that the system can process without losing accuracy in detection. The second
provides the most critical type of detection failure, when visible weapons in images are
undetected by the system.

To propose a system that meets the two characteristics previously noted, this work
presents a study of three firearm (handgun) detectors in images based on the application
of convolutional neural networks (CNNs). While “classical” methods require the manual
selection of discriminant features [3], CNNs are able to automatically extract complex
patterns from data [4].

For problems with a low availability of data and/or limited computational resources,
the CNN training can be initiated with the parameters (weights) obtained by pretraining
the network on a similar problem. This method is called transfer learning. Based on the
initial learned values of the network parameters, network training continues with specific
examples for the problem under study. When transfer learning techniques span not only
the final layer, but all network parameters, this is called fine-tuning. Transfer learning and
fine-tuning embrace the intuition that the features learned by CNNs could be shared in
similar problems; hence, the models can avoid starting the learning process from scratch
for every new problem.

To reduce the number of undetected objects or false negatives (FNs) without increasing
the number of incorrect detections (false positives (FPs)), this work aimed made the hypoth-
esis that incorporating pose information associated with the person holding a weapon
should improve the performance of the models. By including pose information, the objec-
tive is to avoid detection errors due to the small size of handguns in the images, partial
occlusion when holding them, and low image quality.

The manuscript is organized as follows. Section 1 presents the motivation for the
problem. Section 2 includes a review of related works focused on weapon detection
based on computer vision methods, a description of the most important aspects of the
architectures used in the study, and the metrics for the assessment of the results. The section
also describes pose detection methods and how these can be used in weapon detection.
Section 3 explains the methods to obtain the original dataset (without pose information)
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used for training, validation, and testing of the proposed models. This section ends by
describing the process of adjusting models for the detection problem under study and the
experiments conducted. Section 4 exposes and comments on the results obtained. Finally,
Section 5 summarizes the main aspects of the work and discusses future efforts directed
at overcoming the weaknesses and improving the results of the CNN-based models for
handgun detection.
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2. Related Works

The problem of the automatic detection of firearms and bladed weapons hidden inside
luggage has been tackled for some years using images obtained with X-ray scanners. To this
end, the classical cascade-based learning techniques of Haar feature detectors and AdaBoost
classifiers [5] have been applied. Indeed, those methods can only work with expensive X-ray
scanners and cooperative individuals. A very interesting complementary context is the
detection of visible weapons in images captured by CCTV systems, since these systems are
already common in video surveillance of public spaces and allow detecting weapons held
by noncooperative individuals, regardless of the construction material of such weapons.

One of the most important challenges when training learning models that are fed with
CCTV images is the scarcity of the data. Some early methods employed learning techniques
based on color segmentation followed by point of interest detection in segmented RGB
images [6,7]. The more recent work [7] achieved recall values of 94.93% and a false positive
rate of 7% for knife detection, while the figures for firearm detection were 35.98% and
3.31%, respectively.

The use of deep learning techniques to solve computer vision problems [8–12] has
achieved great popularity in the last decade in comparison with traditional machine
learning techniques. This popularity is due to both its excellent results and the lack of
necessity for the manual selection of features to solve the problem. These networks are
based on adjusting or learning the parameters (weights) during their training using the
gradient descent algorithm, which aims to minimize the network’s response error or loss
function. In this optimization process, the error is backpropagated through the network to
adjust its parameters across all its layers. This process is also known as error backpropagation
through the network. The use of convolution operations allows considering the process of
adjusting the network weights as that of obtaining filters that focus on the characteristics
that solve the problem, even when dealing with heterogeneous datasets [13]. The network
depth provides different levels of the abstraction or composition of features associated
with the input images.

CNNs are applied with excellent performance in three related computer vision problems:

1. Classification [11]: Given an image of a foreground object, the objective is to indi-
cate what is the label or class that identifies that type of object (see the example in
Figure 2a);

2. Detection [8,10]: Given an image with multiple objects present in it, each object must
be located by marking in the image the bounding box (bbox) that contains it. A
label indicating the type of object contained and a certainty value (between zero and
one) for such a prediction is added to each bbox (see the example in Figure 2b). It
is common to consider a prediction valid, successful or not, when the prediction’s
certainty or confidence score exceeds a threshold value (e.g., 0.5);

3. Segmentation: Given an image, each pixel must be labeled with the class of the object
to which that pixel belongs.

Before a concise review of the most relevant models based on CNNs for object
detection—in general—and firearms’ detection in video images—in particular—the funda-
mental metrics for the performance assessment of the detection models included in our
present study are described.
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CLASS: handgun

(a) Classification

gun 0.88

gun 0.44

gun 0.63

(b) Detection

Figure 2. Difference between classification (a) and detection (b) problems. Classification must
indicate the type of object in the image, while detection localizes the desired objects in an image
indicating the degree of certainty of the detection.

2.1. Performance Metrics

In order to compare the results obtained by the different object detection models
included in this study, it is essential to establish a standardized framework that provides
the performance metrics on which the comparisons are based. The main way to promote
the development of these standardized comparison frameworks has been to conduct
competitions that establish common rules to solve a particular problem and measure
the quality of the final results achieved with a unique test dataset. The most popular
competitions in image-based object detection are:

• The PASCAL VOC Challenge [14];
• The COCO Object Detection Challenge [15];
• The Open Images Challenge [16].

Those competitions used the mean average precision (mAP) as the main metric, con-
sidering this as the mean—for all the classes considered in the problem—of the estimated
area under the precision × recall curve (PxR curve). To consider the detection of an object as
correct (true positive or TP), incorrect (false positive or FP), or undetected (false negative or FN),
two values related to the bbox area obtained for each detected object (Bp) are considered:

• Confidence score of the detection: This is the value in the range [0, 1] obtained by the
algorithm, which represents the certainty value of the object’s membership within the
box with the indicated class;

• Intersection over union (IoU): This takes into account the area of the object bbox in the
ground truth (Bgt) and that of the bbox obtained by the detection algorithm (Bp) when
both areas overlap. It is calculated as the ratio between the values of the intersection
of the areas by the junction of both areas (see Equation (1) and Figure 3). By its own
definition, it is a value in the range [0, 1].

IoU =

(
Bp ∩ Bgt

)(
Bp ∪ Bgt

) (1)

The IoU and confidence score values are used to determine if each detected object is
considered a true/false positive (TP/FP). In general, for a detected object to be considered
the correct detection (TP), three conditions must be met:

1. The confidence score for Bp is greater than a threshold value;
2. The class that is predicted for the detected object matches the class included in the

ground truth (GT) for that object;
3. the IoU value for the detected object exceeds a threshold (usually ≥0.5).

If any of the above criteria is not met, the object is considered an FP (incorrect detec-
tion). Some additional rules for determining the TP and FP counts are included in the case
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of the PASCAL VOC Challenge [14,17]. For example, in the case of multiple detections that
correspond to the same object in the GT, this is considered a single TP that corresponds to
the Bp with the highest confidence score value, and the rest are considered FPs.

ground truth (Bgt)

detection (Bp)

(Bp  Bgt) (Bp Bgt)

Figure 3. Intersection (left) and union (right) results between the ground truth and the detection
areas for an object.

With the total number of TPs and FPs, it is possible to calculate the precision and recall
values. They correspond respectively to the proportion of correct detections, or the positive
predictive value (PPV), and the ability to correctly detect the positives, or the true positive
rate (TPR).

It is important to note that the FN calculation is performed indirectly because as GT_P
is the number of positives included in the ground truth, then:

GT_P = (TP + FN)⇒ FN = (GT_P− TP)

In general, precision and recall vary in opposite directions when the confidence scores
change, in such a way that trying to reduce the FP by increasing the precision (i.e., by
increasing the confidence score) causes an increment in the number of FNs. Conversely, an
increase in the proportion of detected objects in the GT (i.e., by decreasing the confidence
score) leads to an increase in the FPs, which reduces the precision value. For this reason,
the PxR curve is used to assess the results of a detector, as the detector will be better as
long as it maintains a high precision by increasing the recall value. This curve describes
how the precision and recall vary for different threshold values chosen for the confidence
score of the prediction made by the detector. Since it is difficult to directly compare the
values of PxR curves, the so-called average precision (AP) is used as an approximation to the
area under the curve, which is calculated by interpolating the curve values [18] according
to the equation:

AP = ∑
n=0

(rn+1 − rn) · Pinterp(rn+1) (2)

with
Pinterp(rn+1) = max

r̃:r̃>rn+1
P(r̃) (3)

where P(r̃) is the precision at the value of recall r̃. Equation (2) indicates how to compute
the area under the PxR curve as the sum of rectangular areas [17]. Each confidence score
produces a value pair (precision, recall), for each of these pairs, starting from the highest to
the lowest recall values, and the interpolated precision is taken as the highest precision
between consecutive recall values (see Equation (3)).

In multiclass detection problems, the AP value is averaged for all classes to obtain the
mean average precision value (mAP) as a popular performance metric.

2.2. Two-Stage Detectors

These are also known as classification-based detectors. In the first stage, the candidate
areas for the object’s location are obtained. In the second stage, each of the previously
obtained candidate areas is entered into a classifier that predicts the type of object (class)
contained in that region.
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Historically, the concept of a sliding window was firstly used to obtain all possible
regions in which the desired object is located, as in the specific case of weapon detection
in CCTV images. Although this type of implementation achieves predictions with a great
accuracy of nearly 98% [19], these are solutions are not real-time because too many regions
need to be analyzed in the image (in the order of thousands) and the required time is too
high (14 s/image).

In obtaining promising regions where an object may be located, a major breakthrough
was achieved with the R-CNN or region-based CNN [20]. This approach uses the selective
search algorithm [21], which then feeds a CNN, which obtains a feature map sent to a
support vector machine (SVM) classifier, whose output is the type of object present in each
region. Moreover, the right size for the window containing each object is adjusted by
regression. This network has been successfully applied in weapon detection applications
using image catalogs [22]. However, with a processing time of 49 s/image, this is far from
achieving real-time detection.

The Fast R-CNN [23] was an enhancement proposed to decrease the processing time
required by the R-CNN. In that approach, the selective search of regions was transferred to
the CNN output; hence, the search was performed on the feature map obtained by that
network. This reduced the network training time by almost 90% and the inference time by
95% (2.3 s/image). However, the values achieved were still far from real-time processing.

The Faster R-CNN [24] was proposed to achieve the required processing speed for real-
time applications. In the Faster R-CNN, the non-learning-based selective search algorithm
is substituted by a region proposal network (RPN), which “learns” how to determine regions
in which the objects are located. To propose the regions where each object is located,
the RPN network slides an n× n spatial window of the input convolutional feature map
obtained by the convolutional layers of a backbone network (e.g., VGG-16). The number of
total proposals for each location is k. Therefore, as k = n× n, n = 3⇒ k = 9. The feature
map is fed in parallel into two fully connected layers, a regressor (reg), which provides
the prediction of the object bbox, and a classifier (cls), which predicts the object class. This
architecture allows processing up to 5 fps (i.e., 0.20 s/image). Some of the latest works for
detecting firearms via CNN employ this architecture [25–27], which is considered the most
effective and the fastest in its class, although it is still far from processing 30 fps of video in
real time.

In general, two-stage detectors provide high accuracy even in cases with partial objects
occluded in images. The accuracy achieved in firearm detection with those detectors
reached 84.2% [26]. However, they require significant computing resources and longer
training and inference times, and therefore, they are less suitable for applications with
limited resources and real-time requirements.

2.3. Single-Stage Detectors

Unlike two-stage detectors, in these architectures, detection is performed in a single
step, either on a fixed set of regions in the entire image or a set of feature maps that corre-
spond to multiple image resolutions (to compensate for scale differences). The algorithms
predict the class and bbox of the detected objects with a certainty value greater than a
threshold value.

Among the most popular of these detectors are: YOLO and its successive improve-
ments [28,29], the single-shot multibox detector [30] (SSD), and RetinaNet [31]. Reti-
naNet introduced the interesting concept of focal loss, which balances learning the positive
object detection and the negative detection for the image background. Bochkovskiy’s
work [32], which represented a considerable improvement over YOLO, included a very
complete comparison of several detectors in a single stage with real-time inference capabil-
ity (≥30 fps). These methods have recently been used in several works on automatic firearm
detection [33–35].
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In general, one-stage detectors provide less accuracy than two-stage-based detectors,
although they require fewer resources, their architectures are simpler, and they are better
suited for real-time applications because of the shorter inference times [36,37].

2.4. Components of Detection Architectures

It is common for object detection frameworks to organize their hierarchical architecture
into three components:

1. Backbone network: Some of the networks used are Darknet-53, firstly employed for
YOLO [28], VGG-16 [38] and ResNet-50/101 [39], which can be used with a setting
obtained by training on a dataset elaborated for similar contexts;

2. Neck: This is the part of the network that strengthens the results by offering invariance
to scale through a network that takes feature maps as the input at different scales.
A very common implementation method is the feature pyramid network (FPN) [40]
and the multilevel feature pyramid network (MLFPN) [41];

3. Detection head: This is the output layer that provides the location prediction of the bbox
that delimits each object and the confidence score for a particular class prediction.

2.5. Detection of Weapons and the Associated Pose

While several object detection techniques have been proposed for the detection of
firearms in images, some of them are focused on reducing the number of false positives
(FPs) without undermining the accuracy or the time required for inference [26,33,42].
However, this endeavor faces a major challenge related to the scarcity of quality datasets
to validate the results achieved. The limited quality of existing data is due to various
causes such as: the small size of handguns in the images, occlusions by body parts (mainly
the hands holding the firearm), poor lighting, low contrast, etc. For this reason, some
studies have been conducted to improve the results of detectors by enriching the datasets
using contextual examples of CCTV images such as low-quality images [43] and synthetic
examples [27].

To tackle the previously noted limitations, one of the aims of our work was to analyze
if the individual’s body pose was a useful cue to increase the detection robustness of the
handguns in video images. By including pose information, the CNN models learn to
detect handguns and the human pose associated with holding them. In this line, Velasco’s
work [44] incorporated pose information into a handgun detector to generate a visual
rendering using heat maps that combines the representation of the pose and the handgun
location. On the contrary, in our work, the pose information obtained through a pose
detector was blended with the handgun detector’s training images to study whether CNNs
can learn the association of a handgun location with the visual patterns of the pose skeletons
included in the training images (see Figure 4).

gun 0.65

Figure 4. Pose skeleton composed of keypoints (left) and the calculation of pose skeletons using
OpenPose in live images (right).
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The scarcity and adequacy of datasets for the detection of handguns in video surveil-
lance images has motivated the development of the dataset in our work. This dataset
was constructed with the intention of having quality information to train the detection
models in order to analyze the influence of the pose associated with the act of holding a
gun. This also allowed validating the blending pose method on the training images. To
incorporate pose information into the detection of handguns in 2D images, it was necessary
to use a pose detector with the ability to obtain the posture of several people appearing
simultaneously in the image in real time (see Figure 4).

The input to the pose detector consisted of an image with one or more individuals in
the scene. For each of the subjects, the pose detector computed up to 135 body keypoints
whose union represented the skeleton of each person’s posture. OpenPose [45] is one
of the most popular pose detectors due to its ability to detect the pose in real time for
multiple people simultaneously in the images and the availability of its source code.
OpenPose automatically extracts the required features using the first layers of the VGG-19
network [38]. The output of this network is introduced into two subnets to obtain a
prediction of the keypoints and their degree of association with the particular skeleton that
corresponds to each person present in the image.

3. Materials and Methods

As stated in Section 1, the two main purposes of this work were: (1) the analysis
of three object CNN-based detection models applied to handgun detection; and (2) the
analysis of the influence of incorporating explicit pose information on the quality of the
results of such learning models. For the sake of simplicity, we decided to consider a unique
class (“handgun”) as the target of detection to analyze the influence of the pose. For this
purpose, two experiments were designed comparing the results for each model with and
without pose information during training. Figure 5 shows the system block diagram to
provide a whole overview of the method and the data flow in the system.

To consider different detection paradigms (see Section 2 on the related works), the
chosen detection architectures and their associated backbone networks were (with reference
to their public Keras/TensorFlow implementation used in our experiments):

• The Faster R-CNN with VGG-16 [24,46];
• RetinaNet with ResNet-50 [31,47];
• YOLOv3 with DarkNet-53 [29,48].

OpenPose

Built
dataset

Image with pose skeleton 
blending

CNN Models

CNN Models
(w/ pose)

Training‐Validation‐Inference

MS COCO
dataset

(fine‐tuning)

Metrics

Metrics
(w/ pose)

Performance assessment

Detection 

Detection (w/ pose) 

(pretraining)

1st rnd

2nd rnd

Figure 5. System block diagram.
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The 1220 images that composed the experimental dataset were manually collected
from Google Images and YouTube without any automation tool. The process consisted
of directly downloading the images from the output results obtained with the Google
search engine using keywords and key phrases as the input for the search. The final dataset
consisted of the manual selection of images and video frames related to the study context.
The selection criteria were:

• The image/frame was not the first plane of a handgun (as in the datasets used in
classification problems). Handguns were part of the scene, and they may have had a
small size relative to the whole image;

• If possible, the images were representative of true scenes captured by video surveil-
lance systems;

• Images should correspond to situations that guarantee enough generalization capacity
for the models; that is, the images covered situations from different perspectives,
displaying several people in various poses, even with more than one visible gun;

• Noisy and low-quality images should be avoided. This enhanced the use of fewer data
with high-quality information versus the use of more data with low-quality information.

The preparation of the working dataset required the manual assisted annotation of the
images that constituted the ground truth (GT) for the models. The annotation process for
the images—using the standardized Pascal VOC [14] labeling format—was accomplished
with the assistance of the open-source LabelImg program [49]. The annotation process
consisted of pointing out the location of the bbox containing the objects to be detected
in the image and the identifier of the object class contained in each bbox. In our case, a
single “handgun” class was used to simplify the analysis of the results. The input data
for training the three chosen models using Keras required a specific input format. This
format specification—prepared by customized Python scripts—relied on text files where the
essential info was: the image file path, bounding boxes, and class id for the training data.

To perform the desired experiments from the original dataset, a second modified
dataset was built with the information associated with the pose obtained by blending
the pose skeletons obtained by OpenPose [45] with each original input image (see the
block diagram in Figure 5). Both datasets consisted of 1220 images divided into three
subsets containing 70%, 15%, and 15% corresponding to training (854 images), validation
(183 images), and testing (183 images), respectively. In the experimental models, overfitting
during the training process was mitigated by the early stopping callbacks provided by
the Keras API. Moreover, the models hyperparameters were set by monitoring—with the
tools provided by TensorBoard—the evolution of the loss function for both the training
set and the validation set. The three models used in the experiments dealt with the
vanishing gradient problem by using the ReLU activation function, which produces bigger
derivatives than sigmoids. Furthermore, Keras provides TensorBoard callbacks to diagnose
the gradient dynamics of the model during training, such as the average gradient per
layer. Figure 6 reveals the software hierarchy used in the experiments, pointing out the
main modules.

Keras

Python

TensorBoard

TensorFlow

CUDA, CuDNN BLAS, Eigen

Op. Sys. (Win‐Linux)

GPU CPUHardware:

Low level
libraries:

Backend:

API:

Models:

Figure 6. Software hierarchy used in the experiments.

The influence of the inclusion of pose information in the original dataset was assessed
through 8 experiments, training each of the selected models with the original dataset and
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with the modified dataset including the pose information (with the pose). There was
only one class in the dataset, and the total number of objects in the dataset was 225 (i.e.,
GT_P = 225). To avoid staring from scratch and to cope with the low availability of data,
all the experiments started with the models pretrained on the MS COCO dataset [15],
composed of 120,000 images with 80 classes among them. Hence, the model fine-tuning
started with the parameter values obtained from pretraining.

In all the experiments carried out, fine-tuning on our problem-specific dataset spanned
40 epochs with a batch size of 4. The Adam optimization function with an initial learning
rate of 0.001 was applied in all cases. The models were readjusted in two separate experi-
mental rounds: the first one with the original dataset and the second one with the modified
dataset including the pose information. For the RetinaNet model, two more additional
experiments were performed to compare the effect of fine-tuning with the frozen backbone
and when the backbone network was also readjusted (with the unfrozen backbone).

For the performance comparison reached by each model in the experiments, the
public implementation of the PASCAL VOC metrics provided in the public toolkit by
Padilla et al. [17] was used. These metrics consisted of the calculation of the precision and
recall values when different confidence scores were considered. The succession of pairs
(precision, recall) provided the PxR curve and the estimation of the average precision (AP)
as the area under said curve. That estimation was computed by the addition of every
rectangular area by applying Equation (2), as illustrated in Figure 7 for the PxR curve
obtained with the YOLOv3 model (with the pose).

Precision x Recall
Class: gun, AP: 90.09%

rn+1rn

Pinterp

Figure 7. PxR curve for the YOLOv3 model (with the pose, i.e., Experiment 8) showing the AP
calculation as the area under the curve (see Equations (2) and (3)), as stated by the toolkit provided
by Padilla et al. [17].

4. Results

Several metrics were computed to evaluate each model after the eight scheduled
experiments with a test subset of 183 images with a total of 255 guns in them (i.e., GT_P
= 255). The values of the metrics for each model are summarized in Table 1. This table
shows the number of TPs, FPs, and FNs obtained for a confidence value of 0.5 with the
correspondent values of the precision, recall, and F1 score. Finally, the AP value was
obtained as the area under the PxR curve as stated by the toolkit developed by Padilla et
al. [17].

As mentioned in the previous section, the experimental models were trained in two
rounds: (1) with the original dataset; and (2) with the modified dataset by blending
the pose skeletons obtained with OpenPose for every input image. The purpose of this
procedure was to look for differences in performance, training each model with the two
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aforementioned datasets. Moreover, two additional experiments were run on the model
RetinaNet to analyze the effect of model fine-tuning on the (un)frozen backbone network.

The results in Table 1 show that the AP values obtained by the models trained on our
dataset without the pose (exp. 1, 3, 5, and 7) were similar to those obtained by the object
detection algorithms that constitute the state-of-the-art. In these experiments, the overall
best performing model—with the highest AP value—was RetinaNet fine-tuned with the
unfrozen backbone (exp. 5, AP = 96.36%). In contrast, the Faster R-CNN exhibited the
lowest AP (exp. 1 and 2). Although YOLOv3 (exp. 7 and 8) produced intermediate AP
values (88.49∼90.09%), it was the model that offered the highest precision (94.79∼96.23%)
and F1 score (91.74∼93.36%) values.

Table 1. Assessment metrics obtained in the experiments with a confidence score of 0.5 (except AP).

Exp. Model #TP #FP #FN Precision (%) Recall (%) F1 (%) AP (%)

1 Faster R-CNN 194 88 31 68.79 86.22 76.53 81.43
2 Faster R-CNN (with pose) 190 71 35 72.80 84.44 78.19 80.79
3 RetinaNetfz 211 25 16 89.41 92.89 91.54 93.12
4 RetinaNetfz (with pose) 203 29 22 87.50 90.22 88.84 89.71
5 RetinaNetufz 219 35 6 86.22 97.23 91.44 96.36
6 RetinaNetufz (with pose) 210 25 15 89.36 93.33 91.30 92.82
7 YOLOv3 200 11 25 94.79 88.89 91.74 88.49
8 YOLOv3 (with pose) 204 8 21 96.23 90.67 93.36 90.09

[44] Velasco’s work (with pose) 158 2 39 98.75 80.20 88.51 83.6

Figure 8 displays the test results of the RetinaNet model for two randomly chosen
images. These results revealed the superior detection capability of the model trained with
the unfrozen backbone (Figure 8b) because this model was able to detect an FN, previously
undetected handgun (see top row) and discard an FP—previously incorrect detection—(see
the bottom row).

(detected)
false positive

(undetected)
false negative

(a) RetinaNetfz (b) RetinaNetufz

Figure 8. Results for the test images obtained by RetinaNetfz (with a frozen backbone) and RetinaNetufz

(with an unfrozen backbone).

The other main objective of the study was to analyze the influence of the inclusion of
pose information in the dataset. To accomplish this, a second modified dataset was built,
from the original, blending in each image the pose skeletons obtained by OpenPose applied
to the input images. This modified dataset allowed training the experimental models on
images with pose information. The experimental result showed that the explicit inclusion
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of pose information using the method previously described slightly worsened the handgun
detection for the Faster R-CNN and RetinaNet models, obtaining lower AP values in exp.
2, 4, and 6 than those obtained in the counterparts experiments without the pose. For these
two models, the addition of the pose information not only reduced the average precision
(AP), but also the recall value because of the increase of the undetected handguns (FNs).
This effect may be due to the fact that these models employ architectures that “learn” from
the original dataset (without the pose) implicit complex characteristics associated with the
pose, so that the blending of the skeletons obtained with OpenPose had an effect analogous
to the addition of “noise”, which hinders detection.

A significantly different effect could be observed in the experiments carried out with
the YOLOv3 models (exp. 7 and 8). In these experiments, the detection results offered an
improvement of 1.6% in the AP value. Moreover, a rise in both precision and recall by
1.44% and 1.78%, respectively, was noticed. These results could indicate that the inclusion
of the pose information did not worsen the detection performed by YOLOv3, and it even
improved detection. One possible explanation for this fact could be that the YOLOv3
architecture “learns” more localized features in a region and therefore itself is less capable
of extracting complex features associated with the pose. However, when the pose adds
information to the region in which the object is located, such as fingers, wrist, and forearm,
then the object is detected better (i.e., with higher confidence scores). This explanation is
consistent with the observations of the results shown in Figure 9.

Figure 9 shows the detection with YOLOv3 in three test images when training was
performed first on the original dataset (top row) and then on the dataset with the pose
information (bottom row). In the image on the right side, all objects in the ground truth
were detected correctly with and without the pose information. However, when the pose
was considered, the confidence score values were higher, especially when the detection
box contained pixels associated with the pose.

gun 0.88

gun 0.44

gun 0.63

gun 0.88

gun 0.95

gun 0.82

gun 0.42

gun 0.35
gun 0.65

(detected)
false positive (undetected)

false negative

(undetected)
false negative

confidence
increases

Figure 9. Results with YOLOv3 trained with the original image (top) and when trained with the image overlying the pose
information (bottom).

The central top image shows a false positive detection and an undetected handgun
(FN) that were correctly detected (central bottom image) when the pose information was
included. Finally, in the image on the right, it is shown how the inclusion of the pose
(bottom image) allowed detecting the gun that in the raw image without the pose (top
image) was undetected (FN).

Table 1 includes the results obtained with the only alternative method that considered
the pose information (Velasco’s method [44], described in Section 2). As shown in the table,
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our method outperformed the results obtained by Velasco’s approach. In the context of our
challenging dataset, Velasco’s method was severely affected by failures in pose detection,
as when the body was not fully visible.

5. Conclusions

This work presented a study of three CNN-based object detection models (Faster
R-CNN, RetinaNet, and YOLOv3)—pretrained on the MS COCO dataset—applied to
handgun detection in video surveillance images. The three main objectives of the study
were to:

1. Compare the performance of the three models;
2. Analyze the influence of fine-tuning with an unfrozen/frozen backbone network for

the RetinaNet model;
3. Analyze the improvement of the detection quality by model training on the dataset

with pose information—associated with held handguns—including by a simple
method of blending the skeleton poses in the input images.

Using transfer learning by pretraining on the MS COCO dataset, it was possible to
obtain the initial values for the experimental models’ parameters, avoiding starting from
scratch and overcoming the scarcity of training data. To set the network parameters for the
specific detection problem, a dataset composed of 1220 images—with “handgun” as the
only target class—was chosen following the selection criterion adapted to the problem.

The assessment of the results in the eight experiments carried out on the 183 test
images—unseen during training—was accomplished by comparing, for every model, the
standardized metrics (shown in Table 1): precision, recall, F1 score, and average precision
(AP) or area under the PxR curve.

The results of the experiments conducted showed that:

1. RetinaNet trained by the unfrozen backbone on images without the pose information
(exp. 5) obtained the best results in terms of the average precision (96.36%) and recall
(97.23%);

2. YOLOv3—in Experiments 7 and 8—obtained the best precision (94.79∼96.23%) and
F1 score values (91.74∼93.36%);

3. The training on images with pose-related information by blending the pose skeletons—
generated by OpenPose—in the input images obtained worse detection results for
the Faster R-CNN and RetinaNet models (exp. 2, 4, and 6). However, in Experiment
8, YOLOv3 consistently improved every assessment metric by training on images
incorporating the explicit pose information (precision ↑ 1.44, recall ↑ 1.78, F1 ↑ 1.62,
and AP ↑ 1.60). This promising result encouraged us to further our studies on the
ability to improve the way pose information is incorporated into the models;

4. When the models were trained on the dataset including the pose information, our
method of blending the pose skeletons obtained better results than the previous
alternative methods.

RetinaNet and YOLOv3 (exp. 5 and 8) achieved respectively the highest recall (97.23%)
and precision values (96.23%). Therefore, it would be desirable in future works to bring
together in a single model the positive characteristics of these two architectures. Finally,
our results also compared favorably with an alternative method that also considered the
pose information.

Considering the specific results from the tests with YOLOv3, some of the false positives
detected were found to derive from the inability to distinguish classes of objects similar
in size to handguns and held similarly to a handgun (e.g., smartphone, wallet, book, etc.).
Future work should be focused on removing these types of false positive training models
to recognize such objects, increasing the size and quality of the dataset.

Our work represents the first case in which pose information has been combined with
handgun appearance on this problem (as far as we are aware). In future work, we plan
to extend this to consider the variation of the pose in time, which may in fact provide
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more information. For that, we will consider LSTM (long short-term memory) [50], as
well as other methods (several have been proposed for the problem of action recognition).
Particular care will be taken in that case regarding the computational time required.
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AP Average precision
API Application programming interface
bbox Bounding box
CCTV Closed circuit of television
CNN Convolutional neural network
FN False negative
FNR False negative rate
FP False positive
FPN Feature pyramid network
fps Frames per second
GT Ground truth
GT_P Ground truth positives (labeled in the ground truth)
IoU Intersection over union
LSTM Long short-term memory
mAP Mean average precision
MLFPN MultiLevel feature pyramid network
PPV Positive predictive value (precision)
PxR Precision × recall (curve)
R-CNN Region-based convolutional neural network
SSD Single shot multibox detector
SVM Support vector machine
TP True positive
TPR True positive rate (recall)
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