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Abstract: A single Radio-Frequency Interference (RFI) is a disturbance source of modern wireless
systems depending on Global Navigation Satellite Systems (GNSS) and Satellite Communication
(SatCom). In particular, significant applications such as aeronautics and satellite communication
can be severely affected by intentional and unintentional interference, which are unmitigated. The
matter requires finding a radical and effective solution to overcome this problem. The methods
used for overcoming the RFI include interference detection, interference classification, interference
geolocation, tracking and interference mitigation. RFI source geolocation and tracking methodol-
ogy gained universal attention from numerous researchers, specialists, and scientists. In the last
decade, various conventional techniques and algorithms have been adopted in geolocation and
target tracking in civil and military operations. Previous conventional techniques did not address the
challenges and demand for novel algorithms. Hence there is a necessity for focussing on the issues
associated with this. This survey introduces a review of various conventional geolocation techniques,
current orientations, and state-of-the-art techniques and highlights some approaches and algorithms
employed in wireless and satellite systems for geolocation and target tracking that may be extremely
beneficial. In addition, a comparison between different conventional geolocation techniques has
been revealed, and the comparisons between various approaches and algorithms of geolocation and
target tracking have been addressed, including H∞ and Kalman Filtering versions that have been
implemented and investigated by authors.

Keywords: Radio-Frequency Interference; localization; geolocation; TDOA; FDOA; target tracking;
optimization approaches; uncertainty; H∞ and Kalman filtering

1. Introduction

The satellite systems act as relay stations and make up a critical part of the common
wireless communications substructure. These systems are employed in most civilian and
military implementations, such as the global positioning system (GPS), remote sensing,
digital video broadcasting (DVB), high definition video, amateurish radio communications,
broadband Internet, weather forecasting, environment surveillance, Global Navigation
Systems (GNS), and in several other applications [1–4]. Consequently, the number of Global
Navigation Satellite Systems (GNSS) receivers installed on the Unmanned Aerial Vehicles
(UAVs) board has increased recently. In general, the aeronautical field is categorized as
Manned Aircraft Vehicles (MAVs) and Unmanned Aircraft Vehicles (UAVs). The MAV
category requires the presence of a human pilot on the aircraft board, while the UAV
category does not require the presence of a human pilot on the aircraft board, and it is
controlled remotely over a control room. The number of UAVs, commonly known as
drones, has been rapidly increasing in the last decade, and there is an industry analysis that
the drone market worldwide will increase by more than 50 billion dollars in 2025 [5]. Based
on the market report referred by the GNSS Supervisory Authority (GSA), the number of
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drones equipped with GNSS receivers is estimated to be almost 70 million and for other
applications, more than twice the number of GNSS receivers required [5,6].

Overcrowding in wireless communication systems may affect these applications and
produce Radio Frequency Interference (RFI). The RFI can be classified into two types:
unintentional interference, of which over 95% of the satellite communications are suffering,
and intentional interference, less than 5% of satellite communication systems are suffering
from this kind of interference [7]. RFI may influence these systems, where the source of
that interference is required. The RFI sources could be fixed or movable stations on the
ground or in the air, such as drones, which are used in military or civilian systems. Figure 1
illustrates the most common interference that may occur in SatCom and GNSS systems.

(a) Example of interference that may occur in the SatCom system.

(b) Example of interference that may occur in GNSS.

Figure 1. Examples of RFI scenarios that may occur in satellite applications.

To secure and protect all wireless and satellite systems from interference or jamming,
it is necessary to establish organization for monitoring the wanted signals. The main
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two required approaches in this organization are geolocation and emitter tracking. These
approaches are required in military and civilian applications, including aerial maneuvers,
airspace monitoring, autonomous vehicles, and robots. In addition, these approaches
are mainly related to inferring the navigation of an RF emitter, which is assumed to be a
random variable, by observing it.

Numerous studies and researches have focused on navigation and positioning issues.
Therefore, many useful algorithms have been proposed in the literature [8–11].

The geolocation technique is a measurement making it possible to know if the position
of an emitter source is from a fixed station or the initial position of the emitter is dynamic.
Various techniques of geolocation measurements can be implemented. For example: Angle
of Arrival (AOA), Time of Arrival (TOA), Time Difference of Arrival (TDOA), Received Sig-
nal Strength (RSS), Power Difference of Arrival (PDOA), Frequency Difference of Arrival
(FDOA), and Differential Doppler Rate (DDR) are the most popular types of measure-
ments. In addition, the accuracy of the emitter geolocation measurement can be improved
by combining two or more techniques in one approach, such as hybrid TDOA/FDOA,
TDOA/AOA, TDOA/PDOA, and TDOA/FDOA/DDR. Various geolocation measurement
techniques and methods have been exhibited in [12,13].

In general, the RF emitter geolocation is not concluded geometrically, but it is esti-
mated by a set of non-linear equations created by the conventional geolocation measure-
ments with the knowledge of the geometry parameters of the sensors used. The opti-
mization approaches for geolocation and target tracking is: (i) A Least Square (LS) and
Non-linear Least Square (NLS), (ii) Maximum Likelihood (ML), (iii) Genetic Algorithm
(GA) approach, and (v) Constrained Weighted Least Square (CWLS) and Weighted Least
Square (WLS) methods [13,14]. Mostly, there are two approaches for solving the non-linear
equations: (a) The NLS, which is a direct approach for solving non-linear least squares,
or CWLS, which is a constrained framework [15]. (b) An iterative scheme so-called the
Taylor series estimation, otherwise known as Gauss–Newton interpolation. This utilizes
the solution of a simultaneous set of non-linear algebraic geolocation equations, begin-
ning with an initial guess and updating the guess at each step by finding the local linear
least-sum-squared-error correction [16]. Various studies have focused on the ambiguity
problem of geolocation methods. For example, the authors of [17] solved the problem of
ambiguity for some neighbouring nodes and derived Tangent Linear Approximation (TLA)
for the non-linear localization approach, which contributed to incorporating the effect of
the neighbours’ position ambiguity into Belief Propagation (BP) localization.

Moreover, Kalman Filtering (KF) based on geolocation measurements can be employed
to estimate emitter tracking. It is a useful tool for solving navigation and tracking problems.
In order to estimate the emitter position, we first must have a reliable estimate of the
emitter’s present position. Kalman filtering provides a tool to obtain that reliable estimate.
It is an algorithm, which uses a form of feedback control. The filter estimates the emitter
location. At the same time, it obtains measurement feedback. The KF algorithm operates
in two steps. The first step is a prediction: in this step, the filter produces estimates of
the current state variables within their uncertainties. The second step is a correction: in
this step, the filter will update the measurement using a weighted average, while giving
more weight to estimates in higher certainty [18]. Since 1960, several versions of the KF are
developed. This filter was improved to be compatible with non-linear systems rather than
linear systems, such as the Extended Kalman Filter (EKF), Adaptive Extended Kalman
Filter (AEKF), Unscented Kalman Filter (UKF), Cubature Kalman Filter (CKF), and Particle
Filter (PF) [19,20].

From the methods and approaches mentioned, it is observed that the current interest
in using geolocation and target tracking approaches for RF emitters is increased rapidly.
In response to requests imposed by advanced applications that need to geolocate and
track the RF emitter at high speeds of movement and rotation, Quadrature Information
Kalman Filters (QIKFs) and Gauss–Hermite Quadrature Filter (GHQF), as well as H∞, have
been developed to solve the non-linearity and uncertainty problem [21–24]. To process
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such complex algorithms, we have started by introducing a summary of the most popular
methods for geolocation and target tracking [12,13,25]. In addition, we have conducted
a focused exploration of optimizing-geolocation-measurements approaches, as well as
optimal-state-estimation-utilizing-filtering approaches [14–20]. In contrast to the previous
studies and surveys, the literature review of this survey focused on the state-of-the-art
research articles for geolocation and target tracking approaches for wireless and satellite
systems. Table 1 presents recent surveys tackling similar topics for our survey [5,7,26–29].
Based on what was introduced, the main contribution of this survey is presenting the
state-of the-art of conventional methods and techniques, compared with more advanced
and modern approaches in geolocation and tracking that were developed under uncer-
tainty, biases and coloured noises [21,22,30]. In the end, the original application related to
LEO signals of opportunity was also addressed and discussed by providing the readers
with several ways to improve the existing methods and solve new problems in theory
and practice.

The rest of the paper is organized as follows. Section 2 exhibits the geolocation and
target tracking system. Various conventional geolocation techniques have been exhibited
in Section 3. In Sections 4 and 5, respectively, past and current approaches of optimizing
geolocation measurements and methods of optimal state estimation utilizing filtering have
been reviewed. Finally, the conclusions and future works are addressed in Sections 6 and 7.

Table 1. Recent surveys tackling similar topics to our survey.

Survey Ref. Survey Date Survey Contribution

[28] 2008 Study various techniques for wireless position estimation.
[7] 2016 Study positioning systems for wireless systems deploying dynamic sensors.

[27] 2017 Study solutions of the accuracy and reliability navigation for the 5G positioning system.
[29] 2017 Study indoor positioning and navigation systems and technologies.
[5] 2019 Study interference types in GNSS systems, and management solutions of the interference.

[26] 2019 Study solutions of network design for accurate vehicle localization that have considered the
5G position system.

2. Geolocation and Target Tracking System

The geolocation and target tracking system can be described within five main compo-
nents as:

i. The front end equipment for RF signal sensing.
ii. The geolocation equipment that allows the measurement and determination of the

relative position of the RF emitter.
iii. The optimization approaches that allow optimization of geolocation and target track-

ing algorithms, as well as organizing the non-linear equations within a set of linear
equations.

iv. The optimal state estimation tools, which allow the data smoothing filtering using
Kalman filtering.

v. The display system that allows a display of the position estimation and trajectory of
the stationary or mobile RF emitter.

Moreover, consideration must be given to whether the system runs in urban (crowded)
areas or rural (open) areas. More details of these components will be exhibited in this
survey. Figure 2 illustrates the flow chart of geolocation and target tracking systems.
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Figure 2. Flow of geolocation and target tracking system.

Urban Environment Characteristics

In the urban area, the sensors (receivers) may be affected by receiving multi-signals at
the same time. This type is called the Non-line of Sight (NLOS) signal. NLOS phenomenon
occurs due to the reflection of the original signal when it collides with buildings, towers,
and trees [31–33]. Figure 3 presents an NLOS that occurs in the urban environment.
During calculation of the geolocation and emitter tracking in the urban area, an NLOS
signal should be taken into consideration. For example, if we determine the emitter
location as NLOS by TDOA or FDOA measurements, it will be directed to highly bias
filtering [34–36].

Figure 3. NLOS signal reflected from high buildings, towers, or trees.

Geolocation and target tracking algorithms may be affected by NLOS error, which
may produce very high errors in geolocation and target estimation. In addition, it may
decrease the dependence of the geolocation and target tracking system. To increase the
reliability of the geolocation and target tracking system, it should take account of these
types of errors [37].
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3. Conventional Geolocation Techniques

In geolocation techniques, several types of measurements can be employed so that
the location can be estimated. In the specified techniques below, we consider the emitter
source at a location pe = [x, y]T , and there, L sensors receive the interference signal from
the emitter source, where the location of the sensor is si = [xi, yi]

T .

3.1. Angle of Arrival (AOA)

AOA is the angle of the arriving signal at a sensor that was emitted by the target. This
angle is utilized to determine the location of the emitter [38].

Based on the direct measurement accuracy (±θs), the location of the emitter will be
determined about the Line of Bearing (LOB) path by 2θ angular spread. A simple triangu-
lation in the AOA technique is used to determine the location of the emitter, as illustrated
in Figure 4a. Mathematically, the angle between the emitter and sensor (i) is

θi = tan−1

[
(y− yi)

(x− xi)

]
(1)

The authors of [39] have proposed a closed-form solution for geolocation, employ-
ing an AOA technique in the presence of sensor position errors; the performance of the
algorithm proposed was verified by CRLB and MSE; Figure 4b shows the asymptotic of
the proposed algorithm performance to CRLB. The geolocation system can be regarded as
that which employs a UAV applying on-board AOA in Line of Sight (LOS) conditions [40].
Employing more than two sensors will produce an increase in geolocation accuracy. When
the primary scatter off the radio systems is positioned away from the sensors and located
around the emitter, the AOA technique can present a reasonable location accuracy [41].
Yang et al. proposed a weighted AoA-based localization approach; they computed the rela-
tionship between the Cumulative Distribution Functions (CDFs) and the localization errors
of the three proposed methods with approximate factors, and they have presented a com-
parison of emitter localization performance based on AOA measurements implemented
by two localization scenarios. The first scenario used two-antenna of sensors (L = 2) and
the second used three-antenna of sensors (L = 3). From the results achieved, it is feasible
that the Least Square Methods (LSM) with a relative factor can minimize the average error
by approximately 20% compared to the basic LSM [41]. The AOA technique has some
drawbacks, such as complex hardware; in addition, the accuracy and precision decrease
when there are signal reflections from adjacent walls or something similar (multi-path),
which produces an NLOS error. Therefore, the AOA technique is not suitable as in indoor
or urban field geolocation systems [37].

(a) AOA geolocation technique with stationary sensors.

Figure 4. Cont.
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(b) Performance verification of the AOA technique.

Figure 4. The geometry and Performance validation of the AOA technique. In the simulation scenario,
100 sensor network geometries were considered to achieve the average MSE. The sensors have been
divided into 10 groups distributed randomly and centred at [0, 0, 0]T . In addition, the emitter
position of each sensor was placed randomly in a larger cube centred at [0, 0, 0]T with a distance
of 500. In addition, the azimuth angle error, elevation angle error and sensor position error were
independent [39].

3.2. Time of Arrival (TOA)

TOA is the one-way emitting time of the signal propagating between an emitter and
a sensor. It means the emitter and all sensors are required to be accurately synchronized
to obtain the TOA information. However, such synchronization is not necessary if the
two-way of TOA is measured. Each TOA measurement corresponds to a circle centred at a
sensor on which the emitter must lie in the 2D space [12,42]. Geometrically, three or more
circles were obtained without TOAs noise in a unique intersection, which is the emitter
location, indicating that at least three sensors are needed for 2D geolocation, as illustrated
in Figure 5.

Figure 5. Time of arrival geolocation technique.

With the knowledge of three or more sensors, the optimization technique is used to
convert the error TOAs measurement into a set of circular equations so that the emitter
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location can be determined. Mathematically, the distances between the emitter and sensor
(i) at a time (t) are calculated as in [43].

di = pe − si (2)

where pe is the emitter position, si is the sensors position and i = 1, 2, ..L
From that, TOAs (τi) can be calculated by

τi =
di
c

(3)

where di is the distance between the emitter and ith sensors, c is the speed of light at
≈2.998×108 m/s.

3.3. Time Difference of Arrival (TDOA)

TDOA involves two separate stages of the hyperbolic position estimation. In the first
stage, TOA estimation is measured for a signal transmitted between the emitter and sensor
(i). In the second stage time difference of signal arrive (TDOA) between sensors will be
calculated. In this study we considered sensor #1 as a reference. An algorithm is used to
estimate the emitter location in the second stage by applying the non-linear hyperbolic
equations resulting from the first stage, as illustrated in Figure 6a.
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(a) The TDOA geolocation technique.

(b) Performance verification of the TDOA technique.

Figure 6. The geometry of the TDOA measurement and the performance of the proposed algorithm
verified by CRLB and MSE. From (b), it can be noted that the performance of the proposed algorithm
is very asymptotical to CRLB [44].

Mathematically, the TDOA measurement model is formulated as a summation of τi1,
where

τi1 =
(di − d1)

c
, i = 2, 3, .., L (4)

An important benefit of TDOA is that the processing gain of correlation leads to
the enhanced geolocation of signals with suppressed noise even under the receiver noise.
In addition, some drawbacks occur in the TDOA method. Firstly, it is hard to achieve syn-
chronization accuracy between all emitters and sensors, in addition to the synchronization
error, which can easily translate into 300 meters of range error [36,45].

In [44], six (06) stationary sensors were considered to geolocate a far-field stationary
source based on the TDOA technique in the presence of sensor position errors. From the
simulation studied, the performance of the proposed algorithm was perfect. In [46],
Geometric Dilution of Precision (GDOP) was studied for a multi-station using the TDOA
passive localization technique; in this study, precision GDOP with three (03) stationary
sensors in a “Y” formation was considered. Various emitter localization scenarios were
implemented based on choosing the best sensor distribution. This study concluded that
the “Y” formation was the best one for ensuring localization accuracy.
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3.4. Received Signal Strength (RSS)

RSS is analogous to the TOA technique in which the emitter transmitter must lie in
the covering region, the measured distance will determine a circle centred at the receiver.
If the power transmitted by the emitter is known, then the distance between the transmitter
and the receiver will be calculated to determine the path loss of radio signals through
popular mathematical modelling with distances by measuring RSS. Mathematically, the RSS
measurement model is the average received power formulated as:

pr,i = Ki ptd−α
i (5)

where pt is the emitter transmitted power in the absence of noise, di the distances between
the emitter and sensor ith, α is the path loss constant, and Ki is other factors that affect the
received power. Based on the propagation environment, α is a shift from three to five. Three
RSS measurements can calculate the coordinates of the emitter. However, RSS methods
also result in significant range estimation errors due to shadow fading effects. Utilizing the
pre-measured received signal strength contour centred at the receiver, the accuracy of the
RSS methods can be improved by the received signal phase technique [47,48]. Widespread
RSS measurements were employed in Wireless Sensor Networks (WSN) based on detection
and localization techniques [49,50].

3.5. Power Difference of Arrival (PDOA)

The PDOA technique involves the measurement of the RSS of the received signal.
It depends on the difference in received signal strength instead of the difference in time
of arrival [51–53]. Mathematically, the PDOA measurement model is the received power
difference between two sensors formulated as

pr,i1 = pr,i − pr,1 = 10 αlog10

(
di
d1

)
(6)

3.6. Frequency Difference of Arrival (FDOA)

FDOA, sometimes called differential Doppler (DD), is a technique similar to the time
difference of arrival (TDOA) method. The FDOA is the difference between two Doppler
shifts of arrival signals [54–56]. Mathematically, the Doppler shift between the emitter and
one of the sensors is defined as

∂ f = v
(

f0

c

)
(7)

where v is the velocity (scalar) of closure between the emitter and sensor, f0 is the signal of
the carrier frequency, and c is the light speed. FDOA can be expressed as

FDOA = fi1 = ∂ fi − ∂ f1 (8)

From Figure 7, one can observe how the Doppler shift or FDOA could be extracted
from LEO satellite signals of opportunity. In addition, the Doppler rate and Differential
Doppler rate can also be extracted or estimated from the carrier phase of the received
signal [57].
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(a) Doppler shift estimation

(b) Doppler rate estimation

Figure 7. FDOA and DDREquivalent Doppler shift and Doppler rate estimation from real LEO
satellites downlink signals: Iridium NEXT Simplex signals of opportunity [57].

A critical drawback of FDOA is that significant amounts of data must be moved
between observation points to do the cross-correlation processing, which is used to estimate
the location of the RFI. In addition, it is very expensive, and it is influenced by the NLOS
error [58].

3.7. Hybrid Technique of Geolocation Measurements

The hybrid geolocation technique is designed to obtain a more precise estimation of
the target’s location and reduce the number of sensors needed compared to a particular
technique. In the state-of-the-art, various hybrid techniques have been used in geolocation
applications, for example, (TDOA/AOA), (TDOA/FDOA), and (TDOA/PDOA) [59–63].

3.7.1. TDOA/AOA

The hybrid TDOA/AOA measurement model combines the TDOA measurement
with the AOA measurement between sensors, as illustrated in Figure 8a.
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(a) Geometry of the hybrid TDOA/AOA technique.

(b) MSE comparison between TDOA, AOA, and the hybrid
(TDOA/AOA) technique.

Figure 8. The geometry and performance verification of the hybrid TDOA/AOA technique. Individ-
ual comparisons of the performance scenario of the hybrid TDOA/AOA technique with TDOA and
AOA techniques was the main object in this scenario. Authors’ own elaboration.

Mathematically, the hybrid TDOA/AOA measurement model is formulated as:

TDOA/AOA = [τT , θT ]T (9)

where τ = [τ21, τ31, · · · τL1]
T and θ = [θ1, θ2, · · · θL]

Twere derived in [64], where E-Systems
have utilized hybrid TDOA/AOA measurements for the Cellular Applied to IVHS Tracking
and Location (CAPITAL) Beltway Project [65,66]. The capital system can geolocate the
target mobile by monitoring the reverse link voice channel transmitted by the mobile user
at the base station. Multiple base stations receive the signal, and the target position is
determined by combining AOA estimates from each base station and TDOA estimates
between multiple base stations [67,68]. The arrival time of a signal is measured at each
base station that is time-stamped with a GPS reference time to estimate the time reference
of arrival estimates. The spatial filtering offered by the highly directional antennas is used
for minimizing the impact of the multi-path [69].

Mohammad et al. proved that hybrid TDOA/AOA is a more accurate and has the
best performance compared to TDOA and AOA individually. In this study, a two-step LS
algorithm based on TDOA, AOA and a hybrid TDOA/AOA were applied to optimize
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geolocation measurements for mobile emitter using multi-sensors. Root-Mean Square Error
(RMSE) against Signal to the Noise ratio (SNR) was computed in this simulation [68].

3.7.2. TDOA/FDOA

This technique is a combination of FDOA and TDOA measurements. Employing
this measurement can increase the accuracy of geolocation and reduce the number of
sensors needed. The Newton–Raphson method is the most common method used as the
geolocation engine to solve this over-constrained problem [70,71].

Abulasad et al. demonstrated that the hybrid TDOA/FDOA measurement is more
precise and better-performing compared to TDOA and FDOA measurements individually,
which utilize three sensors. Figure 9a shows the geometry of the geolocation technique
based on the TDOA and FDOA measurements. Figure 9b shows the CRLB comparison
between TDOA, FDOA, and the hybrid (TDOA/FDOA) measurements [21].

(a) Geometry of the hybrid TDOA/TDOA.

(b) CRLB comparison between TDOA, FDOA, and the
hybrid (TDOA/FDOA)

Figure 9. The geometry and Performance verification of hybrid TDOA/FDOA measurements
compared to TDOA and FDOA individually [21].

The cross ambiguity function (CAF) is used to determine the time of the emitted signal
of TDOA and FDOA using at least two sensors. The CAF measurement is applied, and the
surface is formed based upon functional offsets. From the CAF function, the dominant
peak value formed on the surface determines the real computed values of TDOA/FDOA
integrated into signals (signal1, signal2) and maps these values with the CAF magnitude
by means of sensor and emitter geometries [72].
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Figure 10a shows the geometry of the TDOA/FDOA geolocation measurement in
terms of CAF. Mathematically, CAF can be formulated as

CAF(τ, f ) =
n−1

∑
N=1

sig1[n]sig∗2 [n + τ]e
−j2π f n

Fs (10)

where τ and f are time and frequency of arrival, sig1[n] and sig2[n] are analytic signals
received at sensor #1 and sensor #2, the (∗) denotes a complex conjugate, Fs is the sampling
frequency of the collected signals [72,73].

(a) Geometry of the TDOA/FDOA measurements based
on the CAF technique.

(b) CAF peak for estimating the emitter geolocation.

Figure 10. Pair of moving sensors were considered to geolocate a static RFI emitter using the
CAF method. The simulation result achieved the peak of CAF that denotes an estimated RFI
emitter position. Authors’ own elaboration.

3.8. Tri-Combination Technique of Geolocation Measurements

More than two conventional positioning measurements can be combined to achieve a
more precise estimate of the target’s location. There are various applications; each one uses
a selected scheme, which depends on the geolocation environment and type of application
needed. Demonstrations of a tri-combination of geolocation measurement can be found
in several applications, such as TDOA/FDOA/DFS [74], TDOA, FDOA, and differential
Doppler rate [75], and TDOA, FDOA and Doppler Rate [76].
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The improvement in the emitter geolocation method using the Tri-combination of ge-
olocation measurements was the authors’ own elaboration, and they compare it to a hybrid
measurement, which was achieved in [21]. Figure 11 illustrates the CRLB verification for
combining TDOA/FDOA/DDR and comparing it with the hybrid TDOA/FDOA as well
as TDOA and FDOA individually.

Figure 11. CRLB comparison between TDOA, FDOA, hybrid (TDOA/FDOA), and Tri-combination of
(TDOA/FDOA/DDR). In this figure, the same scenario and input parameter has been implemented
in Figure 9b. Additionally, TDOA/FDOA/DDR was computed and its performance compared.
Authors’ own elaboration.

Table 2 shows the review of a comparison between different types of measurements
used for conventional geolocation.
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Table 2. Comparison between numerous conventional geolocation techniques.

Technique Signal Measurement Advantages Drawbacks

AOA Direction angle
No need to time-synchronize,
and two sensors minimum are

required [77,78].

Need a complicated and
expensive antenna; the

accuracy of geolocation is
decreasing at far-field [66,79].

TOA Time delay Accurate [77,80].

Need synchronization
between all sensors, affected
by NLOS errors, and more

than two sensors are needed,
it is complex hardware [80].

TDOA Time difference

No need for synchronization
between all sensors,

the accuracy approximately
the same in the near field and

far-field [78,79].

More than two sensors are
needed and affected by NLOS

errors [80].

RSS Power signal
Cheap and simple, and no
need for synchronization
between all sensors [80].

Inaccurate, the reliable
distance estimation is
required to achieve an

accurate propagation model,
more than two sensors are

needed, as well as it is affected
by NLOS error and

shadowing [80].

PDOA Power difference Better than TDOA, splashily
in urban area [51].

Inaccurate in an open area
compared to TDOA [51].

FDOA Frequency difference No need to know the carrier
frequency previously [58].

It is very costly, and it affected
by NLOS error [58].

AOA/ TDOA Angle and Time difference Fewer sensors are needed,
more accurate [78–80].

Complex hardware, LOS
assumed [80].

TDOA/ FDOA Time and Frequency
difference

High accuracy spatially with
moving sensors and

emitter [80].

Difficulty in determining the
accuracy of non-linearity

sensors location and
velocity [81].

TDOA/ FDOA/ D.Rate Time, Frequency, and Doppler
Rate difference

Superior performance
achieved [75]. Complicated method [75].

4. Approaches of Optimizing Geolocation Measurements

In this section, we review previous and state-of-the-art geolocation and target tracking
approaches that deal with wireless and satellite applications employing different geoloca-
tion measurements.

4.1. Taylor Series (TS)

The Taylor Series (TS) is an infinite sum of values, which is expressed in the function’s
derivatives at a single point. This function uses the least square method to estimate the
initial coordinates of a target location.

In [82], a Taylor Series algorithm based on the Semi-Definite Programming (SDP)
method was employed. Moreover, the squared distance difference model was imple-
mented to obtain a rough location of the target node. After that, the geolocation of the
target node was formulated as a linear least square problem using the Taylor Series expan-
sion; they applied a localization simulation for emitter and sensors geometry, as illustrated
in Figure 12. Improving the positioning accuracy using the Taylor series algorithm based
on the TDOA measurement was proposed in this study. In the simulation scenario, eight
anchor nodes and one target node with coordinates were considered to localize the tar-
get node. The performance of the proposed algorithm was compared with semi-definite
programming (SDP) and CRLB, and the Taylor Series algorithm for localization was exam-
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ined and compared with the semi-definite programming method for emitter coordinates
{35, 35}m.

Figure 12. Distribution of sensors and emitter scenario [82].

The Taylor Series expansion based on a new localization algorithm was proposed by
the author of [83] for the NLOS environment. The algorithms such as Radial-Basis-Function
(RBF) and Taylor (Least Square) LS-Taylor have achieved better performance as compared
to other algorithms in the NLOS environment.

4.2. Maximum Likelihood Estimator (MLE)

Maximum Likelihood Estimator (MLE) is an approach for estimating the probability
distribution parameters by maximizing a likelihood function. The maximum point of the
parameter space is called the maximum likelihood estimate [84].

In [85], the problem of multi-static sonar with a transmitter has been addressed. Two
solutions based on TOA and AOA measurements to estimate the object were proposed in
that study. In addition, the localization parameters were updated by MLE, and an approach,
as well as precise propagation speed, can be obtained from MLE proposed. Figure 13 il-
lustrates the geometry of sonars, the transmitter, and the object. The simulation results
exhibited that the proposed algorithm can produce the optimal solution to the MLE prob-
lem. Furthermore, an accurate localization solution and propagation speed update was
achieved using RMSE and CRLB.

Figure 13. Scenario of multi-static sonar, a transmitter, and the object [85].
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4.3. Least Square (LS)

The Least-Squares (LS) approach is a standard method that may be used to optimize
emitter localization measurements. The method depends on minimizing the amount of
the squares of the residuals obtained in the results of all individual equations [86]. In [87],
the geolocation scenario and performance of the proposed algorithm was validated using
Linear Least Squares (LLS). In this scenario, four static sensors were considered to geolocate
a moving target using the LLS method based on the TOA/RSS measurement, as shown
in Figure 14. The mean square position error (MSPE) against the Signal to the Noise ratio
(SNR) was computed in this scenario to present the performance of the proposed algorithm.

Figure 14. Distribution of the sensors and emitter for the proposed scenario [87].

A Non-Linear Least Squares (NLLS) estimator can be utilized to solve non-linear
functions that cannot be solved analytically. Consequently, numerical search algorithms
such as the Newton and the Gauss–Raphson algorithms are utilized to approximate the
NLS estimate. Moreover, the LLS algorithms can be employed in the non-linear expressions
to obtain a closed-form solution and avoid the explicit minimization problems [77,88].

4.4. Weighted Least Square (WLS)

The weighted least squares (WLS) is defined as an ordinary least squares and linear
slope in that the error covariance matrix is allowed to be different from a status matrix.
This approach has been commonly used in numerous geolocations and target tracking
scenarios recently. For example, in [89], the WLS algorithm was proposed for estimating
the position target employing the hybrid RSS/AOA measurements of the signals received
at several sensors. In an explicit manner, in the proposed algorithms, the source location
coordinates with known relation between the intermediate variable and the source location
coordinates are an advantage. By using 2nd order Taylor approximation assuming perfect
knowledge of the actual target location, the author derived an approximate error covariance
matrix under Gaussian measurement noise. The least-squares solution is considered for
computing the relative error of the covariance matrix without knowledge of the target
location under measurement noise over the sensor nodes instead of the true target position.
The superiority of the proposed algorithm when compared to the LS algorithm confirms
the minimum estimation bias and Root Mean Square Error (RMSE) for estimating the
position of the emitter source. Figure 15 illustrates the geometry of the proposed scenario.
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Figure 15. Geometry of the sensor and target location in 3D [89].

Wang et al. proposed a practical iterative constrained weighted least squares (ICWLS)
algorithm to estimate multiple targets by multiple mobile sensors and multiple calibrations,
as shown in Figure 16, which used TDOA/FDOA localization measurements. The proposed
method consisted of two stages. In the first stage, the location of the sensors is enhanced
based on the calibration measurements as well as the previous knowledge of the sensors
position. In the second stage, the estimate of the multiple target geolocation is obtained
by joining the measurements of emitted signals and the estimated values obtained in the
first stage [90]. The simulation results demonstrated that the proposed algorithm could
produce the optimal solution to the formulated constrained WLS problem. Additionally,
its estimation RMSE can achieve CRLB with calibration emitters at common noise; from
that, the analytical validation results verified that the proposed algorithm is better than
some existing localization algorithms [90].

Figure 16. Multi-sensors, multi-emitter calibration, and multi-agent geometry [90].

In [91], a simple algorithm is designed for movable target estimation using three or
more stationary sensors. The performance of the proposed algorithm was verified by CRLB
and compared with the LLS, quadratic least squares (QLS) and two-step WLS algorithms.
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In this study, the corresponding mean relative position errors (MRPEs) and the mean
square position errors (MSPEs) versus range error variance, ignoring multi-path and NLOS
errors, were computed and simulated, as shown in Figure 17.

(a) Mean Square Position Error.

(b) Mean Relative Position Errors.

Figure 17. Algorithm performance comparison (MSPE and MRPE for three-BS geometry without
NLOS). From the figures, it can be noticed that the two-step WLS algorithm has the best performance
compared to other methods [91].

In [75], an algebraic method for the estimation of the location and velocity of a
moving source using TDOA, FDOA, and differential Doppler rate measurements of a
signal received at several sensors with sensor location errors were proposed. The method
depends on the two-step weighted least square estimator and the pseudo-linear set of
equations. In the algorithm, the tri-combination of the geolocation measurement was
proposed. The estimated precision of the emitter position and velocity is displayed to
achieve the Cramér–Rao lower bound (CRLB) for Gaussian TDOA, FDOA, and differential
Doppler rate noise at a measured noise level before the thresholding effect occurs.

4.5. Artificial Intelligence (AI)

Artificial intelligence (AI) is a group of many different technologies working together
to achieve the desired goal. It is implemented in control and communication systems,
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as well as employed in geolocation and emitter tracking estimation. For example, the Ge-
netic Algorithm (GA) approach is used to optimize classical geolocation measurements,
and Dempster–Shafer (D-S) theory is used to optimize target tracking estimation [92,93].

It is important to mention that there are open public datasets of RF signals in the
format that contains I and Q at different sampling rates. The best example one can find is
the following datasets and platform: RF datasets for machine learning, see [94]. However,
this dataset is mainly dedicated to signals classification and not geolocation and positioning;
nevertheless, it is still interesting to investigate if one can estimate and extract navigation
data (Doppler shift, Doppler rate) from raw data.

4.5.1. Genetic Algorithm (GA)

In the geolocation field, Genetic Algorithms (GA) have been developed to overcome
the drawbacks of geolocation algorithms in traditional methods. In the early 1970s, John
Holland introduced the concept of GA. There are two requirements to define a typical
genetic: a genetic representation and fitness function; (i) A genetic representation of the
solution domain, and (ii) a fitness function to evaluate the solution domain. GA can
be represented by a sequence of procedural steps for moving from one population of
chromosomes (by artificial intelligence) to a new population. Each chromosome consists of
some genes. Each gene may be represented by binary strings, real numbers, permutations
of an element, or a program element (genetic programming) [92]. In [95], for the first
time, the authors implemented a GA based on TDOA measurements in Taiwan. They
achieved noted improvement in the accuracy of geolocation. This study considered five
monitoring stations distributed in 3D as A = (0 km, 0 km, 0 m), B = (10 km, 10 km, 100 m),
C = (10 km, 10 km, 100 m), D = (0 km, 10 km, 100 m), and E = (10 km, 0 km, 0 m) .
The experiment result showed that the measurement error decreased when the number
of monitoring stations increased. When the NLOS is considered, the results showed
that the geolocation accuracy at a circular error probability of 50% was less than 60 m.
Moreover, the proposed algorithm yielded 17-fold and 19-fold improvement when the
emitter location was favourable and unfavourable compared to the hyperbolic calculations
based on conventional TDOA measurements.

4.5.2. Dempster–Shafer (D-S)

Dempster’s work on the theory of probabilities with upper and lower limits gave rise
to the Dempster–Shafer (D-S) theory of proof. It has since been expanded by a number
of researchers and popularised in the literature on AI and expert systems, but only to a
limited extent, as a technique for modelling reasoning under uncertainty. In this regard, it
has a number of advantages over more traditional statistical and Bayesian decision-making
methods. Hajek remarked that actual, functional applications of D-S methods have been
uncommon, but subsequent to these remarks, there has been a marked increase in the
applications integrating the use of D-S. Although D-S is not widely used, it has been
successfully applied to target identification and target tracking [93].

In [96], the authors have made a comparison between D-S and Bayes theories. They
have derived the KF from the basic Bayesian fusion equation using a new method to
estimate the Chapman–Kolmogorov prediction integral. Eventually, they concluded that
the D-S theory is better than Bayes theory.

A multi LEO satellite was considered to geolocate and track the UAV using D-S
to optimize high non-linear filtering. Various simulation scenarios were implemented
with Continuous-Discrete Gauss Hermite H∞ filtering (C-DGHH∞F) in the presence of
uncertainty, as shown in Figure 18.
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(a) The schema for RFI tracking and geolocation using Dempster–Shafer (D-S) theory.

(b) 02 LEO Iridium Sat tracking UAV jammer, (c) 02 LEO Iridium Sat and 01 Orbcomm Sat tracking
UAV jammer.

Figure 18. Various scenarios of RFI UAV tracking based on TDOA/FDOA/DDR using Iridium and Orbcomm Sat. in VHF-L
band. Authors’ own elaboration.

4.5.3. Machine Learning (ML) and Deep Learning (DL) Approaches

Machine Learning (ML) and Deep Learning (DL) methods are based on AI networks
and GA with representation learning. This learning may be under supervision, semi-
supervised or unsupervised [97–99].

The authors of [100] presented a position estimate approach based on deep learning
algorithms that work directly on TDOA-based locating systems’ channel impulse responses.
The authors have described the signal and data prepossessing in-depth and demonstrated
the effectiveness of the method in a variety of real-world scenarios. While their method
matches traditional signal processing methods under line-of-sight conditions, it beats
earlier methods under significant multi-path propagation. The addition of a movement
model to the DL-based solution should help it perform better. They also proposed a
technique for distributing the Convolutional Neural Network (CNN) so that it can be
used in Real-Time Locating System (RTLS) designs. They came to the conclusion that they
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should reconsider how they currently estimate TOAs and that they could be evaluated
using ML or DL methodologies as well. Furthermore, they did not explicitly address the
transmitting orientation, despite the fact that this has an impact on the resulting Channel
Impulse Response (CIR).

Table 3 shows the review of a comparison between several approaches to optimizing
geolocation and target tracking.

Table 3. Comparison between several approaches of optimizing geolocation and target tracking.

Approach Advantages Drawbacks

Taylor Series
Easy to find the spread of the

solution; and easy
detect-converge failure [101,102].

Complex mathematically,
compared to simple plotting of

lines of position (LOP) [101,102].

MLE

Less effect in-sample error and
the maximum likelihood

estimator can develop by a
considerable variety of estimation

situations [77,103].

Complex mathematically,
especially when confidence

intervals for the parameters are
wanted [103].

LS
It may use instead of MLE in
many non-linear statistical
software packages [76,85].

Need synchronization between all
sensors, affected by NLOS errors,

and more than two sensors are
needed [76,85].

WLS Produces less error variance
compared to the LS estimator [87].

Difficult to achieve the exact
weights, only estimated weights

are taken into account and
affected by NLOS errors [87].

GA
It can provide new and

potentially useful solutions for the
decision-making stage [102,104].

Any unsuitable choice will make
it difficult for the genetic

algorithm to converge, or it may
generate meaningless

results [105].

5. Approaches of Optimal State Estimation Utilizing Filtering

In the 1960s, the state estimation was primarily established, and their develop-
ment evolved to considerable applications such as Kalman filtering and robust filter-
ing [18,106]. It applies all practical fields, namely chemical engineering, aerospace engi-
neering, and robotics. At a given moment, the state estimation is known as the complete
reproduction of the internal condition of the system.

5.1. Kalman Filter (KF)

Kalman Filter (KF) is additionally known as linear quadratic estimation (LQE), which
is named after Rudolf E. Kálmán in the first development of state estimation in the
1960s. It is an algorithm that uses a series of measurements that may be observed over
time [30,107,108].

Kalman Filtering Algorithm

The Kalman filter (KF) uses feedback control to estimate the state of a target. It
estimates the process state at a given time and then receives feedback in the form of
measurement noise. As a result, the Kalman filter equations are divided into two categories:
(i) time update equations (Prediction), and (ii) measurement update equations (Correction).

(i) Prediction : The time update equations are in charge of projecting the current state
and error covariance estimates forward at a time in order to obtain a priori estimates
for the next time stage.

(ii) Correction : The feedback—that is, integrating a new measurement into the a priori es-
timate to produce an improved a posteriori estimate—is handled by the measurement
update equations. Time update equations are also known as predictor equations,
while measurement update equations are known as corrector equations. Indeed,
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as shown in Figure 19, the final estimation algorithm resembles a predictor-corrector
algorithm for solving numerical problems [107].

Figure 19. Kalman Filter prediction and correction algorithm.

5.2. Extended Kalman Filter (EKF)

Extended Kalman Filter (EKF) is an improvement of a conventional Kalman filter that
has been widely used to solve non-linear estimation system problems. EKF works in higher-
order terms, which include the Taylor expansions. It can approximate high non-linearity
using first-order information. Many proposals have been given to improve the EKF. In ad-
dition, various applications have been used by EKF based on geolocation measurements.
For example, Multilateration (MLAT) was used to overcome the problems caused by the
drawbacks of Automatic Dependent Surveillance-Broadcast (ADS-B), which is consid-
ered one of the most important technologies in maneuvering and air traffic control [35].
The authors studied the problem of position precision and enhancing the robustness of the
monitoring systems. Therefore, they proposed EKF based on hybrid TDOA/AOA mea-
surements for the ADS-B/MLAT positioning system. Numerous experiments in various
scenarios, such as TDOA individual or hybrid AOA/TDOA, were implemented. From the
simulation results, one can observe the improvement of the geolocation accuracy and
enhancement of the robustness of the surveillance systems [109].

Figure 20 illustrates the geometry distribution of static sensors and moving targets in
the simulation. In the simulation scenario, four (04) stationary sensors distributed around
a route were considered to receive signals from two spatially separated stations. Using
time-delay and direction of arrival between transmitters (emitters) and receivers (sensors),
three measurements of TDOA were obtained, as well as AOA, which was implemented as
input parameters into EKF [109].
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Figure 20. Geometry distribution of static sensors and moving targets in the simulation [109].

5.3. Adaptive Extended Kalman Filter (AEKF)

The adaptive extended Kalman filter is a viable technique for dealing with cases
where there is little previous statistical information or where the estimation environment is
evolving. Adaptive technology is used in a variety of areas, including adaptive control,
in addition to filtering. Deep space probes can boost their navigation efficiency using
two separate methods. The first is to create better error models that can represent the
navigation system more realistically, and the second is to improve trajectory and sensor
error estimation. Only the latter is taken into account in the current issue. To ensure
effective navigation efficiency, an adaptive filter for measurement noise estimation is
required. In an Inertial Navigation System/GPS (INS/GPS) integrated navigation system,
adaptive Kalman filters are used to deal with the issue of unreliable measurement noise
variance [110,111]. In [112], localization and mobile target tracking using TDOA/FDOA
measurement with AEKF have been proposed. The framework of localization and target
tracking, which have been considered, is exhibited in Figure 21a. In addition, Figure 21b
exhibits the considered Simulink to achieve UAV tracking based on TDOA, FDOA and
AOA proposed by authors.

The AEKF is suggested for updating the noise covariance at each estimation state.
In this study, the simulation results show a trajectory of the mobile target on Earth. In or-
der to demonstrate the tracking performance of the AEKF algorithm, 100 runs of Monte
Carlo simulation results were achieved. The simulation results show considerable opti-
mization for target tracking precision and the algorithm performance comparison with
hybrid TDOA/FDOA and TDOA-only measurements. In addition, RMSE has recorded
the reduction of about 32.53% and 39.09% in position and velocity, respectively, when
employing TDOA/FDOA instead of TDOA individually [112].

From the Figure 22, we can note the performance improvement of target tracking
estimation when we used the AEKM and ACKF compared to other filters.
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(a)

(b)

Figure 21. Structure and Simulink of algorithms for target tracking estimation (modified into Adaptive Extended Kalman
Filter with TDAO/FDOA/AOA measurement). (a,b) show the framework of localization and target tracking using A EKF
based on TDOA/FDOA measurements and Radar tracking using MatLab Function Block respectively. (a) [112], (b) [113].

(a) EKF target tracking, trajectory diverges.

Figure 22. Cont.
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(b) Adaptive EKF target tracking estimation efficiency. Authors’ own elaboration.

Figure 22. Performance comparison of considered filters for UAV tracking. Authors’ own elaboration.

5.4. Cubature Kalman Filter (CKF)

Cubature Kalman Filter (CKF) is a spherical-radial cubature rule that makes it possible
to numerically compute each moment of a new state, which is encountered in the non-linear
Bayesian filter [114].

Arasaratnam et al. have derived an algorithm from a third-degree spherical-radial
cubature rule, which provides a position of cubature points scaling linearly with the
state-vector dimension. Because of that, the authors proposed a CKF that can provide a
systematic solution for high-dimensional non-linear filtering problems. Experimentally,
two non-linear state estimation problems were tested. In the first problem, to calculate the
second-order statistics of a non-linearly transformed Gaussian random variable, the pro-
posed cubature rule was employed. In the second problem, the CKF was utilized to track
aircraft maneuvering. Eventually, they concluded that both experiments prove the en-
hanced performance of the CKF compared to conventional non-linear Kalman filters [115].

In [116], high degree non-linear CKF was considered to estimate the position and
velocity of speedy UAV. From Figure 23, it can be noted that the proposed filter (CKF)
achieved much better performance trajectory tracking compared with other Gaussian filters.

In 2009, Cao et al. considered the localization and target tracking problem using the
Constrained Kalman Filter (CKF) based on measurements of TDOA and DOA. The study
assumed that measurement noises are to be independent and identically distributed (i.i.d.).
Moreover, minimum mean square error (MMSE) has been estimated by utilizing a pseudo
measurement model that imposes a quadratic constraint on the state vector associated
with the Ground Moving Target (GMT) dynamics. A solution to a similar quadratically
constrained MMSE estimation problem was the first derivation by the authors. They rec-
ommended compensating for the hard constraint by its expectation in order to randomize
the state vector for the GMT process. CKF was developed for those problems involving
quadratic constraints and is appropriate for localization and tracking of GMTs and UAVs
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based on TDOA and DOA measurements. In this scenario, two UAVs were considered as
sensors to geolocate and track the Ground Moving Targets (GMT). CKF based on TDOA
and DOA measurements was proposed to achieve high accuracy of target estimation
and compare the performance with conventional KF. The simulation result of the proposed
CKF appears better than the conventional KF [25].

(a) UAV trajectory tracking using CKF and high degree CKF. Authors’
own elaboration.

(b) RMSE performance of UAV estimation (position, velocity, and rota-
tion). Authors’ own elaboration.

Figure 23. Performance comparison of 5th degree CKF non-linear filter with EKF, UKF, and CDKF
for UAV tracking [116].

5.5. Particle Filter (PF)

The particle filter (PF) is a technique for estimating the hidden states of non-linear
and/or non-Gaussian systems and is very accurate. As a result, a particle filter-based
track-before-detect approach is proposed, in which the particle posterior density distribu-
tion is directly estimated using beam-former output energy rather than bearing measure-
ments, avoiding measurement-to-track interaction issues [117]. Regarding the estimation
of movable systems from partial observations of internal states, particulary when ran-
dom disturbances are present in the sensors [118], the gap in the filtering design was
resolved. The discovery of the particle filters in 1996 by Del Moral paved the way for
estimating the posterior distributions of the states of some Markov processes under noisy
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and partial observations [119]. The geolocation measurement is one of the applications of
particle filters.

Jeong et al. proposed a moving target tracking algorithm that used a particle filter
based on TDOA/FDOA measurements by stationary sensors. Four base stations were con-
sidered to work as sensors that receive emitted signals from the dynamic target. From that
signal, the time delay and frequency Doppler were measured, and TDOA/FDOA were cal-
culated, which were used as input parameters to the PF algorithm.The authors established
that PF operates with the non-linear properties of the moving target tracking problem
successfully. In addition, they concluded that the performance of the proposed algorithm
outperforms the one based on the EKF [120].

Figure 24 shows a performance comparison of EKF and PF for accurate target tracking
estimation of the authors’ own elaboration. From the figures, it is noted that the Pf
algorithm is highly accurate for estimating the target compared to EKF.

(a) Time series EKF versus PF with 300 particles. (b) Time series EKF versus PF with 1000 particles.

(c) AHRS-heading angle EKF versus PF with 500 parti-
cles.

(d) AHRS-Pitchangle EKF versus PF with 500 particles.

Figure 24. Performance validation of EKF, interpolation filters based on divided differences called: DDF 1st Order, 2nd
Order and Particle filter PF algorithms applied to AHRS attitude estimation. Heading and pitch angles are estimated in
radians based on an INS/MultiGNSS antenna coupling approach. Authors’ own elaboration.
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5.6. Gaussian Mixture Model (GMM)

The Gaussian Mixture Model (GMM) could be a parametric likelihood probability
density function that is represented as a weighted sum of Gaussian element densities.
It is for the most part utilized as a parametric model of the likelihood distribution of
persistent estimations such as sounding-tract, which related spectral features in a speaker
acknowledgment framework [121].

We have also developed robust non-linear filters for navigation problems which we
could extend easily to geolocation and target tracking problems. From Figure 25, it can be
observed that both the speed and attitude estimation have improved by the derivation of
GMM EKF, GMM-UKF, GMM-CKF and GMM-CDKF with CRLB and approximate CRLB
bound from the authors’ own elaboration.

(a) RMSEs of position estimate under non-Gaussian measurement noises.

(b) RMSEs of velocity under non-Gaussian measurement noises.

Figure 25. Performance comparison of GMM non-linear filters for robust navigation and information
fusion algorithms. Authors’ own elaboration.
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In [122], the comparison of three non-linear filters for estimating the position and
velocity of a moving emitter and their result analysis was carried out collected by two UAVs
flying over the area of monitoring using TDOA measurements. A multiple-model filter
(MMF) with UKF Bank and an MMF with EKF Bank and a Gaussian mixture measurement
integrated track splitting filter (GMM-ITSF) based Gaussian mixture (GM) model-based
posterior PDF is utilized in the three proposed algorithms. The non-linear filters that are
considered in the comparison are a multiple-model filter (MMF) with UKF Bank and an
MMF with EKF Bank and a Gaussian mixture measurement integrated track splitting filter
(GMM-ITSF). The performance of estimation errors was verified and analyzed using the
derived CRLB. The performance analysis clarified that the UKFB had a better performance.
Furthermore, MM-ITSF had a smaller number of diverged tracks.

5.7. Multiple Quadrature Information Filters (MQIFs)

Multiple Quadrature Information Filters (MQIFs) is a developed algorithm package
of a recursion, non-linear Kalman filtering. The means and covariance of all conditional
densities using the Gauss–Hermite quadrature rule in different degrees can be computed
using this package [23,123].

In [124], the authors focused on the algorithm of Quadrature Kalman filter (QKF),
which was recently developed. It is mentioned that with a Gaussian assumption and
based on Gauss–Hermite quadrature rules, the QKF can tackle arbitrary non-linearities.
The complexity reduction technique for the QKF based on the partitioning of the state-
space, referred to as the Multiple QKF, was studied. The dimensionality reduction has been
reduced with the aid of partitioning schemes.

Figures 26 and 27 illustrate the performance validation of the non-linear filter con-
sidered, as well as the scenario and Geometric Dilution of Precision (GDOP) of the LEO
satellite.

(a) The case of the estimated covariance matrix equals
the real covariance matrix

(b) The case of the estimated covariance matrix
equals fifty times the real covariance matrix.

Figure 26. Performance validation of EKF, 2nd Order KF, UKF, CDKF, CKF with GHKFs algorithm. This study focused
on a complexity reduction technique for the Bayesian filtering based on the partitioning of the state-space. It proved that
the partitioning schemes can efficiently be used to overcome the curse of dimensionality in the GHKF. The simulation
result shows that a nearly-optimal performance can be attained using GHKF with non-linear filtering problems. Authors’
own elaboration.



Appl. Sci. 2021, 11, 6079 32 of 50

(a) Geometry of multi-sensors (LEO satellite).

(b) TDOA based GDOP for instantaneous sensors distribution.

Figure 27. The geometry of multi-sensors (LEO satellite) and GDOP of the sensors for achieving
the most precise estimation of a moving target (UAV) proposed in the simulation scenario. Authors’
own elaboration.
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Scenario Simulation of RFI UAV Flying in the North Latitudes

Numerous scenarios of geolocation and target tracking using considered filters based
on TDOA, FDOA, TDOA/FDOA, and PDOA/FDOA measurements have been imple-
mented. Multi LEO satellites were considered for geolocation and UAV tracking in these
scenarios. Figure 28 shows a UAV embedded with RFI sources is flying under LEO
satellite’s visibility and sensitivity, which is subject to a problem statement of UAV target
tracking by multiple satellites. Below, some simulation results are shown using high-degree
non-linear filtering.

In the simulation scenario, three (03) LEO satellites were considered as sensors to
estimate UAV tracking flying above Canada. The initial point was selected from the refer-
ence station on the roof of ETS-Montréal. The simulation results are based on 100 Monte
Carlo runs. The initial estimate x0 values with different uncertainty level values were intro-
duced gradually. They are given as follows: x0 = [0 m, 0 m/s, 0 m, 0, 0deg/s]T and P0 be-
ing the initial covariance: P0 = diag(100 m2, 10 m2/s2, 100 m2, 10 m2/s2, 100 m rad2/s2).
The metrics used to compare the performance of various filters was the average root mean
square error (ARMSE).

From Figures 29–33, it can be observed that the algorithm performance based on hybrid
TDOA/FDOA measurements is the best compared to TDOA, FDOA, and TDOA/PDOA
measurements.

Figure 28. UAV target tracking in the northern region of Canada.

(a) Trajectory of sensors and target. (b) Tracking of the proposed filter.

Figure 29. Three (03) Iridium satellites were employed to track a UAV based on a TDOA measurement. Authors’ own
elaboration.
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(a) Trajectory of sensors and target. (b) Tracking of Proposed filter.

Figure 30. Three (03) Iridium satellites were employed to track a UAV based on an FDOA measurement. Authors’ own
elaboration.

(a) Trajectory of sensors and target. (b) Tracking of Proposed filter.

Figure 31. Three (03) Iridium satellites were employed to track a UAV based on a TDOA/FDOA measurement. Authors’
own elaboration.

(a) UAV tracking. (b) RMSE of algorithm performance.

Figure 32. Target tracking and RMSE for verifying the algorithm performance. In the first simulation scenario, three
(03) Iridium satellites were considered as sensors to estimate the trajectory and velocity of the UAV based on hybrid
TDOA/PDOA measurements. Authors’ own elaboration.
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(a) Maneuvering UAV tracking estimation using CKF 3rd, GHKF
3rd, H∞/GHKF 3rd, GHKF 5th , and H∞/GHKF 5th, true trajec-
tory.

(b) RMSE based on TDOA/FDOA: Performance results of H∞/GHKF
5th and H∞/GHKF 3rd compared to CKF 3rd, GHKF 3rd, and GHKF 5th

Figure 33. Comparing the performance of target tracking algorithms [21].

5.8. H∞ Filter

H∞ is a developed filter employed to overcome the degradation that affects the Kalman
Filter performances and results in unreliable state estimates. The first discovery of H∞ was
in the 1980s, and it is a new development compared to Kaman Filter. Therefore, there is a
wider area for extra work and development in H∞ filtering than Kalman filtering [30]. The
authors of [125] proposed a decentralized H∞ /UKF that enhances the strength of the H∞
standards developed in robust control to address a non-Gaussian process and measurement
noise as well as unreliable state estimates. To address the strong model non-linearities, the
advent of UKF has been utilized by the proposed algorithm under uncertainties. The linear-
like batch-mode regression model for statistical linearization approach equivalent to the
linear Kalman filter is derived. The simulation result illustrates an RMSE comparison of
the proposed algorithm performance with decentralized UKF with a measured terminal



Appl. Sci. 2021, 11, 6079 36 of 50

voltage phasor (DUKFV) and a decentralized UKF with a measured terminal current phasor
(DUKFI) in the presence of a non-Gaussian process and measurement noise.

In addition, it provided that the proposed H∞/UKF is capable of bounding the
influences of numerous types of measurement and model uncertainties while achieving
precise state estimates. Based on TDOA and FDOA measurements, the study focused on
comparing the performance of non-linear filters for estimation of the location and velocity
of a moving emitter. From Reference [125], the comparison shows that H∞/UKF is better
than other conventional filters.

In 2011, Wang et al. proposed a novel algorithm that combines the H∞ filter into the
particle filter (PF). The main purpose of combining H∞ with PF is a new particle sample of
PF that will be taken by the H∞F algorithm [126]. Consequently, H∞F can take into account
full current measurements. Moreover, the H∞F algorithm can adjust the gain inequality
factor by adjusting the disturbance attenuation factor and achieve satisfying accuracy and
robustness. The experimental results illustrate the estimated trajectory of the target by PF,
KPF, and H∞/PF and present a comparison of an error estimated for a localization and
target tracking using a PF, Kalman Particle Filter (KPF), and H∞/PF. The simulation and
experimental results concluded that the proposed H∞/PF performed better than PF and
the PKF in tracking maneuvering targets.

In Figures 34 and 35, it is interesting to observe how estimation accuracy was im-
proved using H∞ mixed with Gauss Hermite Quadrature Kalman filters in regards to
the geolocation and target tracking based on TDOA/FDOA measurements derived and
implemented by the authors [21].

(a) Position RMSE under high uncertainty. Results of H∞/GHKF 5th and
H∞/GHKF 3rd compared to CKF 3rd, GHKF 3rd, and GHKF 5th

(b) Velocity RMSE under high uncertainty. Results of H∞/GHKF 5th and
H∞/GHKF 3rd compared to CKF 3rd, GHKF 3rd, and GHKF 5th

Figure 34. Comparing the performance of target tracking algorithms. This study focused on compar-
ing the performance of non-linear filters for estimating the location and velocity of a moving emitter
based on TDOA and FDOA measurements. The comparison shows that the H∞/GHKF is better than
other conventional filters [21].
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Figure 35. GNSS signals data collection in a Montreal urban environment with high buildings as
obstacles.

Table 4 displays a comparison between different filters employed in the optimal state
estimation for an emitter source.

Table 4. Comparison between various filters used for optimal state estimation of target tracking.

Filter Advantages Drawbacks

KF Simple mathematially, and fast version [127]. Working only in linear systems [127].

EKF/UKF Less complexity in the mathematical process,
and easy to implement [128]. A high initial estimation is required [128].

AEKF It can reduce the problem of non-linearity that face
EKF [112].

If the target has high rotational speed,
the non-linearity error may increase [112].

UKF No need for the system to be linear [127]. Mathematically costly, and more parameters need to
tune [127].

CKF It is a better performance compared to UKF; it
improves the state estimation vector [127]. Limited use, just used at specific applications [127].

PF Flexible with multi-robot, more robust for unknown
data-association issues [129].

It depends on the number of particles employed.
When updating equation iteration, it may produce a

significant weight of particles [129].

GMM

No need for too many parameters for learning,
and it can achieve the best estimation utilizing the

Expectation-Maximization (EM) Algorithm to
maximize the log-likelihood [130].

The achieved result of segmentation by GMM is not
robust to noise measurement [130,131].

MQIFs The MQIFs deal with the highly non-linear nature of
the mobile target-tracking problem successfully [23].

The number of Gaussian phases increases
exponentially over time [132].

H∞F

It is capable of handling significant system
uncertainties, overcoming outliers while obtaining

an excellent statistical efficiency under Gaussian and
non-Gaussian processes; observation noises,

especially when it is combined with any Kalman
filter [22].

Complex mathematically [30].

In Table 5, geolocation and target tracking approaches, as well as algorithm specifi-
cations employed in the state-of-the-art methods, have been summarized. Consequently,
we can note that the increasing number of sensors as well as combining more than one
geolocation technique leads to an increase in the accuracy of the geolocation measurement.
In addition, the scenarios of geolocation and emitter tracking that were verified in near-
field environments were more precise compared to the scenarios in far-field environments.
The distances between emitters and sensors are in the order of kilometres for far-field,
while the distances will be shorter in near-field environments, which leads to fewer errors.
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Employing hybrid filters such as GHKF/H∞, UKF/H∞, and EKF/H∞ may achieve high
accuracy target tracking and estimation compared to using the individual filter.

5.9. Real Data Collection from GNSS Receivers and Sensors Fusion

GNSS constellation presently composed of GPS, GLONASS, Galileo, BEIDOU and
SBAS augmentation satellites such as WAAS (USA), EGNOS (Europe), SDMC (Russia),
GAGAN (India) are widely integrated and used in major navigation applications. Table 6
presents the current Space Vehicles (SV) employed in GNSS. Furthermore, many recent
works were dedicated to counter the vulnerability of these constellations and their position-
ing accuracy, which can be degraded in harsh or denied GNSS environments. To achieve
better performances, and based on several recent surveys, different data fusion, sensors
fusion and information fusion with modified filtering algorithms were developed and
proposed in the literature. Even with hundreds of satellite channels and multi frequency
tracking capabilities with dual code/phase positioning methods, GNSS receivers may suf-
fer from spoofing, jamming and interference, NLOS and multipath problems, and therefore
need to be coupled with alternative higher-data-rate navigation sensors. In this survey,
however, the benchmark and analysis were given to geolocate and target tracking algo-
rithms and systems independently of GNSS receivers. The best alternative innovative
solution is the use of LEO satellite signals of opportunity for localization and tracking.
Presently, for the reasons mentioned above, they represent the best alternative Positioning,
Navigation, and Timing (PNT) solutions.
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Table 5. Summary of geolocation and target tracking algorithm specifications employed in the state-of-the-art methods.

Ref. Algorithm
Employed Accuracy

Geolocation
Technique

Used
Field Source Sensor Type No. of Sensors

Used Sensors State Emitter Type Emitter State

[133] GA 30.9% TDOA near- field active 5 stationary active stationary
[95] GA >60 m TDOA far- field – 3 to 5 stationary – stationary

[134] WLS-RW higher precision AOA, PDOA near- field passive 1 + 2 reflectors stationary passive stationary

[75] WLA high accuracy TDOA, FDOA,
d.D.rate near- field passive 5 moving passive moving

[135] MoMo 50 m TOA, AOA near, far passive 2 moving,
stationary passive moving,

stationary
[136] CFSSLS CFFSLS 4.41 3.90 TDOA near- field active 7 stationary passive stationary

[137] MLE demonstrate
potential gains CAF near- field – 2 moving,

stationary – stationary

[138] CWLS good
performance TDOA near, far passive 8 stationary passive stationary

[139] MLE improve RSS near- field active 4 to 9 stationary active stationary
[16] Taylor Series better accuracy TDOA, FDOA far- field passive 6 stationary passive moving

[140] ICWLS good
performance TDOA, GROA near, far active 8 stationary active stationary

[141] WLS 25 m TDOA, FDOA near, far passive 5 moving passive moving
[142] WLS high accuracy TDOA, FDOA far- field passive 10 moving passive moving
[143] UKF high accuracy TDOA, FDOA far- field passive 2 moving passive moving

[112] AEKF 32.53%,
39.09% TDOA, FDOA far- field passive multi- sensor moving passive moving

[144] PDA+
EKF/UKF

PDA better than
NN AOA far- field passive 2 stationary passive moving

[110] AEKF 0.15 km TDOA, FDOA far- field passive 4 moving passive moving

[145] MLE+ GMF 500 m TDOA/ AOA,
TDOA/ FDOA far- field passive 2 moving passive moving

[25] CKF 200 m TDOA/ DOA far- field passive 2 moving passive moving

[146] GMM- CQKF superior
performance TDOA, FDOA far- field passive 2 moving passive moving

[21] GHKF/ H∞ 50% TDOA/ FDOA far- field passive 3 moving – moving
[147] EKF, UKF,H∞ high accuracy TDOA near- field – 4 stationary – stationary
[148] UKF, H∞ 5.81% – far- field passive multi- sensor moving passive moving
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Table 6. Basic information on GSSN constellations, Space Vehicle (SV) number, altitude platform, period of movement, frequency used,
and most principles of the navigation system.

No. of SV
(2015)

Orbital
Plane

Inclination
(Degree)

Altitude
(Km) Period

Frequencies
(Civil Use)

(MHz)

Coordinate
Frame

Time
System Coding

GPA
(USA) 28 6 55 20,200 11 h 56

min

L1:1575.42
L2:1227.60
L5:1176.45

WGS-84 GPST CDMA

Galileo
(Europe) 30 3 56 19,100 11 h 15

min

E1:1575.4242
E5b:1207.14
E5a:1176.45

GTRF GST CDMA

GLONASS
(Russia) 26 3 64.9 23230 11 h 15

min
1106∼1616
1246∼1257 PZ-90 UTC (SU) FDMA

BEIDOU
(China)

27 (+5
GEO +3
IGSO)

3 55 21,528 12 h 53
min 24 s

B1:1575,42
B2:1191,79
B3:1268,52

CGCS2000 BDT CDMA

In Figure 35, one can observe different GNSS outlier situations collected during real
tests in Montreal, downtown between high buildings. Data were collected and processed
a posteriori for INS/GNSS coupled approaches subject to other results and works such
as in [149–154]. Different effects could be identified in such situations with alternative
solutions mitigating multi-paths, NLOS biases, GNSS satellite visibility masks due to
buildings, measurement interruption, and interference, etc.

5.10. Real Data Collection from LEO Satellites

In the majority of cases, software-defined radios (SDR) with passive antennas in
receiver modes are used on-board vehicles and aircrafts (UAV) to collect raw data from
different LEO satellites, such as Iridium Next, Orbcomm, Globalstar and in the future,
OneWeb, Starlinks, etc. [94,155–157]. The goal is to identify the signal of interest (Tones)
with channel frequency and develop or design an adapted receiver to track the frequency,
phase and extract Doppler shift-Doppler rate for positioning and localization. In the
following, in Figure 36, one can observe the electronic bench installation on-board the
aircraft with LEO L-band (1626.27–1626.43 MHz) and VHF/UHF antennas (400.1 MHz)
for Iridium Next and Orbcomm data collections, respectively [94]. The optimal sampling
rate can be obtained by maximizing the SNR optimization function. That means, at the
moment, for each system, a new design and parameter identification for tone detection
and tracking are necessary [94].

In Figure 36, one can observe that a differential positioning and localization mode
is possible to achieve in addition to the absolute mode by using LEO satellite signals of
opportunity. The huge potential of the present and future constellations, such as described
in Table 7, demonstrate the feasibility and the reliability of these constellations when the
localization and target tracking would be considered in a denied GNSS environment [94].
Until now, no open public dataset regarding LEO SoOP-based positioning systems has
been released; meanwhile, considerable efforts and original results were achieved by the
authors of [94,155–157].
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Figure 36. Geometry of sensor and target location in 3D using absolute and differential SOP process-
ing from multiple LEO constellations.

Table 7. Basic information on satellite formation, satellite constellations, principles, satellite altitude,
frequency bands, and most popular LEO sat. status of the satellite.

Satellite
Constellations

Altitude of
Orbit (Km)

Number of
Satellites Frequency Band Status (2021)

SpaceX-
Starlinks 350–550–1150 12 + 30,000

(Upcoming) Ku, Ka, and V 1735 in Orbit

Orbcomm 650 50–52 VHF Completed
Globalstar 1414 48 L, S, and C Completed

Iridium Next 780 66 La and Ka Completed
Oneweb 1220 648 Ku and Ka 218 in Orbit

Boeing - 2956 V and C Not
yet launched

Samsung - 4600 V Not
yet launched

6. Conclusions

The most conventional and recent techniques of geolocation and target tracking have
been reviewed in this paper. Furthermore, different geolocation algorithms (such TS, MLE,
WLS, KF, EKF, AEKF, UKF, GHQF, H∞, GA, DL, etc.) demonstrated various levels of
performances depending on the localization environment and sensors network architecture.
Different scenarios and cases could be classified and carried out; static beacons (sensors)
with stationary RFI detection and localization, static beacons with mobile RFI detection and
localization, as well as mobile sensor networks with mobile RFI detection and localization
or detection and tracking. Each of the techniques and methods mentioned from basic
least square to recursive LS and other variants, in addition to Kalman filter and more
sophisticated versions, such as UKF and GHKF, the dynamics of the RFI and non-linearity
degrees of the state estimation problem have a direct impact on the algorithm selection
and implementation. Each method has its own advantages and drawbacks. Important
factors of real-time processing or digital processing present constraints that engineers in
this field must adapt to using the most optimized techniques, e.g., the introduction of
different optimization techniques, machine learning and artificial intelligence (AI).

Depending on the initial conditions, assumptions and scenario limits and constraints,
the same technique or method could perform well or poorly, as explained. Especially
when selecting the best measurement model and data to be processed, discussions about
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TDOA, FDOA, AOA, PDOA and multiple combinations of these techniques are possible
solutions depending on the sensors network key parameters, nodes, beacons, number of
nodes, static, mobile beacons, distance between RFI source and beacons, and nodes, etc.
Therefore, in order to develop realistic algorithms with real-time and real environment
capabilities and efficiency, uncertainty of the environment, randomised changes, and time
varying noises modelling have to be considered in order to fulfill the best performances
and especially robustness and adaptive behavior under real conditions. Finally, using novel
sources of information and novel signals, called signals of opportunity, represent novel
areas of research and investigation. Therefore, Multi UAV-RFI detection and tracking under
the LEO satellite sensors network have been considered as one of the most challenging and
innovative problems to be solved in the last few decades. One of the strongest filtering
algorithms that authors have developed and selected was the Gauss Hermite Quadrature
filters package mixed with H∞ as a potential optimal multiple environment localization
and tracking method.

Up to today, many real tests and data collections have been made available to perform
different algorithms and benchmarks between different approaches. Very good positioning
and promising results were obtained in stationary and dynamical modes performing with
an error of several meters up to hundreds of meters.

7. Future Works

Based on the technical notes, observations and analysis made in this survey, it is
important to select the best next move in this field with highly innovative impacts. There-
fore, future possible directions to overcome RFI detection and tracking problems that may
impact LEO SatCom and Global Navigation systems could be summarized in the following
points:

- The development of new numerical methods and non-linear approximation (deter-
ministic and stochastic) integration carrying out faster convergence and numerical
stability especially for the geolocation of stationary RFI.

- The development of adaptive and learning monitoring of RFI signals parameters with
simultaneous state and parameter learning algorithms, such as Gaussian processes,
supervised and unsupervised techniques, etc.

- The development of machine learning and artificial intelligence algorithms such as:
reinforcement learning and information reinforcement learning (based on information
theoretical learning) with partial knowledge or full unknown models for RFI detection,
identification and tracking.

- In addition, robust techniques such as the GHKF-H infinite presented and proposed
should be optimized by using Fuzzy Logic for parameter tuning and other RL algo-
rithms for best reactions to the environment uncertainty. To the best of our knowledge,
this has not been done before in this field.

- Another issue is the development of real-time implementation of all these algorithms,
such as defining and classifying the best performances in real-time and their respective
feasibility.To achieve this kind of classification, it might be interesting to propose a
computational time complexity for each algorithm for each case study: stationary
target, dynamical target, maneuvering target, stationary sensors network, mobile
sensors network, LEO satellite sensors network.

- More complex problems could be addressed by assuming multiple RFI-targets instead
of only one, with multiple combinations of LEO satellite networks. The problem would
be similar to multiple target tracking with only partial knowledge and uncertain data
association algorithms to be developed.

- An original and interesting problem would be optimal sensors placement, or optimal
constellation selection for optimizing RFI-targets detection and tracking using H∞ and
Gauss Hermite Quadrature filters package algorithms to overcome high non-linearity
degrees and sensor locations uncertainty.
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In the end, an additional focus on highly accurate quadrature Kalman filters derived
into stochastic forms could be the best next step to increase the accuracy of target state
estimation, as well as the best estimate of RFI signals detected in the environment.
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Abbreviations

ADS-B Automatic Dependent Surveillance-Broadcast
AEKF Adaptive Extended Kalman Filter
AOA Angle of Arrival
CAF Cross Ambiguity Function
CAPITAL Cellular Applied to IVHS Tracking and Location
CDFs Cumulative Distribution Functions
CIR Channel Impulse Response
CKF Cubature Kalman Filter
CNN Convolutional Neural Network
CRIAQ Consortium for Research and Innovation in Aerospace in Quebec
CRLB Cramér-Rao lower bound
CWLS Constrained Weighted Least Square
DDR Differential Doppler Rate
DL Deep Learning
D-S Dempster–Shafer
DVB Digital Video Broadcasting
EKF Extended Kalman Filter
EGNOS European Geostationary Navigation Overlay Service
ÉTS École de Technologie Supérieure
FDOA Frequency Difference of Arrival
GA Genetic Algorithm
GAGAN GPS Aided Geo Augmented Navigation
GDOP Geometric Dilution of Precision
GHKF Gaussian Hermite Kalman Filter
GHQF Gauss–Hermite Quadrature Filter
GLONASS GLObal’naya NAvigatsioannaya Sputnikovaya Sistema
GMM Gaussian Mixture Model
GMM-ITSF Gaussian mixture measurement integrated track splitting filter
GMT Ground Moving Targets
GNS Navigation Systems
GNSS Global Navigation Satellite Systems
GPS Global Positioning System
GSN GNSS Supervisory Authority
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ICWLS iterative constrained weighted least squares
INS Inertial Navigation System
KF Kalman Filtering
LASSENA Laboratory of Space Technologies, Embedded System, Navigation and Avionic
LLS Linear Least Squares
LOB Line of Bearing
LOS Line of Sigh
LS Least Square
LSM Least Square Methods
MAVs Manned Aircraft Vehicles
ML Maximum Likelihood
MLAT Multilateration
MLE Maximum Likelihood Estimator
MMF multiple-model filter
MRPEs mean relative position errors
MSPEs mean square position errors
NLOS Non-line of Sight
NLS Non-linear Least Square
NSERC Natural Sciences and Engineering Research Council of Canada
PDOA Power Difference of Arrival
PF Particle Filter
PNT Positioning, Navigation, and Timing
QIKFs Quadrature Information Kalman Filters
QKF Quadrature Kalman filter
QLS quadratic least squares
RFI Radio-Frequency Interference
RMSE Root Mean Square Error
RSS Received Signal Strength
RTLS Real-Time Locating System
SatCom Satellite Communication
SBAS Satellite Based Augmentation System
SDMC System for Differential Correction and Monitoring
SDP Semi-Definite Programming
SDR Software-defined radios
SNR Signal to the Noise ratio
SV Space Vehicle
TDOA Time Difference of Arrival
TLA Tangent Linear Approximation
TOA Time of Arrival
TS Taylor Series
UAVs Unmanned Aerial Vehicles
WAAS Wide Area Augmentation System
WLS Weighted Least Square
WSN Wireless Sensor Networks
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