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Abstract: Auto-regressive (AR) time series (TS) models are useful for structural damage detection
in vibration-based structural health monitoring (SHM). However, certain limitations, e.g., non-
stationarity and subjective feature selection, have reduced its wide-spread use. With increasing
trends in machine learning (ML) technologies, automated structural damage recognition is becoming
popular and attracting many researchers. In this paper, we combined TS modeling and ML classi-
fication to automatically extract damage features and overcome the limitation of non-stationarity.
We propose a two-stage framework, namely auto-regressive integrated moving-average machine
learning (ARIMA-ML) with modules for pre-processing, model parameter determination, feature
extraction, and classification. Based on shaking table tests of a space steel frame, floor acceleration
data were collected and labeled according to experimental observations and records. Subsequently,
we designed three damage classification tasks for: (1) global damage detection, (2) local damage
detection, and (3) local damage pattern recognition. The results from these three tasks indicated the
robustness and accuracy of the proposed framework where 97%, 98%, and 80% average segment
accuracy were achieved, respectively. The confusion matrix results showed the unbiased model
performance even under an imbalanced-class distribution. In summary, the presented study revealed
the high potential of the proposed ARIMA-ML framework in vibration-based SHM.

Keywords: auto-regressive modeling; damage identification; machine learning; steel braced frame;
structural health monitoring; time series analysis

1. Introduction

During the lifecycle, structures are usually subjected to different types of loading
stages, from service conditions to extreme events, e.g., earthquakes, tsunamis, and hurri-
canes, which cause different degrees and types of structural damage leading to downtimes,
losses, injuries, and sometimes mortalities. Therefore, structural health monitoring (SHM)
has become an important domain of research and applications in structural engineering
during the last few decades. Several approaches and damage criteria have been developed
for SHM, and many of them utilize vibration-based damage detection, and have received
considerable attention in the context of a statistical pattern recognition paradigm [1].

This paradigm includes four major steps: (1) operational evaluation, (2) structural data
collection, (3) damage-sensitive feature extraction, and (4) statistical model development
for classification, where engineers use the collected signals from sensors to determine the
location, type, and extent of the damage and make decisions (e.g., repair strategy) about
the health status of the structures.

Damage feature extraction is an open subject in statistical pattern recognition. Many
studies focus on how to locate, extract, and interpret the damage feature [2-5]. Since the
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turn of this century, time series (TS) modeling of vibration signals using a family of auto-
regressive (AR) models was found to be effective in damage detection and has been used
to capture damage features in structures. According to Mei et al. [6], past studies using AR
series models are grouped into: (1) residual-based and (2) coefficient-based models, where
the former identifies damage through the residuals computed from the difference between
the measured and fitted data, and the latter uses the coefficients of the fitted model as
damage features.

The residual-based approach is founded on the facts that a well-fitted model trained
by undamaged data is not a good fit for damaged data and that residuals increase with
the increase of the damage. Sohn & Farrar [7] constructed a two-stage prediction model
combining AR and AR with exogenous (ARX) models for fitting acceleration signals.
They defined a damage-sensitive feature related to the standard deviation of the residual
error using the AR-ARX model. Lynch et al. [8] designed a wireless unit that included
implementation of the fast Fourier transform and TS modeling. In this unit, the ARX input
model was used to fit the absolute acceleration and a damage feature related to the ratio of
the standard deviations of the residuals of the ARX model obtained from the undamaged
and damaged structural accelerations was also used.

A damage state is identified if this ratio exceeds a threshold value. Subsequently,
Nair et al. [9] improved this algorithm using a normalized relative inter-story acceleration
instead of a single floor acceleration, making the algorithm more robust and capable of
detecting minor damage patterns. Other studies [10-13] modified the processing procedure
and format of the residuals for simulated or experimental data.

The coefficient-based modeling has been shown to be more effective in many TS
studies. Nair et al. [2] proposed an algorithm using an auto-regressive moving-average
(ARMA) model for the vibration signals with a damage feature expressed as a function
of the first three AR coefficients, and localization indices introduced based on the AR
coefficients. The algorithm detected the existence of all damage patterns, including minor
ones. Noh et al. [3] selected the first three regressive coefficients as the feature vector and
used a Gaussian mixture model and Mahalanobis distance to detect, quantify, and localize
the damage. Xing & Mita [14] proposed a substructuring approach that combined ARMA
with an exogenous (ARMAX) model to identify localized damage in any story of a shear
building with a limited number of sensors.

Recently, Mei et al. [6] combined both coefficient-based and residual-based approaches
with the ARMAX model and used the normalized Kolmogorov-Smirnov statistical distance
between two sets of ARMAX model residuals obtained from the input-output process
for the undamaged and damaged states. They validated their approach on a small-scale
five-story frame using aluminum floor slabs and bronze columns. In addition to pure TS
methods, Lakshmi et al. [15] combined singular spectrum analysis (SSA) with the ARMAX
model to detect minor damage, e.g., small cracks in concrete structures.

There are some drawbacks limiting the use of AR series modeling in practice. The
most notable is the requirement of stationary input, which is difficult to achieve in real SHM
applications, where TS data (i.e., vibration signals) collected from sensors after earthquakes
are usually non-stationary. Thus, elaborate data pre-processing (e.g., segmenting, de-
trending, and de-nosing) and stationarity checks are inevitable before modeling; however,
these methods lack a systematic pipeline and may not guarantee stationarity. In this paper,
we proposed a systematic two-stage pipeline to adopt differencing as a pre-processing
approach before TS fitting to satisfy the stationarity condition. This approach is known as
auto-regressive integrated moving-average (ARIMA) modeling [16]. There are very few
cases in the literature that used ARIMA in SHM.

Omenzetter & Brownjohn [17] formulated a vector seasonal ARIMA model whose
coefficients varied with time and were identified using an adaptive Kalman filter. Through
the analysis of signals recorded during and after the construction of an instrumented
bridge, they observed changes in the model coefficients related to damage under normal
operational and environmental conditions. Recently, Yang & Bai [18] compared the results
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between SSA and ARIMA in the problem of forecasting short-term and long-term structural
strain variations.

The implementation of machine learning (ML) in SHM pattern recognition is a mature
subject with well-developed and efficient algorithms [19]. ML has three major categories:
unsupervised learning, supervised learning, and reinforcement learning based on data
characteristics. In this paper, we only consider supervised learning, which uses well-
labeled data based on domain knowledge to analyze the input data and produce an
inferred mapping function [20]. The new unseen data sample can be assigned labels
according to this mapping relationship. In SHM, a supervised learning algorithm learns
hidden relationships between some features extracted from the data and the corresponding
damaged state of the structure.

Thus, the feature extraction is an important part in applying ML in SHM where
previous studies [2,3,9] designed functions for efficient damage features, e.g., combinations
of coefficients of the AR models. However, the definition of such functions is based on
intuitive feature engineering and is data-dependent. For more general scenarios, these
functions may not be effective and the extracted features in this way may not be sufficient
for the ML classification. Thus, this inspired us to consider engaging all coefficients of
the AR series model as the damage features in the ML classification, which is thought to
automatically maintain the information.

Most past validation experiments were based on computer simulation data, e.g.,
generated by the finite element method (FEM) or on reduced-scale experimental data but
with pre-assigned damage patterns and locations, e.g., with component replacement or
section reduction. However, during natural hazards, e.g., earthquakes, structural damage
may differ from the idealization in these artificial cases. For example, refs. [3,9] used the
ASCE benchmark steel frame tests where the damage patterns were artificially designed
by decreasing the cross-sectional areas to simulate stiffness degradation after damage.
De Lautour & Omenzetter [21] used numerically simulated three-story shear building
using FEM.

Mei et al. [6] used both numerically simulated structure and laboratory test of a small-
scale five-story frame where damage patterns were designed by replacing some compo-
nents. In addition, there exist few studies that used the data from full-scale structures,
e.g., [13,17] used full-scale instrumented bridges under normal operational and environ-
mental conditions with minor damage levels. In summary, past applications are limited,
and more realistic damage patterns of full-scale structures due to real or simulated hazards,
e.g., using shaking table tests, are needed for further development of SHM using ML.

The main contribution of this study is to develop a systematic two-stage framework,
namely ARIMA-ML, to combine TS modeling techniques and ML approaches for detecting
structural damage. The first stage focuses on the TS modeling, and the second stage per-
forms the recognition tasks. Specifically, ARIMA-ML consists of four main modules: (1)
pre-processing, (2) model parameter determination, (3) feature extraction, and (4) classifica-
tion. The performance of the framework was validated using data from full-scale shaking
table tests of a three-story steel frame making use of the average segment accuracy and
confusion matrix. In this study, the feature importance (FI) score was analyzed to examine
the most important features for damage detection and pattern recognition, illustrating the
need for higher order coefficients and validating the superiority of the proposed framework.
The specific contributions are summarized below:

¢ Torelax the stationarity requirement, the ARIMA model was introduced accompanied
with the model parameter selection criteria and a candidate model mechanism.

¢ Instead of using intuition to determine a suitable function of the ARIMA coefficients
as damage features, all the coefficients were used as damage features to build a (p + g)-
dimensional vector space where p and g are, respectively, the number of coefficients
in the AR and MA parts of the ARIMA model.

¢ In the classification module, an ensemble voting classifier (EVC) [22] was applied
to improve both the accuracy and robustness, where multiple ML classifiers, e.g.,
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support vector machine (SVM), neural network (NN), random forest (RF), and logistic
regression (LR), were engaged.

®  The framework was validated using realistic full-scale shaking table tests of a three-
story steel frame under different earthquake hazard levels.

2. Time Series Modeling
2.1. Auto-Regressive Series

In classical TS modeling, the relationships between different variables are established
through regression analyses to link different target observations. The AR series is a family
of regression models used for general TS problems [16], which includes AR, moving-
average (MA), ARMA, ARX, ARIMA, etc. There are several SHM applications using these
models but with fewer cases of ARIMA, which is the focus of this study. We denote the
basic AR model with order p as AR(p), which aims to determine the dependent relationship
of an observation with the order p of lagged observations. Similarly, we denote the MA
model with order g as MA(g), which aims to determine the dependent relationship of the
observation with order g of observed white noise error terms.

AR(p): x(t) = izxix(t—i)—i-e(t)—l—c, 1)
i=1
MAG): x(t) = e(t)+ Y. Bre(t — i), @
i=1

where the TS x at the current discrete time ¢ is x(t), which depends on the values at the
previous time steps, i.e., x(t — i), a; and fB; are the coefficients corresponding to the i-th
order term of AR(p) and MA(y), respectively; the white noise € at time t is €(t); and c is a
constant.

2.2. ARMA Model in Structural Identification

Past studies revealed the coherent relationships between the ARMA parameters and
structural properties in system identification [23]. Based on these efforts, a mapping
between the physical parameters of a multi-degree-of-freedom (MDOF) system and the
ARIMA parameters is derived herein. Based on the dynamics of structures, an n MDOF
system excited by a ground motion is represented by a second-order differential equation,
Equation (3), where u is the relative displacement vector with the superposed dot indicating
the time derivative, and M, C, and K are the n x n mass, damping, and stiffness matrices,
respectively. If the input ground motion acceleration, ii¢ () assumed to be white noise, i.e.,
w(t) = iig(t), with 1 as an n x 1 unit vector, the right-hand side can be rewritten as the
product of an n x 1 spatial distribution vector I' = —M1 as follows,

Mii + Cu + Ku = —MTiiy(t) = Tw(t). ©)

Suppose y(t) represents the target single degree of freedom (DOF) response, e.g., a
horizontal acceleration response of the i-th floor, which is a sequence of a scalar quan-
tity. Subsequently, we convert Equation (3) to a state-space representation considering
measurement noise as follows,

4)

[mnxn [ann
-M 1Kk —-M1C

[0]11xn
M-'r
Dis a1 x 2n output vector, and v(t) is a scalar measurement noise.

where x = {u} is the state

is the system state vector, A = [
Wanx1

]ZnXZn

matrix, [0] is the zero matrix, [I] is the identity matrix, B = [ } is the input matrix,
2nx1
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Based on [23], the general solution of x for uniformly sampled data with the time
interval A; is expressed in Equation (5), where ¢ in discrete time represents the time index
for the sampling of discrete quantities at A¢, 24y, ..., kA;. In the following text, x(kA;) is
denoted as x(k) for short.

(k+1)A
x(k+1) = eA%x(k) + A Al =TI By (1) g (5)
Ay
Define s = (k+ 1)A; — T and ds = —dt, and the second term in Equation (5) is
rewritten as follows,
A
2(k) = / "eABuw((k 4+ 1)A; — s)ds. ©)
0

Define the discrete version of the state matrix ®,,,x2, = ¢A?, and its characteristic
polynomial P(A) with the coefficients a; (xg = 1) is expressed as follows,

P(A) = det(® — AI) = A" 4+ g AL oo ag, A+ ap, = 0. 7)

Fori=0,1,...,2n, the outputs y(k + i), from the second equation of Equations (4)-(6),
are expressed as follows,

y(k) = Dx(k)+o(k),
y(k+1) = Dx(k+1)+v(k+1) =D(Px(k)+z(k)) +v(k+1),
y(k—l—Z‘r;)' ; i)”(;DZ"x(k) + @2 g (k) + D 2z(k+1) + - +
®z(k+2n —2) +z(k+2n—1)) +v(k +2n). 8)

Multiply y(k + i) by ap,_; and, adding all terms from i = 0 to 2n, it follows that,

y(k+2n) +aqy(k+2n —1) 4+ +aggqy(k+1) + aouy(k) =
2n

DP(eA%)x(k) + Brz(k +2n — 1) + Boz(k + 21 —2) + - - - + Bonz(k) + Y ao(k+2n—1), )

i=0

where Bi is a 1 x n vector for a single output y, i.e., Bl =D, BZ =D®+uD,..., an =
D®?" 1 4 DO 2 4 ... 4 ay,_»DP + ay,_1D. Analogous to Equation (7), P(eAM) =
P(®) = & + 0y ®?" ! + ... 4+ ap, = 0 according to the Cayley-Hamilton theorem [24].

The dot-product between a deterministic vector B; and a discrete Gaussian white noise
vector process z(k + i) generates a sequence of random scalar quantities. Based on [23],
these dot-product terms can be represented by a weighted sum of a discrete Gaussian white
noise e(t) with adapted scalar coefficients B; according to certain dependency constraints.
This step is referred to as the B-trick in the sequel. In addition, the weighted sum of
white noise Y7, a;0(k + 2n — i) can be replaced by e(k + 2n). After replacing k + 21 by t,
Equation (9) can be expressed as follows,

2n 2n
y() + ) ay(t —i) =e(t) + ) Bje(t — ). (10)
i=1 j=1
Re-denote —«; as «;, and then Equation (10) can be rewritten as follows,
2n 2n
y(t) = ) ay(t—i) +e(t) + ) Bje(t — ). (11)
i=1 =1

Based on several assumptions and constraints [23] used in the B-trick and y(t) being a
stationary TS, Equation (11) shares the same form with an ARMA(2n, 2n1) model. In other
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words, y(t) can be estimated by 7(t) using the previous 2n time steps, y(t — 1), ...,y(t —2n),
a random Gaussian noise sequence, €(t), and a constant ¢, as follows,

y(t) =~ 7( Zalyt—z + e(t +2[3] (t—j)+ (12)

i=1

The above derivation links the arbitrary floor response y(t) from structural dynamics
to an ARMA model. According to [25], the eigen values A; obtained from characteristic
polynomial of discrete time state matrix &, Equation (7), can be used to identify the
modal frequency and damping ratio of the structure. In other words, coefficients «; of the
ARMA(2n,2n) model are related to the structural dynamic properties, which can directly
contribute to the SHM [3,9,23,25].

2.3. Extend ARMA to ARIMA Model

In practice, the collected TS might not satisfy the stationary conditions, where the
ARMA estimation in Equation (12) does not apply. However, in many cases, it is found that
a TS may achieve stationarity after several differencing applications. Thus, the AR series
models, e.g.,, ARMA, may fit an arbitrary TS after I differencing. In other words, the raw TS
can be estimated by I times integration of the fitted TS, as reflected by “integrated” in the
name of the ARIMA model. In the implementation of the ARIMA(p, I, ) model, the raw
TS is subjected to I differencing (differentiation) first, and then fitted with an ARMA(p, q)
model. Suppose x satisfies the stationarity condition after the I differencing of y, i.e.,
x = V!y. Therefore, y follows an ARIMA(p, I,q) model, and x follows an ARMA(p, q)
model, where, for each time step, t, x(t) can be expressed as follows,

x(t) = Viy( Zaxt—z—i—e —|—Zﬁ] (t—j)+ (13)

i=

Therefore, differencing can be made to Equation (11) to form an ARIMA(2n, I,2n)
model, where the TS is stationary after the I differencing. Taking one step back from y(t)
in Equation (11), we have

WE-1) = aylt—2) +agy(t—3) + -+ aoylt—2m) +e(t—1) +
Bie(t —2) + Boe(t —3) + -+ -+ Pone(t —2n —1). (14)

Subtracting Equation (14) from Equation (11), and dividing by the time interval A;,
we obtain

y(t) = wqy(t—1) +ay(t —2) + - +ap,y(t —2n) +é(t) +
Pré(t —1) + Poé(t —2) + - - + Pou(t —2n) (15)

Similarly, the B-trick can be applied to Equation (15), and the weighted noise part can
be replaced by the random Gaussian noise €. If () satisfies the stationary condition, it can
be estimated by an ARMA(2n,2n) model, Equation (16). In other words, y(t) follows an
ARIMA(2n,1,2n) model. Therefore, if y(t) achieves stationarity with I differencing, y(t)
can be estimated by an ARIMA(2n, I,2n) model.

y(t) =y(t) Zalyt—z )+ et +Zﬁ] (t—))+ (16)

Previous studies [2,3,23,26] showed that the coefficients of the AR part, «;, are more
important than the coefficients of the MA part, B;. Thus, the above ARIMA(2n, I, 21n) model
can be simplified to an ARI(2#, I) model. Finally, the authors in [23] provided details to
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estimate and map the TS coefficients to physical parameters, e.g., modal frequencies and
damping ratios.

3. ARIMA-ML Framework

SHM for damage detection can be considered as a classification problem within the
scope of supervised learning. In this study, the major contribution is to integrate both TS
modeling and ML recognition to form the two-stage framework ARIMA-ML as schemat-
ically illustrated in Figure 1. Starting from stage 1: TS modeling, one arbitrary TS data
is fed to the pre-processing module. Through smoothing-segmentation-normalization—
differencing (SSND) operations with the I-th differencing and stationarity check, multiple
stationary TS segments are generated. These segments are further passed to the model
parameter determination module, and then a small group of candidate (p, q) pairs is deter-
mined.

In stage 2: ML recognition, with filtered TS segments and one pair (p, q) from the
candidates, an ARMA(p, ) is applied to those segments in the feature extraction module.
Subsequently, the extracted features are fed into the classification module to run multiple
ML classifiers with a voting mechanism for damage state identification or pattern recog-
nition for the SHM decision-making. The candidate models are evaluated by the average
segment accuracy (the ratio between the number of correct predicted segments and the
total number of the input segments). Stage 2 is repeated for each (p, q) candidate pair,
and the best model is determined with the highest average segment accuracy. From the
definition of the ARIMA model, fitting the I differentiated segments by ARMA(p, q) models
is equivalent to fitting an ARIMA(p, I, q) model. The details of each module are described
in the following subsections.

0. Input raw TS data

i

4

1. Pre-processing Module 2. Model Parameter Determination Module
Stage 1
TS . . Narrow (p, q) range BIC-based AIC-based Model residual
modeling SSND » Auto-Stationarity » based on physics & » candidate model » candidate model » S
check . . . diagnosis
TS properties selection evaluation
I Select one candidate (p, ¢) pair and Repeat (3) & (4)
3. Feature Extraction Module 4. Classification Module
Ao M
AV ARMA .
SCg#“;cm Ty — (o, @ B B Ensemble Voting
| SVM Vote 1 Ao,
Stage2 | >R |/ (A - T B A 3 Majority |  D2meed
#2 W y s @2 P17y s By . ah B e By | Vote Damaged
i H RF Vote 2
ML a®,..., ap3,lf13,...,l?q3 » ! oe Undamaged
Recognition ) +| ARMA .. :
Segment VAN 3 3,3 3 i Vote 3
" YRV s G (RN LR | ar, e apV, B, By Undamaged
: Dimension: NX(p + q) Vote 4 Dimension: Nx1
Seament . ACARMA ] e
i IRV I g O

5. Output final prediction
based on the best model

Figure 1. The proposed two-stage ARIMA-ML framework.

3.1. Pre-Processing Module

In signal processing, data pre-processing is an essential first step. In the ARIMA-ML
framework, first, a moving-average operation (not to be confused with the MA model)
with a suitable window size (e.g., 2 in this study) is used to smooth the raw signals and
remove some noisy data points. In addition, while adopting segmentation in the TS, it is
easier to achieve local stationarity for a short time period because the strong nonlinearity
of the TS signal can be relieved by fitting local linear models for each segment. Moreover,
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normalization (standardization) resolves the sensor-to-sensor scale variations of the TS due
to different loading, calibration, or resolution conditions. Nair et al. [2] and Noh et al. [3]
indicated the effectiveness of performing segmentation and normalization.

The segmented TS should maintain sufficient information of the structural properties
(e.g., stiffness) where each segment contains at least one reciprocating loading cycle, e.g.,
the three sample segments in Figure 2. While conducting sliding window, two patterns,
namely (1) non-overlapping (Non-OL) and (2) overlapping (OL), can be applied as discussed
in the validation experiments. The segmentation using OL increases the amount of data
analogous to data augmentation methods, which are, in general, useful for training ML
algorithms, especially under limited data regimes.

Sliding window

[ "™ " i) [
PPN [N A Vo fo
W \ W'Y WY

A W K 'Wj s W/ \\‘\"f :

Segment #1 Segment #2 Segment #3

Figure 2. Illustration of the segmentation operation using sliding windows (overlapping (OL) for
Segment #1 and Non-OL for Segments # 2 and 3) for a sample TS signal.

To minimize the variance of the local time period, instead of normalizing the whole
signal, it is normalized within each segment. Let y} be the j-th segment in the i-th record of

a collection of TS signal records, and the normalized signal, y~§, is obtained as follows,

7= (vi—ui) /e, (17)

where y} and (T]? are, respectively, the mean and standard deviation of yi. After normal-
ization, I differencing is conducted for each segment. The selection of I is based on the
demand (least operations to achieve stationarity) and varies from case to case. Usually,
I =1 or 2 can achieve acceptable results [16], and I = 1 is used in this study.

Even though SSND is conducted, stationarity of the processed data is not guaranteed.
Moreover, manually examining all segments is time-consuming and impractical. Thus, an
automated filtering of the non-stationary segmentation is introduced through using the
Augmented Dickey-Fuller (ADF) test [27], which uses hypothesis testing to determine the
statistical relationship in the data between two interpretations, namely the null hypothesis
and alternative hypothesis. The former usually represents a commonly accepted fact or
default assumption, and the latter is the opposite. They are mutually exclusive, i.e., if one
is true, the other must be false.

The decision for accepting/rejecting the null hypothesis is based on whether the
p-value (calculated probability) exceeds a designated threshold (significant level). Herein,
the null hypothesis is accepted by the presence of a unit root (a stochastic trend in a TS,
and its presence implies a systematic “unpredictable” pattern of the TS) in univariate TS
data, which represents the non-stationarity condition. On the other hand, the alternative
hypothesis is test-dependent and represents stationarity or trend-stationarity (a TS is trend-
stationary if an underlying linear or nonlinear trend, e.g., a function solely given in terms
of time, can be removed while leaving a stationary process [16]).
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If the p-value from the ADF test performed after SSND on a segment is larger or equal
to 0.05, the null-hypothesis is accepted, which means that the segment is non-stationary,
and it is subsequently discarded. On the other hand, if the p-value is less than 0.05, the
null-hypothesis is rejected, and the alternative hypothesis is selected, which indicates that
the segment satisfies the stationarity condition.

3.2. Model Parameter Determination Module

Based on the physical interpretations introduced in Section 2 and reference [23],
an instrumented shear-type n-DOF framed structural system can be modeled by fitting
ARMA(2n, 2n) or ARIMA(2n, I,2n) models to the collected data assuming stationary con-
ditions and considering measurement noise. However, in practice, many other sources
of noise, in addition to the measurement errors, may influence the accuracy of the model
fitting, e.g., installation errors and model idealization errors. Thus, the values of p and g can
be determined in a statistical manner, i.e., considered as being close to 21 but varied based
on the observations of autocorrelation function (ACF) and partial autocorrelation function
(PACF) making use of the TS properties. Shumway & Stoffer [16] stated the following
about the ACF and PACF for the model selection:

e A TS suitable for the AR(p) model is observed after a time lag p as ACF tails off (ACF
values gradually decrease with the lag increase) and PACF cuts off (most of the PACF
values are within a certain range, e.g., bounds of the PACF confidence intervals, with
the lag increase).

e A TS suitable for the MA(g) model is observed as ACF cuts off and PACF tails off after
lag g.

* A TS suitable for the ARMA(p, q) model is observed as both ACF and PACEF tails off
after lags p and 4.

Therefore, a group of (p, q) pairs can be determined based on the above observations,
where values of p and g are close to 21, or ¢ = 0 if only applying the AR/ARI model.

To further narrow the selection of (p,q) pairs, Bayesian information criterion (BIC)
sub-model analysis is conducted. The BIC values, from Equation (18), are computed for
sub-models of ARMA (piax, Jmax) With partial orders, which use the combinations of the
orders from 1 to the highest orders py x and guqy in the (p, ) pairs. The results demonstrate
the contribution from each order, and then a small group of candidate models are selected.
Subsequently, Akaike information criterion (AIC) analysis is performed, where average AIC
values, Equation (19), are computed for each candidate model with all segments. These
average AIC values evaluate the overall fitting performance of each candidate model.

BIC = kIn (n) —2In (L), (18)

AIC =2k —2In (L), (19)

where 1 is the number of samples, k is the number of coefficients in the model, and L is the
maximum value of the likelihood function for the model, referring to [16]. In BIC and AIC
analyses, the lower (algebraically) the value, the better the fit.

Models using different (p, q) pairs are diagnosed by the residuals to avoid violating the
assumptions of the AR series models. The residuals, computed from differences between
ground truth and fitted data, should share similar properties to white noise, i.e., independent
and identical distribution (i.i.d.), a zero mean, and a limited value of the standardized (STD)
residuals (e.g., less than 2 as suggested in [28]). Statistical methods to examine the residuals
include standardization plots, quantile-quantile (QQ) plots for normality, and ACF plots
for autocorrelation.

However, for processing a large amount of data, manually checking each TS segment
with these plots is inefficient, especially if there are many TS data to analyze as in the case
of a large instrumented structural system, e.g., a continuously monitored long span bridge
with many sensors. Therefore, Ljung—Box statistics [29] is applied herein to automatically
diagnose the residuals based on the hypothesis testing [30]. Once the null hypothesis is
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accepted with p-value exceeding the threshold of 0.05, the residuals check is satisfied. This
module is summarized as follows:

1.  Select multiple (p, q) pairs based on physical interpretations and TS properties, e.g.,
the initial value of p is considered close to 2#.

2. Conduct BIC sub-model analysis to determine a small group of (p, ) candidate models.

Conduct AIC analysis to evaluate the fitting performance of each (p, q) pair.

4. Conduct residual diagnosis for each (p, g) pair.

«®

Having more candidate models may lead to a more robust model performance; how-
ever, this is more costly from a computational point of view. Empirically, we suggest to
initially consider three to five candidate (p, q) pairs.

3.3. Feature Extraction Module

The general ML classification process is described as extracting features from the
raw data, determining the mapping relationship between the features and their labels,
and finally tuning the models to obtain the best mapping function. Nair et al. [2] and
Noh et al. [3] presented promising detection results of feature extraction using combina-
tions of the first several AR coefficients of ARMA model. However, such features may not
be sufficient for general structural systems, where damage patterns are not simply repre-
sented by reduced cross-sections as conducted in many idealized laboratory experiments.

It is known that the AR coefficients contain information about the modal frequencies
and damping ratios [26], and the changes (indicative of damage) in the stiffness of the
structure are accordingly reflected by the changes in these coefficients [2], which can be
used for damage detection. However, from Sections 2.2 and 2.3, if an ARMA/ARIMA is
used as a TS model, the MA parts may also have certain contributions. Therefore, in this
module, all coefficients of the AR, &; (i € {1,2,...,p}), and MA, Bi (e {1,2,...,9}), from
the ARIMA model are collected and concatenated into a (p + g)-dimensional feature vector
where several ML classifiers are applied on the whole feature vector.

If only applying a simpler AR/ARI model without considering the MA part, all «;
coefficients form a p-dimensional feature vector. In addition, since a fixed (p, q) pair is
applied to all TS segments, some segments may still not be well-fitted. Thus, similar to the
model parameter determination module, a residual check using Ljung-Box statistics is con-
ducted after model fitting, and the segments violating the acceptable residual assumptions
are discarded.

3.4. Classification Module

With the extracted features, four general ML classifiers, namely SVM, NN, RE, and LR,
are jointly applied for the damage classification purposes. To improve the generalization
and robustness over a single classifier, an ensemble voting classifier (EVC) is adopted.
The characteristics of the EVC can be described as: (i) the final predicted results are the
majority of the predictions from all individual classifiers, and (ii) the results are selected
based on the “best” (highest test accuracy and smaller variance if applicable) individual
classifier performance in the cases of a tie in voting. For more details about these four
general classifiers, refer to [22].

3.5. ARIMA-ML in Structural Damage Identification

Integrating the above-mentioned four modules describes the two-stage framework of
the ARIMA-ML. Stage 1 is used to determine a set of TS models with multiple candidate
(p,q) pairs, and stage 2 is used to train the classification models. Repeating stage 2 for
each candidate pair, the best TS model with its corresponding trained classification model
is obtained.

While applying the ARIMA-ML framework to the structural damage identification,
its input is the acceleration response collected after a possible damaging loading scenario,
e.g., due to an earthquake. This response can be excited from small white noise signals
applied to the structure from ambient vibration or from a small external force, e.g., a
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hammer impact excitation as used in [31]. The underlying assumption is that the structural
damage state or pattern is determined from the damaging loading stage, and the white
noise excitation with low amplitude from ambient vibration or external force does not cause
further damage, i.e., the structure responds linearly with a degraded stiffness compared to
its undamaged state. Based on damage criteria, these TS data are labeled accordingly.

From the ARIMA-ML framework with labeled data, the best TS model, i.e., ARIMA(p, I, q),
can be obtained, and the corresponding classification models are trained. From the physical
interpretation in Section 2, the order of the TS model is more related to the number of DOFs
and varies according to the TS properties. Even though TS data with different damage
states may differ in properties leading to different (p, q) selection, it is suggested to use the
higher order among multiple model choices [16].

The well-trained ARIMA-ML framework can be applied automatically for real-time
SHM. Through inputting newly received TS signal from the sensors, the framework au-
tomatically processes the TS data through pre-processing, feature extraction, and clas-
sification modules once, and outputs the corresponding damage state. This workflow
(refer to Figure 3 for the pseudo-code of the trained ARIMA-ML framework) indicates an
end-to-end efficient run-time performance, which is suitable for developing embedded
intelligent devices for real-time automatic damage detection. The code implementation is
slightly different from Figure 1 where the SSND is followed by feature extraction segment
by segment to form a stacked feature matrix, which is then fed as vectorized data into the
ML classification to accelerate the computation and increase its efficiency.

Require: time series Y € {Yl, Y, e, Yn}, ARIMA order (p, I, q), segmentation size L, overlapping length OL, trained
classifiers clf € {SVM,RF,NN,LR}
Define: feature matrix F, damage state DS

Set j = 1 # Count for number of segmentations
fori < 1tondo
Initialize indexg, .« and indeXepq
while index.,q < length(Y;) do
Set indexenq = indeXgeqe + L
Dseg « SSND(Y;[indeXare: indexqngl, order = I) # SSND with differencing order I
p-value « ADF(Dseg) # Auto-stationarity Check
if p-value = 0.05 do # Check if violate stationary condition
Break to outer loop and Update indeXg e = indeXgpa + OL
end if
[Coefyr, Coefyal, Residual « ARMA(p, q) # Feature extraction
p-value « Ljung-Box statistic (Residual) # Residual check
if p-value < 0.05 do # Check if violate residual assumption
Break to outer loop and Update indexg e = indeXgpa + OL
end if
Stack [Coefyr, Coefy 4] as new row of feature matrix F, Fj
Update indeXg ¢ = indeXgare + OL,j= j+ 1
end while
end for
# Classification
Load Clf; « SVM, Clf, « RF,Clf; <« NN, Clf, < LR
DS « EVC.predict(data = F, clf = (Clf;, Clf;, Clf5, Clf,))
Output DS

Figure 3. Pseudo-code of the trained ARIMA-ML framework run-time.

4. Full-Scale Shaking Table Tests

Full-scale shaking table tests were conducted on a three-story, three-bay, tension-only
concentrically braced beam-through frame (TCBBF) (Figure 4) under different earthquake
hazard levels. The test structure has a total height of 10,020 mm (story height = 3340 mm).
Complete details about the test steel frame can be found in [32]. The acceleration sensors,
Figure 5a, were installed at the center and two corners of every floor to measure the
response in two horizontal directions, Figure 5b.
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The structure was shaken using natural and artificial ground motions for frequently
occurring earthquakes (FOE), design basis earthquakes (DBE), and the maximum consid-
ered earthquake (MCE). These levels were defined using the peak ground acceleration
(PGA) according to the seismic intensity 7 in the Chinese code for the seismic design of
buildings [33], namely 0.035 g, 0.1 g, and 0.22 g, respectively, where g is the acceleration of
gravity. To evaluate the structural damage, low amplitude white noise signals, which do
not cause further structural damage, were applied after each earthquake loading, and the
damage patterns were subsequently recorded.
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Figure 4. Three-story tension-only concentrically braced beam-through frame (TCBBF).

A-XY1

U A-XY2 [

| + |

A-XY3

-#- Accelerometers

(a) 2D accelerometers (b) Typical floor arrangement

Figure 5. Sensors layout.

During the tests, no fracture occurred in the structural members, i.e., the beams,
columns, and beam~-column joints. Therefore, the steel frame remained elastic during the
loading cases. Only the braces yielded and loosened after the earthquake loading, Figure 6.
Hence, there were two damage patterns observed for each floor: (1) partial braces loosened
(PL), and (2) all braces loosened (AL). Both patterns were well-recorded and used for data
labeling for the detection tasks, refer to Table 1. If no damage pattern was observed, it was
recorded as undamaged (UD).

In the validation experiments, the used data are signals of structural acceleration
response under white noise collected from the sensors on each floor. For simplicity, only
the X direction (Figure 4) data were used, as more significant damage was observed in
this direction.
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(a) Braces in the X direction (b) Braces in the Y direction

Figure 6. Loosening of the braces.

Table 1. Structural information and damage patterns recorded under earthquake loading (UD: undamaged, PL: partial braces loosened,

and AL: all braces loosened).

Hazard Record PGA (g) Fundamental
Damage Pattern
Level No. Name X Y Period (sec)
B-FOE ! EQ1 El Centro-X 2 0.035 0.03 1.36 AL
EQ2 El Centro-Y 0.03 0.035 1.36 AL
EQ3 SHW2-X 3 0.035 0.03 0.56 UD
FOE EQ4 Kobe-X 4 0.035 0.03 0.56 UD
EQ5 Kobe-Y 0.03 0.035 0.56 UD
EQ6 El Centro-X 0.1 0.085 0.56 UD
DBE EQ7 El Centro-Y 0.085 0.1 0.56 UD
EQ8 SHW2-X 0.1 - 0.56 UD
EQ9 Kobe-Y 0.085 0.1 0.67 UD in floors 1 & 2; AL in floor 3
EQ10 El Centro-X 0.22 0.187 0.74 PL in floors 1 & 2; AL in floor 3
EQ11 El Centro-Y 0.187 0.22 0.81 PL in floors 1 & 2; AL in floor 3
MCE EQ12 SHW2-X 0.22 - 1.13 PL in floors 1 & 2; AL in floor 3
EQ13 SHW2-Y - 0.22 1.13 PL in floors 1 & 2; AL in floor 3
EQ14 Kobe-X 0.22 0.187 1.36 AL in all floors
EQ15 Kobe-Y 0.187 0.22 1.36 AL in all floors
A-DBE 5 EQ16 El Centro-X 0.1 0.085 0.56 UD
EQ17 El Centro-Y 0.085 0.1 0.56 UD

I The FOE level earthquake input before brace installation. 2 El Centro record from the 1940 California Imperial Valley earthquake.
3 Shanghai artificial accelerogram [33]. * JMA Kobe record from the 1995 Kobe earthquake. 5 Aftershock at the DBE level applied after
re-tightening /replacing all loosened braces.

5. Validation Experiments
5.1. Experimental Objectives

Damage detection and localization are of major interests in SHM. Three tasks are
pursued herein: (1) global damage detection, (2) local damage detection, and (3) local
damage pattern recognition.

In Task 1, the global health condition of the whole structure was assumed to be
independent of the damage location. In other words, the occurrence of any damage in the
structure denoted a damaged state (a binary classification problem). For this purpose, all
signals were mixed together with labels of either “undamaged” (UD) or “damaged” (D)
ignoring the floor information. This can be considered as one idealization of the structure
as two independent single-degree-of-freedom (SDOF) systems, one in the X direction and
one in the Y direction, Figure 7.

In Task 2, a more fine-grained detection was conducted to locate the damage based
on the floor level. Considering only the X direction and the rigid diaphragm assump-
tion [34,35], the steel structure can be idealized as an MDOF system with one translational
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DOF for each floor, Figure 7, and the detection accuracy was restricted to the floor level.
Only signals collected from the same floor were mixed along with their damage state, and
the damage detection was performed floor by floor. In other words, sensors in different
locations of one floor shared the same label. Therefore, this task is three pairs of a binary
classification problem.

In Task 3, the development of damage in the test steel frame was further investigated.
As mentioned above, three different patterns based on the floor level were assigned: UD,
PL, and AL, which is a three-class classification problem. The design of the test frame had
a single brace in each of the two exterior bays (Y-direction) of floor 3, Figure 4a, and the
section area of each of these braces on floor 3 was smaller than that used on the other floors,
which led to its fragility under earthquake excitation. As a result, floor 3 was labeled UD
or AL since it did not experience PL in the tests, Table 1. Thus, only data collected from
floors 1 and 2 were evaluated in this task.

Idealize to
SDOF

—

Idealize to
MDOF

Figure 7. Structural idealization of the test steel structure.

In the above three tasks, the average segment accuracy was considered as the evalua-
tion metric. To investigate the possible existence of biased prediction of each model, i.e.,
obtain a high accuracy by simply predicting one class (the majority) and missing the others
(the minority) in an unbalanced dataset, confusion matrix analysis [22] was conducted.
In addition, the importance of each coefficient was further evaluated using the feature
importance (FI) score. While the RF classifier was performing classification, the fed-in data
are split into multiple subsets, where each subset belongs to one specific class (e.g., UD, PL,
or AL in our case).

The split criteria are based on the features and their weights. The more important
features make the subset able to distinguish the class better, and subsequently the cor-
responding weights are used to compute the FI score. In other words, the FI score is a
good indicator for the evaluation and better understanding of how the RF conducts the
classification via features. The higher the value of the FI score, the more important the
feature is. For more details about the FI score computation, refer to [36]. Moreover, since
all the ARIMA coefficients are concatenated as features, the FI score provides guidance for
the importance of each coefficient in the classification.

5.2. Experimental Setups

In the pre-processing module, according to the sampling frequency (256 Hz) of the
sensors used in the shaking table experiments, the segmentation window size was taken as
200 data points. Thus, the duration of each segment was about 0.78 s (1/256 x 200 ~ 0.78),
which was considered sufficient in this study. To further investigate the influence of
overlapping in the sliding window, both Non-OL and OL patterns were considered for
each model. From the selected segmentation window size of 200, the OL size was assigned
as 100 for convenience.
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To evaluate the classification performance in ML, the collected data were separated
into training and test datasets. The TS data collected after the arbitrarily selected shaking
table runs EQ4, EQ7, EQ9, and EQ12 (Table 1) were used for testing, which covers the
scenarios of FOE, DBE, and MCE level earthquakes, and the remaining data were used
for training.

As mentioned above, there were three accelerometers installed on each floor; thus,
a total of 117 (13 records x 3 floors x 3 sensor locations) TS signals and 36 (4 records x
3 floors x 3 sensor locations) TS signals were used for training and testing, respectively. To
indicate the generalization of the predictive classifiers, only the test accuracy is presented
in the following sections. For the feature importance analysis, the range of FI scores for
each feature, FI; (i € {1,2,...,(p +q)}) was normalized to be 0.0 < FI; < 1.0, where

ﬁi = FIi/Z]’.Jilq FI;, and all ﬁi values sum up to 1.0.

To avoid loss of generality, k-fold cross-validation was applied and used for tuning the
hyper-parameters of the classifiers. In this cross-validation, all training data were randomly
and equally split into k folds; at each time, k — 1 folds with a new combination of folds were
used as a training set; and the remaining k-th fold was assigned as a validation set until
each fold had been validated once. In the following experiments, k = 5 was used. Multiple

runs in cross-validation determined the relatively optimal setting for each classifier, Table 2.

Table 2. Implementation details of the classifiers.

Classifier Details

SVM 1. Use kernel-SVM with Gaussian kernel.
2. Use L2 regularization parameter [22] C = 100.
1. Build a two-layer network.
NN 2. Neurons in first and second layers are 200 and 100, respectively
3. Use ReLU [37] as an activation function.
RE 1. Use Gini impurity [36] as a split criterion.
2. Use 250 trees as the estimator and then average their predictions.
IR 1. Add L2 regularization term.
2. Use L2 regularization parameter C = 100.
1. Ensemble of the above four individual classifiers with their optimal settings.
EVC . .
2. Use a hard-voting mechanism.

6. Stage 1: TS Modeling
6.1. TS Data Pre-Processing

As the first step, all raw TS data were passed to the pre-processing module, which gen-
erated a group of stationary segments. Herein, one TS sample is presented to indicate the
necessity of conducting the differencing operation and procedure of the auto-stationarity
check. First, the ACF and PACEF plots of the TS example are plotted in Figure 8. If only
SSN is performed, Figure 8a shows certain trends in the ACF plot, and its values diminish
slowly, indicating non-stationarity. By performing differencing once after SSN, the perfor-
mance in both the ACF and PACEF plots significantly improved, where the ACF diminished
rapidly within the shown dashed lines with less than 15 lags and the PACF cut off a certain
number of lags, Figure 8b. This observation roughly meets the property of the stationary
condition and indicates that the differencing order I = 1 is sufficient.
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Figure 8. Standardized (STD) value, ACF, and PACF of one sample TS segment with different pre-
processing. (Dashed lines: approximate 95% confidence intervals of the white noise results; vertical
lines: values beyond which autocorrelations are (statistically) significantly different from zero [38]).

Subsequently, the stationarity of the TS with the ADF test was examined, where p-
values of 0.78 and 0.01 were achieved for the cases of SSN and SSND, respectively. The
former significantly exceeds 0.05, which accepts the null hypothesis (non-stationary), but
the latter rejects the null hypothesis and accepts the alternative hypothesis (stationarity).
After examining several plots of different segments, we concluded that stationarity was
difficult to achieve for the collected data from sensors if only SSN was used. However, one-
time differencing significantly resolved this issue, supporting the need of ARIMA(p, 1, )
models. Herein, if one-time differencing still cannot satisfy the stationary condition, the
segment would be discarded. Finally, the label distribution among all segments is shown in
Figure 9, which is somewhat imbalanced, e.g., UD segments are about twice those of AL. It
addition, both training and test datasets shared the same distribution after pre-processing.
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Figure 9. The label distribution among all segments.

6.2. Model Parameter Determination
6.2.1. TS Properties for the Order Range Determination

The optimal orders of p and g for the ARIMA model or p for the ARI model without
the MA part were close to 21, i.e., 6 in this study. Subsequently, few choices were generated
based on observations from the ACF and PACF plots of the TS segments. The same results
of the TS example in Figure 8b are used in the following discussions. From the PACF
plot, we concluded that lags 6 or 7 were the cut lag for this segment. From the ACF
plot, autocorrelation diminished after lag 6 indicating that it was a tail-off lag. When
generalizing to all segments, the order p for the AR part can be taken as 5, 6, or 7, and
the order g for the MA part can be taken as 5 or 6 (0 for the ARI model). Thus, a group of
models, e.g., ARI(5,1), ARI(6,1), ARI(7,1), ARIMA(5,1,6), ARIMA(6,1,6), and ARIMA(7,1,6)
with pyax = 7 and guax = 6 were initially considered.

6.2.2. BIC-Based Candidate Model Selection

BIC values were explored for sub-models of ARIMA(pjuax, 1, Gmax) with different
combinations of p = 0 to 7 and g = 0 to 6. In Figure 10, each row represents one specific
sub-model with different combinations of the model parameters for the AR(p) and MA(q)
terms, represented by the gray color depth in each column. The horizontal axis labels the
TS x-lag i, x(t — i), and error-lag j, e(t — j), as expressed in Equation (13), contributing to
order i AR(«;) and order j MA(f;) terms, respectively. The intercept is the bias term in the
regression.

The vertical axis is the BIC computed for each sub-model. The darker the color and
the lower the BIC value, the better the model. For example, in Figure 10a, the first row
represents the sub-model of ARIMA(7,1,6) with the BIC value —590, and its parameters are
related to TS x-lag (AR terms) 1, 2, 3, and 7 and error-lag (MA terms) 2, 4, and 6. Better
models are in the top rows with lower BIC values. There were multiple sub-models sharing
the same BIC values, i.e., the top four rows in Figure 10a.

Although they show contributions from different combinations of the lower order
lags, the higher orders TS x-lag 7 and, to a lesser extent, the error-lag 6 are present in most
cases. Based on the results of other segments, Figure 10b,c, the influence of TS x-lag 7 and
error-lags 2 and 6 in dominating the BIC performance was detected. This is evidence to
incorporate higher orders in the ARIMA models. Thus, combining the observations that
PACEF cuts off from lag 6 or 7 and ACF tails off simultaneously, ARI(7,1), ARIMA(6,1,6),
and ARIMA(7,1,6) became candidate models.
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Figure 10. BIC values for the sub-models computed on four sample TS segments.

6.2.3. AIC-Based Candidate Model Evaluation

The AIC values were examined for more insight into the candidate models. Since
segmentation operation was conducted, which caused the AIC value to vary from one
segment to another, the average AIC values were computed from all segments of each
model. In addition, the datasets were split into training and test sets and the average AIC
values of each model were computed for both sets. To explore the influence of overlapping
in the SSND for data augmentation, the average AIC values were also evaluated for both
Non-OL and OL patterns. However, OL was only performed on the training data.

Table 3 shows that a sliding window with OL slightly improved the average AIC,
which demonstrates the effectiveness of using OL for data augmentation. In addition, the
values from the test set were close and even slightly better than those from the training
set. This observation indicates the stable fitting performance and the generalization of
these TS models. It is also shown that the ARIMA(6,1,6) and the ARIMA(7,1,6) achieved
similar average AIC values with the latter slightly lower (algebraically), and both models
had significantly lower values than that of the simpler ARI(7,1) model. This observation
reveals that more complex models fit the data better than simpler ones.
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Table 3. Average AIC of the three candidate models.

Set Pattern ARI(7,1) ARIMA(6,1,6) ARIMA(7,1,6)
. Non-OL —417.11 —442.54 —448.97
Training
OL —444.50 —470.51 —477.09
Test Non-OL —431.11 —459.06 —464.14

6.2.4. Model Residual Diagnosis

After fitting, the residual diagnosis was performed. From the results, the three models
achieved similar performances, Figure 11. Only a few outliers fell outside the two STD
residuals, and most points were within one STD residuals, indicating a normal distribution.
The correlation of the residuals using the ACF diminished and remained bounded by the
white noise bounds (dash lines), thus, indicating a low correlation between time lags of
the residuals. From the QQ-plot, most points aligned along one line, which implies i.i.d.
Hence, all three models satisfied the residual assumptions where the ARIMA(6,1,6) and
ARIMA(7,1,6) models were slightly superior, compared with the ARI(7,1) model, with
fewer outliers in the ACE STD residuals, and QQ-plots.
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7. Stage 2: ML Recognition

In stage 1, raw TS data were pre-processed to multiple segments, and then ARI(7,1),
ARIMA(6,1,6), and ARIMA(7,1,6) were determined as candidate models with stable and
generalized performance satisfying residual assumptions. In stage 2, the segments were
further fed into each TS model to extract features for classification, and finally the best
model was selected based on the highest average segment accuracy. Some segments were
discarded if the residuals violated the i.i.d. assumption.

Accordingly, different models generated different numbers of feature-label pairs
due to different model complexity and constraints, e.g., the relatively simple ARI(7,1)
model had more data due to less modeling constraints. In addition, the feature-label pairs
generated by OL were about twice those generated by Non-OL, refer to Table 4. In general,
the amount of feature—label pairs of the three models was close and did not influence the
performance comparison between these models.

Table 4. The number of feature-label pairs generated by different models.

Dataset Pattern ARI(7,1) ARIMA(6,1,6) ARIMA(7,1,6)
. Non-OL 7396 7155 7132
Training
OL 14,771 14,287 14,273
Test Non-OL 2559 2488 2471

7.1. Task 1: Global Damage Detection

The results of Task 1 are presented in Table 5. There was no significant difference
in the accuracy between Non-OL and OL, <0.3% in EVC. Accordingly, the generated
feature-label pairs without OL (/=7000) contained sufficient information to accurately train
a classifier for global damage detection. Therefore, the ARIMA-ML is proposed to be
applicable in practice since it does not require a very large dataset. In addition, due to the
similar performance of Non-OL and OL and for computational efficiency, only the Non-OL
pattern was considered in Tasks 2 and 3.

Table 5. Accuracy (%) of the global damage detection for different candidate models. Ensemble
voting classifier (EVC).

Model Pattern SVM NN RF LR EVC
Non-OL 97.2 97.5 96.4 97.0 97.6
ARI(7,1)

OL 97.3 97.5 96.8 97.2 97.7
Non-OL 96.4 96.7 91.3 934 96.7

ARIMA(6,1,6)
OL 96.6 96.9 92.5 93.5 96.9
Non-OL 96.6 96.3 92.1 93.5 96.6

ARIMA(7,1,6)
OL 96.9 96.4 92.9 93.7 96.9

Among different individual ML classifiers, SVM and NN classifiers achieved the
highest accuracy, while RF and LR were slightly lower. Moreover, the ensemble classifier
EVC achieved a stable and robust performance, comparable to the best individual classi-
fier [36,39]. This confirmed the effectiveness of using ensemble learning in this study. In
general, the best classification performance using features extracted from these candidate
models were similar (96.6~97.7%), and the EVC classifier using features extracted by
ARI(7,1) was slightly better than the other two, i.e., the best fitting model may not be best
feature extractor. This is mainly attributed to some overfitting in more complex models,
e.g., ARIMA(6,1,6) and ARIMA(7,1,6). The candidate model mechanism resolved such
issues by increasing the accuracy and robustness.
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According to Figure 9, the labels of the dataset were somewhat imbalanced. Thus, a
confusion matrix analysis was conducted to check the possible existence of biased predic-
tions. For brevity, only the best result of ARI(7,1) without OL is presented in Figure 12a.
It is evident that high values were achieved on the diagonal cells, while low values were
achieved on the off-diagonal ones, which indicates that the classifier predicted each class
accurately without a large bias. Thus, for Task 1, the best pipeline selected in stage 2 (step 5
in Figure 1) was the EVC classifier using features extracted from ARI(7,1).

From the shaking table tests, Table 1, the natural period of the test structure varied
from 0.56 s (UD) to 1.36 s (AL). As mentioned in Section 5.1, the floor information was not
considered in Task 1 where the whole structure was treated as a SDOF system with damage
detected as changes in its global stiffness and natural period, Figure 7. From the results,
the ML classifiers were sensitive to the changes in the ARIMA coefficients corresponding
to the changes in the first natural period. This is consistent with findings of high damage
correlations with the AR coefficients of the ARMA models [2,21].
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Figure 12. Confusion matrices of ARI(7,1) with EVC.

7.2. Task 2: Local Damage Detection

In Task 2, the local detection state was based on the floor level where only TS signals
collected on the same floor were used for training and testing the ML models. From Table 6,
the local damage detection achieved over 95% accuracy. Similar to the observations in Task
1, EVC achieved the highest accuracy compared to the individual classifiers in all cases,
confirming the stable and robust performance of the EVC. At the floor level, using features
extracted from the ARI(7,1) model still slightly outperformed the other two complex models
especially for floors 1 and 2; however, all three models had the same performance for floor
3 with EVC (over 98% accuracy).
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In addition, the example confusion matrix for floor 3, presented in Figure 12b, indicates
the accurate and unbiased performance of EVC using ARI(7,1) features under a slightly
imbalanced label distribution (41% UD vs. 59% D) in the local damage detection Figure 9.
These promising results are attributed to more significant local stiffness changes of floor
3 due to brace loosening where the effective area of the braces for floor 3 was less than
half that for the other floors, Figure 4a. Therefore, from these results, it is inferred that
the ARIMA coefficients capture the local stiffness changes between floors giving more
confidence for their potential in practical applications.

Table 6. Accuracy (%) of the local damage detection for different candidate models.

Model Floor # SVM NN RF LR EVC

1 96.7 96.7 93.4 96.4 96.7

ARI(7,1) 2 97.5 97.2 96.2 974 97.7

3 98.5 98.7 98.0 98.5 98.7

1 95.3 95.7 88.4 934 95.8

ARIMAC(6,1,6) 2 96.2 96.0 92.3 94.5 96.4
3 97.8 97.6 93.9 97.6 98.0

1 95.8 95.3 88.7 92.9 95.8

ARIMA(7,1,6) 2 96.9 95.9 91.9 93.5 96.9
3 97.6 97.8 94.1 97.0 98.0

7.3. Task 3: Local Damage Pattern Recognition

From the two validation experiments in Tasks 1 and 2, it was shown that the ARIMA
coefficients could accurately distinguish between damaged and undamaged states both
globally and locally. However, in the present experiment with increased difficulty of the
task, i.e., more classes to be classified, Table 7 shows that the performance of all models
slightly decreased, especially in the complex models with RF and LR classifiers. In general,
EVC provided the best accuracy of about 80% in all cases. ARI(7,1) with EVC again
presented the best performance with the highest accuracy, i.e., 81.5% and 82.1% in floors 1
and 2, respectively. Although the results were lower than those in Tasks 1 and 2, they were
much higher than a random guess of 33% for Task 3 three-class classification.

The confusion matrix analysis, Figure 12b—d, indicated that the best classifier was more
accurate in distinguishing between undamaged and damaged states but less accurate to
identity the differences between damage levels (PL and AL). Moreover, Figure 12¢,d shows
that the model was prone to predict PL as being AL for the braces. This misclassification
is explained by a coupling effect from different floors, where the nonlinear response of a
single floor is influenced by the adjacent floors [14].

Taking test record EQ12 as an example, there was only PL in floors 1 and 2 but AL
in floor 3 during EQ12, Table 1. We inferred that the nonlinear response of floor 2 was
influenced by both floor 3 with severe damage (AL) and floor 1 with a similar damage
level (PL). Thus, using the ARIMA model with such simple structural idealization (each
floor treated independently) may not render a very accurate damage pattern recognition
task. Future work should make use of more accurate substructure idealization of the tested
structural system [14].
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Table 7. Accuracy (%) of the local damage pattern recognition for different candidate models.

Model Floor # SVM NN RF LR EVC
80.8 80.2 80.4 79.2 81.5
ARI(7,1)

2 80.7 81.2 79.6 763 82.1
1 79.4 79.2 69.5 78.1 80.8

ARIMA(6,1,6)
2 79.5 80.0 72.0 70.4 80.5
1 78.9 783 72.8 80.0 80.0

ARIMA(7,1,6)
2 79.5 79.1 72.5 70.0 79.8

Further evaluation of the the test accuracy of floor damage pattern from a holistic
point of view for a single event, i.e., predicting labels for a certain earthquake, can be
based on majority labels predicted among the TS segments of each floor. Subsequently,
normalizing the predictions for each label, a probability distribution is obtained, and the
final event prediction is based on the highest probability. The predictions from a single
test earthquake using ARI(7,1) are presented in Figure 13, and the final predictions were
consistent with the true labels in the Table 1.

Similar to the observations in Figure 12¢,d, the model can easily distinguish between
undamaged and damage states (EQ4 and EQ7) with high confidence. On the contrary, the
difference between PL and AL was less significant (EQ12 and EQ15) but still acceptable.
Therefore, the classification performance achieved in damage pattern recognition is also
applicable in practice, especially from a holistic point of view for a single earthquake event
regarding the typically difficult task of damage pattern prediction.
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Figure 13. Damage pattern predictions of a single earthquake in test set using the ARI(7,1) model.

7.4. Feature Importance Analysis

Evaluating the feature importance of the RF classifier in the classification module
revealed useful information regarding the feature selection for damage detection. This
was shown to be reasonable since RF using features extracted from ARI(7,1) achieved an
accuracy of 95% or higher in Tasks 1 and 2 and an acceptable accuracy of 80% in Task 3.
Three cases were selected to report the FI score of each feature with respect to all features,
Figure 14. In Figure 14a,b, the highest order coefficients, i.e., AR 7, had a dominating effect
with the largest share of the FI score of about 0.4 for Tasks 1 and 2.

AR orders 6 and 1 had important contributions for the FI score in the range of 0.15 to
0.2. Considering the high accuracy (97-98%) achieved in these two tasks, we concluded
that all AR orders contained essential information sensitive to damage detection, especially
the highest AR order, e.g., 7, in our case. Thus, using all AR coefficients as features is
recommended based on this study, instead of only using low-order coefficients, i.e., AR
orders 1, 2, and 3 as suggested in [2,3].
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Figure 14. F] score of features extracted by the ARI(7,1) model.

In Task 3, compared with Tasks 1 and 2, the classification problem was expanded from
binary to three-class (Figure 14b,c). We observed that high order contributions still existed,
and the bar plot presents a similar trend to that of Tasks 1 and 2. However, the FI score
of the AR 7 decreased from 0.38 to 0.29, and the FI score of the lower orders increased by
0.02~0.03, especially for AR 2. This observation further supports the need to engage all
extracted features, i.e., all AR coefficients.

8. Conclusions and Extensions

In this study, to overcome the constraints of stationary conditions in TS modeling
and promote the automatic ML technology in SHM applications, we proposed a two-
stage framework, namely ARIMA-ML. In stage 1, through the pre-processing module,
the raw non-stationary TS data was processed to be stationary to satisfy the assumptions
of the ARMA modeling. Through the model parameter determination module, multiple
candidate models were selected to increase the robustness of the framework.

In stage 2, the segmented data were processed by the selected candidate model to
obtain feature—label pairs in the feature extraction module. Subsequently, an ensemble
classifier EVC engaged with multiple single classifiers was trained and tested in the clas-
sification module. This was followed by repeating stage 2 for all candidate models, such
that the best model, from a performance accuracy point of view, was finally determined for
use with future predictions.

The effectiveness of the ARIMA-ML framework on the damage recognition of building
structures was validated using TS data (mostly non-stationary) from shaking table tests
for a steel structure subjected to different earthquake hazard levels producing several
scenarios of damage detection tasks. Three classification experiments were designed:
(1) global damage detection, (2) local damage detection, and (3) local damage pattern
recognition. The validation experimental results demonstrated the robustness and accurate
performance of the ARIMA-ML in all tasks, where nearly 97%, 98%, and 80% average
segment accuracy were obtained for these three tasks, respectively.

For the simpler binary Tasks 1 and 2, the confusion matrix analysis results further
indicated the unbiased model performance even under an imbalanced-class distribution.
Along with different experiments, discussions were made to explore the influence of over-
lapping pattern for data augmentation in the SSND procedure and the effect of higher order
terms of the extracted features based on the FI scores to assess the feature performance.
Our specific conclusions are listed as follows:

1.  The ARIMA coefficients were sensitive to the changes in stiffness both globally and
locally. Using these coefficients as features, the developed framework accurately
distinguished between the undamaged and damaged states with accurate perfor-
mance in the more fine-grained damage categories, i.e., multiple damage patterns
representing different damage levels.

2. The overlapping pattern (OL) used in the sliding window did not significantly af-
fect the results, which we attributed to the size of the dataset (over 7000 segments)
generated by Non-OL. This dataset contained sufficient information to accurately
train a classifier for global damage detection, and applying OL slightly improved the
classification accuracy (0.1%~0.3%). However, the OL increased the computational
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cost, and a trade-off between efficiency and accuracy should be considered in different
practical applications involving real-time SHM field implementations.

3. Compared to previous studies, the candidate model mechanism made the framework
more robust. In our case, the simpler TS model, ARI(p, I), achieved better classification
performance compared with the other complex ones, ARIMA(p, I, q), where p = 6 or
7,1 =1, and q = 6. This was mainly due to some overfitting in these more complex
models, which degraded the classification performance. However, the complex
models were shown to have better fitting results through the AIC value evaluation
and residual diagnosis. Thus, considering several candidate models instead of using
one best fitted model can reduce the risk of overfitting.

4. Due to the good performance of RF, its important characteristic of feature importance
(FI) score was evaluated to understand how each feature was weighted using this
ML classifier for making the final decision. The FI scores indicated the influence of
the higher order AR coefficients, e.g., AR 7 and 6, and some lower order coefficients,
e.g., AR 1 and 2. Therefore, it is important to engage all ARIMA coefficients as dam-
age features for the accurate and stable performance of the proposed ARIMA-ML
framework.

Even though the proposed ARIMA-ML framework achieved promising results in the
studied experiments, there still exist certain drawbacks that require future study. These
drawbacks and the corresponding future suggestions are summarized as follows:

1.  The presented framework was validated using limited shaking table tests of a TCBBEF,
where the structural type and damage scenarios were not sufficient due to the high
expense in conducting other full-scale experiments. More validations using physical
tests or detailed finite element analyses are needed in the future. Moreover, using
transfer learning techniques [40] to only train on simulated data but with fine-tuning
and tests from real experimental data has high potential for more efficient and practical
research directions related to ML adoption in SHM.

2. The TS models and ML classifiers need to fit the available data with the possible risk
of underfitting or overfitting, e.g., when using inappropriate orders of the ARIMA
model or poorly tuned parameters in the ML classifiers. Even though selecting several
candidate models instead of using one single "best” model provides robustness
of the framework, this is a subjective and costly approach, which requires further
investigation.

3. Substructure idealization is suggested for the improvement in damage localization
tasks of framed structures, where more advanced structural idealization techniques
beyond SDOF and MDOF approaches, Figure 7, can be explored.
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