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Abstract: To prevent falls, it is important to measure periodically the balance ability of an individual
using reliable clinical tests. As Red Green Blue Depth (RGBD) devices have been increasingly used
for balance rehabilitation at home, they may also be used to assess objectively the balance ability and
determine the effectiveness of a therapy. For this, we developed a system based on the Microsoft
Kinect v2 for measuring the Functional Reach Test (FRT); one of the most used balance clinical tools
to predict falls. Two experiments were conducted to compare the FRT measures computed by our
system using the Microsoft Kinect v2 with those obtained by the standard method, i.e., manually. In
terms of validity, we found a very strong correlation between the two methods (r = 0.97 and r = 0.99
(p < 0.05), for experiments 1 and 2, respectively). However, we needed to correct the measurements
using a linear model to fit the data obtained by the Kinect system. Consequently, a linear regression
model has been applied and examining the regression assumptions showed that the model works
well for the data. Applying the paired t-test to the data after correction indicated that there is no
statistically significant difference between the measurements obtained by both methods. As for the
reliability of the test, we obtained good to excellent within repeatability of the FRT measurements
tracked by Kinect (ICC = 0.86 and ICC = 0.99, for experiments 1 and 2, respectively). These results
suggested that the Microsoft Kinect v2 device is reliable and adequate to calculate the standard FRT.

Keywords: Microsoft Kinect v2; depth sensor; RGBD; health care; balance; functional reach test

1. Introduction

Balance deterioration may increase the falling rate, given that balance and postural
control deficit has been identified as one of the main factors of falls [1–4]. Being able to
measure this decline helps identifying the individuals with higher risk of falls and taking
subsequently the necessary preventive measures such as specific rehabilitation programs
to minimize this risk. Moreover, assessing balance permits measuring the effects of the
exercises proposed in a certain therapy. Various clinical tests have been developed to
help assessing balance, gait, and postural control of subjects and predict therefore fall
risks [5–7]. These tests include Tinetti Balance test [8–10], Berg Balance Scale [11–14], Timed
Up and Go test [15–18], and Functional Reach test [19–21]. The latter was one of three
tools having strong predictive validity to assess fall risk in a community setting beside
the 5 min walk test and the five-step test [5]. The Functional Reach Test is also easy to
administer and takes only few minutes to conduct. In fact, time is reported as one of the
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barriers considered by physicians for routinely assessing fall risks [22]. Thus, easy and
simple tests must be provided for screening periodically balance and gait disorders. In
addition, it is demonstrated that rehabilitation has more efficiency when done in a familiar
environment like at the home of the patient [23]. This is now possible thanks to RGBD
devices like Microsoft Kinect which can be used also for providing an easier and simpler
way to conduct the test. RGBD devices are used in serious games to improve balance and
postural control [24,25] and they could be used for balance assessment as well [26].

Several studies have examined the feasibility and validity of technology for measuring
and parametrizing balance tests [27–30]. Regarding the FRT, some researchers opted for the
use of inertial sensors. For instance, authors of [31] used InertiaCube3TM sensor to record
kinematic variables of five stroke patients in order to analyze the reliability, sensitivity,
and specificity of FRT. To do that, they placed two inertial sensors on the patient’s back
while performing the FRT. Based on their findings, they concluded that inertial sensors are
a reliable, specific tool to parametrize the FRT for stroke survivors. Likewise, Hasmann
et al. [32] used wearable accelerometer data to differentiate participants with high risk for
Parkinson’s disease (HRPD) from others since instrumenting FRT may improve diagnostic
accuracy. In a cross sectional study, they extracted functional reach parameters that differed
significantly between Parkison’s disease patients and controls, then included it into a model
for differentiating HRPD and controls. The model results indicated that an instrumented
FRT can contribute to defining HRPD individuals with fair accuracy, sensitivity, and
specificity. Conversely, Moreno et al. [33] aimed to investigate to what degree inertial
sensors can be replaced by depth cameras in the parametrization and kinematic analysis
of Multi-Directional Reach Test (MDRT) beside the Timed Up and Go test. Consequently,
inertial sensor data were used as a benchmark for evaluating the data acquired using
PrimeSense depth camera. The measures obtained from twenty healthy young adults
performing the tests revealed that the depth camera is a reliable instrument to parameterize
both the MDRT and TUG test, though some issues were reported when employing depth
cameras for the TUG test. In addition, with the increase of Microsoft Kinect popularity,
Kinect Xbox 360 (Kinect v1) was used in the development of a standalone software to
measure the FRT [34]. Concurrent validity of Kinect measures were assessed in comparison
of measures obtained from a 3D motion-capture system. Implementation feasibility was
also examined in a clinical setting where patients’ feedback was collected. Findings showed
moderate to good agreement between FRT measures made by the two systems and the
patients valued favorably the Kinect system, which resulted its validity for measuring the
FRT and the possibility of using it with gaming platforms. Similarly, Clark et al. [35,36]
assessed the concurrent validity and reliability of reach test among other tests for evaluating
standing balance and postural control. Firstly they used Kinect v1 and compared the data
with a marker-based three dimensional motion analysis (3DMA) system [35]. Then with the
release of Kinect for Xbox One (Kinect v2), they updated the data with the Microsoft Kinect
v2 measurements in comparison with data obtained by a multiple-camera 3D motion
analysis as a benchmark [36]. In both studies, results from the Kinect and the benchmark
system were comparable and findings suggested that Microsoft Kinect has the potential to
be used as a balance assessment tool in the clinical setting.

In these previous studies, the use of RGBD devices was validated to instrument
the FRT and use it as an assessment tool. However, there is a lack of clear intention to
translate the validation of the test into homes, whether by the physiotherapist assistance, or
autonomously by the patient, which is becoming more needed nowadays. With the arrival
of the late pandemic, it became even more important the validation of the use of RGBD
devices at homes for balance and postural control assessment of individuals suffering
balance problems. Thus, in this study, we present an experimental system (ES) based on
Kinect v2 for measuring the Functional Reach Test (FRT) of the user. Kinect v2 provides a
natural user interface which enables the users to control and interact with the applications
through their body gestures and movements. Therefore, the same interaction system used
for rehabilitation can be also used for assessment, hence saving the individual the hurdle
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of learning new interaction mechanism. We aim the validation of its use with the support
of a physiotherapist, and autonomously by the user on their own. This validation acts as
an initial phase of further experiments. The two experiments that we conducted, though
held in lab settings, are meant as a step forward to deploy the system at home.

2. Materials and Methods

In this section, we used a Microsoft Kinect v2 to measure the limits of stability of an
individual through one of the most popular balance tests, namely the Functional Reach
Test (FRT). For validation, we conducted two experiments.

2.1. Description of the Standard FRT

During the FRT, the subject is asked to stand next to a wall assuming a normal and
relaxed stance. With the arm horizontally extended forward, the assessor records the
placement of the end of the third metacarpal on a yardstick placed on the wall (starting
position B in Figure 1). The individual is then asked to reach forward as far as they
comfortably can without taking a step or losing balance. Again, the location of the third
metacarpal is recorded (the final position C in Figure 1). The difference between the final
and starting positions is the reach distance. The patient performs three trials, and the
assessor notes the average of the last two [19]. In case the subject touches the wall or takes
a step during the test, the trial is repeated. A final score of FRT that is less than 25 cm
suggests a limitation in activities of daily living and risk of falls [37,38].

Figure 1. Measurement of the Functional Reach Test (FRT) with A: the user’s position, B: the starting
position of the hand, and C: the final position of the hand.

2.2. Automatic FRT

We implemented the FRT into our experimental system as an interaction mechanism
so it can automatically measure an individual’s maximal forward reach. The system allows
the calculation of the FRT in three steps as shown in Figure 2.

Figure 2. Functioning sequence of the experimental system (ES).

We used an RGBD device namely Kinect v2 as an input method. For computing the
reach distance, we used the data provided by Microsoft Kinect Software Development
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Kit (SDK) 2.0 and in particular the skeletal data. We were particularly interested in the
hand joint to measure the distance travelled by the joint when performing the test. In
concrete, we computed the Euclidean distance considering all the coordinates of the tracked
hand joint. Finally, to ensure adequate feedback for the user, a text is displayed indicating
whether the hand joint is tracked or not; if it is tracked, the color of the text is set to green,
else it is red. In addition, “start” and “stop” instructions were shown on the screen to guide
the user at the beginning and the end of the test. Furthermore, the user can see himself on
the screen as it is demonstrated that mirror feedback provides motivation for the user [39].
In order to minimize distractions, we applied a background subtraction algorithm provided
by RF-Solutions in the wrapper that we used to link between the Microsoft Kinect v2 and
the game engine Unity [40].

2.3. Test Performance

Performing the test with the system follows the standard way of doing the FRT. The
user stands sideways next to a wall facing the Microsoft Kinect v2 camera and a screen as if
they are going to play a video game. Then, they raise their arm that is closer to the wall at
90 degrees of shoulder flexion (position AB in Figure 1). Here, the initial position is saved
when indicated to the system. The user is then asked to reach forward as far as they can
without losing balance (position AC in Figure 1), and the final position is recorded by the
system when indicated. The system subsequently calculates the difference and gives the
final result of the test as shown in Figure 3.

(a) (b)
Figure 3. Screenshot of the system during the FRT performance: (a) Initial position and (b) Last
position.

2.4. Experiment 1: Assisted FRT Performance

In this experiment, the FRT measurements are done at the same time for the standard
way (manually) and for the system using the Microsoft Kinect v2. This experiment follows
the normal procedure of the FRT performance where the test is done under the supervision
of a physiotherapist.

2.4.1. Participants

Nineteen healthy volunteers (9 men; aged between 18 and 37 years) participated in
this experiment. None of them had cognitive and/or motor problems. All subjects signed
an informed consent form before the experiment.

In order to perform an effect size study, we have made a power test analysis using
the pwr package of R statistical package. The sample size of the experiment using a power
test of 0.99 and a significance level of 0.05, was at least 12 participants to detect an absolute
mean difference of 2.63 cm. So, with 19 participants recruited, the sample size condition
is fulfilled.

2.4.2. Settings

In this experiment, the sensor was set at 1.5 m from the floor and 2.5 m away from
the user. The manual measurement of FRT was performed against the wall as shown in
Figure 4.
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Figure 4. Settings of the experiments.

All tests and experiments were conducted in laboratory settings using a Microsoft
Kinect v2 and a desktop computer with the following features:

• IntelR CoreTM i5-4590 CPU @3.30 GHz (4 CPUs)
• 8 GB RAM
• Graphic card Intel(R) HD Graphics 4600
• Windows 8.1 Pro 64 bits

2.4.3. Process

Firstly, each participant was instructed how to perform the test. Next, they were
asked to stand close to a wall facing both the sensor and the screen where their image
was displayed. The physiotherapist was standing close to the participant to supervise the
test performance as she may intervene to correct the posture. Then, the participant was
asked to hold a marker pen and mark the first point on the board while saying “Go”. The
physiotherapist validates the initial posture and one member of the research team hits the
“G” key so the system can record the first position. After that, the participant is asked
verbally to bend forward as maximum as they can. When he reaches the last position he
notes on the board the last point with the pen saying “Stop”. Again, the physiotherapist
validates the posture and the last position was saved by hitting the “S” key. Eventually, the
differences between the last position and the first one that are marked on the board and
taken by the system were all noted.

2.5. Experiment 2: Autonomous FRT Performance

There are cases when the physiotherapist cannot be physically present with the patient
to assist her/him in measuring the FRT. In order to study the possibility of doing the test
from home by the patient alone, we thought about doing another experiment where the
user performs the test without any assistance from the physiotherapist. Plus, we believe
that there could be a delay between marking the position on the board with a marker pen
and indicating to someone else to press a key on the keyboard in order to save the position
by the system after the physiotherapist’s validation.

2.5.1. Participants

The idea of this experiment is to validate the use of the sensor for different reach
distances. For that reason, one member of the research team (female, age = 28 years)
performed the test several times, each time starting from a different initial position and
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reaching to a different final position. The participant is familiarized with the test. We
performed the same effect size study as in the other case, it suggests that we need at least
7 observations using a power test of 0.99 and a significance level of 0.05 for an absolute
mean difference of 2.46 cm. So, the sample size condition is also fulfilled.

2.5.2. Settings

To ensure the autonomy of the test performance and the simultaneity of both methods
(manually and using the Kinect), we opted for a controller device that allows the user
to communicate with the system for saving the initial and final positions. The controller
device consists of a pen mouse (a 2.4 G wireless optical mouse, and for this experiment, we
attached to it a whiteboard marker for facilitating the manual measurement on the wall,
hence marking the position on the wall and indicating the system to save the position at
the same time. Besides, a poster was used to ease marking and computing the manual FRT.
Settings of this experiment where the poster is hung on the wall are shown in Figure 4. The
participant stood at a 2.5 m distance away from the camera; this distance was chosen based
on results of another study [34].

2.5.3. Process

We firstly defined a set of points on the poster to be the initial and final positions
of the test. The aim here is to simulate the behavior of different profiles of users with
different heights and reaching capabilities. The experiment process is described in the
following steps:

• Raise the arm with hand extended to a predetermined initial position while standing
at a 2.5 m distance from the camera.

• Mark the initial position of the hand with the device on the poster so the manual FRT
can be computed and clicking simultaneously on it so the system can save the position
of the hand.

• From that initial position, reach to a final position. When reaching forward, the user
naturally leans to a final position on the level of a starting position or he may reaches
somewhat lower than that first position, hence:

– The final position may lay on the same line of the initial position, making a
distance ranging from 1s (5.9 cm) to 9s (53.1 cm) (s: square in the poster) as seen
in Figure 5a.

– Or the final position may lay on the lower line of the initial position as seen in
Figure 5b.

• For each final position chosen, repeat each trial 3 times starting from that initial
position.

• Compute the difference between each first position and final position.
• Repeat the same process starting from another initial position laying on the same

vertical line of the first one so the user is always standing away 2.5 m from the camera
(see Figure 5).

Figure 5. The initial and final positions at (a) Same line and (b) Different line.
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In summary, the different steps of the protocol of experimentation in both experiments
can be illustrated in the graphical diagram shown in Figure 6.

Figure 6. Protocol of experimentation.

2.6. Measurements

For both experiments, the participants performed the test 3 times as indicated in the
standard test. The distance between the initial position and the last one was computed by
the system. In each experiment, we had the following measurements from both methods:
manual FRT (M_FRT) for each trial, the mean of the three measurements for each user
(MeanM_FRT), Kinect FRT (K_FRT) for each trial, and mean of the three measurements for
each user (MeanK_FRT).

2.7. Statistical Analysis

The statistical analysis carried out consists of the following parts:

• We verified that there was a significant difference between the manual FRT methods
(M_FRT) and the Kinect FRT (K_FRT) using the t-test of mean difference of paired
samples. In order to carry out this test, we previously verified that the samples were
distributed normally and that the size of the collected samples was adequate. For
that reason, we applied Shapiro–Wilk normality test [41,42] to the data to check its
distribution. Moreover, we conducted power analysis to determine the number of
subjects required for the mean difference between the two sets of data obtained by
both methods.
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• As the previous conclusion contradicted previous works [26], we needed to correct
the measurements using a linear model to fit the data from the K_FRT sample. We
saw that the linear model is adequate to carry out this adjustment. Before doing that,
we run Pearson correlation test to see if there is any association between the measures
obtained from the different methods (manual and Kinect). This test is also known
as the “product moment correlation coefficient” and it measures the strength and
direction of association that exists between two continuous variables [43].

• Finally, carried out the t-test again for the adjusted data, checking that there were no
significant differences between the two methods.

To analyze the reliability of the FRT, we assessed the variation of data measured by
the Kinect system across the three trials of FRT using intraclass correlation coefficient
(ICC, 2.1) [44]. Based on a 95% confidence interval, values of ICC less than 0.5, between
0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 indicate poor, moderate, good,
and excellent reliability, respectively, [45]. The level of significance for all tests was set at
p < 0.05. The statistical analysis tool R was used.

3. Results

The results of each experiment are presented apart in the following subsections.

3.1. Experiment 1: Assisted FRT Performance
3.1.1. Data Obtained

A summary of the measurements obtained during Experiment 1 are shown in Figure 7.
Detailed measurements for each user can be found in Appendix A at Table A1.

Figure 7. Box plot of the FRT measurements by the experimental system (K_FRT) and manually
(M_FRT) in Experiment 1.

3.1.2. Statistical Analysis

The outcomes of Shapiro–Wilk normality test (test statistic W and p-value) on the data
obtained manually using the whiteboard (M_FRT) and by the system using Kinect (K_FRT)
are shown in Table 1. The p-value of the data in both methods (M_FRT) and (K_FRT) is
greater than 0.05 then the null hypothesis is maintained. Thus, we can assume that our
data are approximately normally distributed.
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Table 1. Shapiro–Wilk normality test applied to data of Experiment 1.

M_FRT-K_FRT

W 0.93984
p-value 0.262

Visual inspection using normal Q-Q plots indicates also that the data obtained by
both methods are approximately normally distributed as it can be seen in Figure 8 where
the dots are approximately distributed along the line because they are located in the 95%
confidence bands for the empirical quantile plot [46].

(a) (b)
Figure 8. Q-Q Plot of data of Experiment 1 (a) M_FRT and (b) K_FRT.

To see the difference between the means of the two sets of data, we used the paired
t-test. As shown in Table 2, the p-value is much less than 0.05 so the null hypothesis is
rejected and there is statistically significance difference in average means of the measures
obtained by the two methods, which is not correct since we know from previous work [26]
that there are no statistically significant differences in the average, so the measurements
are valid but need to be corrected.

Table 2. Results of paired t-test applied to data of Experiment 1.

t = −6.2064

p-value = 7.405 × 10−6

Difference = −2.637895

The Pearson correlation coefficient obtained is equal to 0.97 with p-value less than
the significance level 0.05 (p-value = 1.534 × 10−12). Hence, we can conclude that FRT
values obtained by the Microsoft Kinect v2 and those measured manually are significantly
correlated. This can also be shown visually in Figure 9 where the scatter plot shows
linear correlation between the data. Moreover, we found a good repeatability of the
FRT measurements tracked by Kinect with an ICC = 0.861 (95% confidence interval, CI,
0.73–0.939).

Given that we demonstrated that the data is linearly correlated, we made a linear
model to correct the K_FRT data. Regression results gave a slope coefficient of 0.934 and
adjusted R-squared value of 0.99 which means that the regression model explains 99% of
the variability in the observations. We also found that the residuals are normal by applying
Shapiro–Wilk normality test (W = 0.90586, p-value = 0.06218). In order to inspect visually
the linear regression assumptions, we examined the residual plots shown in Figure 10. The
first is a constant variance plot, which checks for the homogeneity of the variance and
the linear relation. There is no obvious pattern in this graph, then linearity assumption is
met. The second plot in the graph is a Q-Q plot, which checks if residuals are normally
distributed. The points fall on a line hence the normality assumption is also met. The
third plot allows to detect heterogeneity of the variance while the fourth plot allows for the
detection of points that have a large impact on the regression coefficients. Visual inspection
to these plots show that the assumption of equal variance (homoscedasticity) is met and
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there is no influential cases. More concretely, in the graph of fitted values vs. residuals, we
observe that the linearity of the model is verified since the red line is close to the dotted
line and in the graph of standardized residuals vs. leverages and the graph of the square
root of the standardized residuals vs. fitted values, we see that the standardized residuals
do not increase or decrease with the leverage or with the fitted values, reinforcing the
homoscedasticity of the residuals and the linearity of the model. We can then say that the
model works well for the data.

Figure 9. Scatter plot of the data obtained by the experimental system and manually in Experiment 1.

Figure 10. Residual plots generated from the linear regression model in Experiment 1.

At the end, we re-applied the paired t-test using the corrected data and we found this
time a p-value higher than the significance level 0.05 indicating that there are no statistical
significant differences between the averages of measures obtained by both methods. Results
of the t-test after data correction are shown in Table 3.

Finally, in Figure 11, a Bland–Altman plot is shown for experiment 1. The agreement
between the two methods is remarkable because there is no much difference between limits
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of agreement (≈±3.2 units). Moreover, the mean differences is 0.0872, which means that
there is no bias.

Table 3. Results of paired t-test applied to data of Experiment 1 after correction.

t = 0.23284

p-value = 0.8185

Difference = 0.08722661

Figure 11. Bland Altman plot for experiment 1.

3.2. Experiment 2: Autonomous FRT Performance
3.2.1. Data Obtained

The participant performed 195 reach trials, resulting in 65 final measurements of FRT
as shown in Table A2. A summary of these measurements are depicted in Figure 12.

Figure 12. Box plot of the FRT measurements by the experimental system (K_FRT) and manually
(M_FRT) in Experiment 2.
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3.2.2. Statistical Analysis

Table 4 shows the results of the paired t-test applied to the data obtained by the
standard way using the poster and by the experimental system using the Microsoft Kinect
v2. The p-value is less than 0.05 which indicated that there is statistical significant difference
between the means of the two data sets, hence the measures obtained by the Microsoft
Kinect v2 are valid but need to be corrected.

Table 4. Results of paired t-test applied to the data of Experiment 2.

t = −16.807

p-value < 2.2 × 10−16

Difference = −2.469538

With regards to the Shapiro–Wilk normality test, as shown in Table 5, the p-value of
the data is greater than 0.05 then the null hypothesis is maintained. Graphically, the Q-Q
plots in Figure 13 showed that the data are within the 95% confidence interval suggesting
that this sample data comes from a normal distribution.

Table 5. Shapiro–Wilk normality test applied to data of Experiment 2.

M_FRT-K_FRT

W 0.96745
p-value 0.08461

(a) (b)
Figure 13. Q-Q Plot of data of Experiment 2 (a) M_FRT and (b) K_FRT.

We obtained a Pearson correlation coefficient equals to 0.99 with p-value less than 0.05,
which means that data acquired using the poster and the Microsoft Kinect v2 are strongly
correlated. This result can also be noticed visually using a scatter plot as shown in Figure 14
where a linear relationship is obvious between the two data sets obtained by both methods.
In addition, there was an excellent within session repeatability of Kinect measurements as
indicated by the intraclass coefficient, ICC = 0.999 (95% confidence interval, CI, 0.998–0.999).

As the data are linearly correlated, we applied a linear regression model without a
constant intercept as in Experiment 1 to correct the data obtained by the Microsoft Kinect
v2. Regression results gave a slope coefficient of 0.924 and adjusted R-squared value of 0.99,
which is also statistically significant (p-value < 2.2 × 10−16), indicating that the regression
model explains almost all of the variability in the observations. In addition, the residuals
are normal applying Shapiro–Wilk normality test (W = 0.98624, p-value = 0.6876). Visual
inspection to the residual plots of Figure 15 indicates that the linear regression assumptions
(linearity, homoscedasticity, independence, and normality) are met. In this figure, the
values 22 and 25 shown by the graph of the residuals vs. fitted values and the square
root of the standardized residuals vs. fitted values are the possible outliers of the model,
that is, values that have an anomalous value of the dependent variable. The values 22, 25
and 33 shown by the graph of the standardized residuals vs. the theoretical quantiles are
values that are above the “normality” line and if they were very far from this line, it would
indicate a violation of the hypothesis of normality of the residuals. Finally, the values 8,
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25 and 26 shown by the graph of the standardized residuals vs. leverage indicates the
presence of influence values, that is, values that, if removed from the model, cause the
model to change substantially.

Figure 14. Scatter plot of the data obtained by the experimental system and manually in Experiment 2.

Finally, in Figure 16, a Bland–Altman plot is shown for experiment 2. The agreement
between the two methods is also remarkable because there is no much difference between
limits of agreement (≈±1.1 units). Moreover, the mean differences is −0.0619, which means
that there is also no bias.

Figure 15. Residual plots generated from the linear regression model in Experiment 2.

Applying paired t-test after correction, we found the results presented in Table 6.
Findings indicated that there are no statistical difference in the average with a p-value
much higher than 0.05.
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Table 6. Results of paired t-test applied to the data of Experiment 2 after correction.

t = −0.92759

p-value = 0.3571

Difference = −0.06191252

Figure 16. Bland–Altman plot for experiment 2.

4. Discussion

In our previous work [26], with the aim to validate the use of vision-based systems
for measuring the Functional Reach Test (FRT), we compared FRT values obtained using
Microsoft Kinect v1 with those measured manually. Participants performed the FRT
interchangeably between the manual way and using the system. Results showed an
average absolute difference of 2.84 cm and no statistical significant difference was found
applying a paired t-student test to the data. These results suggested that Microsoft Kinect
v1 can be used to measure the FRT. In this present work, two new experiments were
conducted in order to improve and further validate the system using the Microsoft Kinect
v2 for possible deployment at homes. Overall Kinect v2 outperforms Kinect v1 as it offers
better robustness and accuracy when estimating joint positions except for the feet [47].
In fact, the Kinect v1 measures the depth with the Pattern Projection principle, where a
known infrared pattern is projected into the scene and out of its distortion the depth is
computed. The Kinect v2 contains a Time-of-Flight (ToF) camera and determines the depth
by measuring the time emitted light takes from the camera to the object and back [48].
This time, measurements were extracted simultaneously by both methods. With the
Microsoft Kinect v2, we found that the measurements obtained by the standard way and
the experimental system in both experiments are linearly correlated and the absolute
measurement error in both experiments was also less than the one obtained by Kinect
v1. Applying paired t-test, we found that the data obtained was valid but needed to be
corrected, hence a linear regression model was applied to correct the data acquired using
the Microsoft Kinect v2. Examination of regression assumptions showed that the model
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explains well the data and applying the paired t-test to the data after correction indicated
that there is no statistical significant difference between the measurements obtained by
both methods.

In a similar study to ours, Galen et al. [34] sought the validity of an interactive
Functional Reach Test. To achieve their aim, they used wrist joint data from Kinect v1 SDK
with the camera set on the left of the user. They computed the reach distance and compared
it with the outcomes obtained simultaneously by the Optotrak Certus 3D motion-capture
system. They set the experiment with three different distances from the Kinect sensor:
at 2 m, 2.5 m, and 3 m, with the best agreement was reported at 2.5 m. However, they
noted that there was no optimal distance with minimal measurements errors. Even so, the
mean measurement found at 2.5 m distance from the camera was 4.92 cm; a value that lays
within the minimal detectable change values of the FRT in stroke and Parkison’s disease
populations as reported by the authors. As for our experiments, we used the hand joint
data provided by Kinect v2 to compute the FRT with the user facing the camera at 2.5 m
distance; the user is best tracked while he is facing the sensor. As in [34], we compared the
values returned by the system with those measured by the physiotherapist simultaneously.
In both experiments, we found an average absolute difference smaller than found in the
experiment of [34], though a larger sample is required to detect minor differences between
the standard FRT and the experimental system. As for display interface, we used mirror
feedback where the user can see herself/himself on the screen all time whereas in the work
of Galen et al. [34] they employed a wireframe skeleton avatar. At the end, for the sake of
deploying the research results at home, we added a pen controller that can help controlling
the system in certain cases as the voice commands of Kinect sensor fails when there is noise
in the environment.

Other studies have used RGBD sensors for the measurement of the FRT. Though
having different gold standards and settings, our findings align with theirs in terms of
validity of the test and its reliability. We had very strong correlation with manual FRT
with values of (r = 0.97, p < 0.05) and (r = 0.99, p < 0.05) in the first and second experi-
ments, respectively, where Hsiao et al. [49] also reported a strong correlation (r = 0.719,
p < 0.001) of Kinect v2 results with traditional FRT. In their study, Clark et al. [36] computed
the reach distance through trunk flexion measurements and concluded that Kinect could
be used in instrumenting the reach test by providing excellent validity for trunk angle
data (r = 0.93, p < 0.05). These findings maintain valid using PrimeSense camera as well,
Moreno et al. [33] acquired kinematic data from both PrimeSense and inertial sensors in-
tertiaCube3 TM as benchmark for the parametrization of MDRT, and comparisons revealed
strong correlation in most of the evaluated variables of the test.

In terms of reliability, we obtained good to excellent within repeatability of the test
using our system (ICC = 0.86 in Experiment 1 and ICC = 0.99 in Experiment 2). From their
side, Hsiao et al. [49] found a good repeatability (ICC = 0.82) of the measurements of the
second and third trials of forward reach obtained by Kinect v2. Moreover, Clark et al. [35]
assessed inter-trial reliability of forward reach and reported comparable good Kinect relia-
bility (ICC = 0.72) with 3DMA reliability (ICC = 0.81). This is consistent with the excellent
intrarater reliability of the original test [50]. Furthermore, RGBD devices can be a great tool
for fast screening for balance problems as they proved to be valid and reliable, they also
provide user feedback which is reported important to improve adherence in rehabilitation.
Furthermore, they have the advantage of capturing other parameters that might be of
interest of therapists such as time and velocity of doing the test [33,49], differentiating the
movement strategy [51], among others. These parameters can be used for better assessing
the balance ability of people with balance deficiencies. The limitation of the study is that
the system was tested in laboratory conditions. Further validations performed by different
patient populations in real situations could generalize our findings. Nevertheless, different
studies showed that FRT can be used as an index for fall prevention [52–55].

Finally, we want to remark that the proposed system can be considered transpar-
ent [56], because has the ability of simulatability (being simulated or thought about strictly
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by a human), decomposability (explaining each of the parts of the method), and algorithmic
transparency (the user can understand the process followed by the method to produce any
given output from its input data). This is especially critical in health, to trust the behavior
of systems.

5. Conclusions

In this work, we presented an experimental system to assess the Functional Reach Test
(FRT) with the Microsoft Kinect v2. We aimed to validate Microsoft Kinect v2 for balance
and postural control assessment to use it with the support of a physiotherapist, and to use
it autonomously by the user.

The system calculates the reach distance when indicated by the user or the physio-
therapist. To validate the use of this RGBD device for measuring this balance test, we
conducted two experiments where it has been proven that the measurements obtained us-
ing the standard method and using the experimental system are linearly correlated. Hence,
a linear regression model was applied to correct the Microsoft Kinect v2 measurements
and a paired t-test was applied to these corrected data where results indicated that there
are no statistical differences between the measurements computed using the two methods.
The two experiments that we conducted, though held in lab settings, are meant as a step
forward to deploying the system at home. The strong correlation with manual FRT and the
good results of within repeatability of the test obtained from experimentation suggest that
the RGBD devices can be an alternative for measuring balance tests unsupervised, like the
FRT at home.

However, this study presents some limitations that mainly consist of not recruiting
patients in the experiments and conducting the tests in lab settings. For this reason, further
studies are recommended for the actual deployment of the test using RGBD devices at
home of recruited patients.

As a future work, we will continue to translate the system to home and validate
Microsoft Kinect for measuring other balance clinical tests. Furthermore, we will design
several experiments to check if the physical absence/ presence of the physical therapist
affects fear of falls. Furthermore, we intend to translate the system to social/assistive
robots to promote social interaction between the person and the social robot in order to
evaluate the quality of life of the patient and prevent their physical impairment.
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Appendix A

We included raw data for the results, this way other researchers can compute their
metrics for comparison purposes. For the sake of scientific progress, it would be beneficial
for this topic of research if authors published their raw data.

Appendix A.1. Measurments of Experiment 1

Table A1. FRT measurements obtained during Experiment 1 in cm.

User M_FRT1 M_FRT2 M_FRT3 MeanM_FRT K_FRT1 K_FRT2 K_FRT3 MeanK_FRT

1 48.5 47 47 47.5 49.5 49.3 49.2 49.33
2 42 47 49 46 47.3 46.9 49.2 47.8
3 34 36 33 34.33 33.7 35 35.1 34.6
4 40 40 41 40.33 41.5 40.8 42.4 41.56
5 33 35 30 32.66 29.1 35.5 33 32.53
6 48.5 43.5 46 46 54.5 49.2 51.4 51.7
7 40.5 38 35 37.83 42.9 39.9 34.9 39.23
8 23 26 28 25.66 24.1 29.7 31.7 28.5
9 30 25 27 27.33 30.5 26.1 28.5 28.36
10 46 45.5 38 43.16 48 48.6 41.3 45.96
11 32 35 32 33 33.4 37.4 33.5 34.76
12 52.5 52.5 55 53.33 54.2 54.9 57.6 55.56
13 41 44 45 43.33 45.3 50.1 45.9 47.1
14 44.5 32.5 37.3 38.1 45.9 39 43.7 42.86
15 36 41 38 38.33 42 44.5 43.5 43.33
16 42 43 43 42.66 47.6 49.1 45.7 47.46
17 33.5 34 45 37.5 40.6 32.6 49 40.73
18 38 40 42 40 43.8 46.5 46.4 45.56
19 32 33 33 32.66 30.7 34.3 33.7 32.9

Appendix A.2. Measurments of Experiment 2

Table A2. FRT measurements obtained during Experiment 2 in cm.

M_FRT K_FRT1 K_FRT2 K_FRT3 MeanK_FRT

5.9 6.28 6.22 6.07 6.19
11.8 12.95 13.06 12.4 12.80
17.7 19.46 18.35 18.98 18.93
23.6 25.19 25.54 25.29 25.34
29.5 32.62 32.01 31.25 31.96
35.4 39.05 38.99 39.5 39.18
41.3 42.82 44.9 44.66 44.13
47.2 49.41 51.02 49.3 49.91
53.1 56.98 57.64 56.55 57.06
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Table A2. Cont.

M_FRT K_FRT1 K_FRT2 K_FRT3 MeanK_FRT

5.9 6.35 6.85 6.75 6.65
11.8 12.53 13.32 13.27 13.04
17.7 19.44 19.37 19.7 19.5
23.6 24.54 24.96 25.36 24.95
29.5 32.22 32.1 31.89 32.07
35.4 38.05 37.81 37.97 37.94
41.3 44.64 44.49 42.39 43.84
47.2 50.36 50.67 50.38 50.47
53.1 57.15 56.45 56.68 56.76
5.9 7.22 7.96 5.82 7
11.8 12.95 12.19 12.59 12.58
17.7 18.78 18.49 18.23 18.5
23.6 25.22 23.4 24.06 24.23
29.5 31.44 30.96 30.58 30.99
35.4 38.4 37.26 38.56 38.07
41.3 42.31 44.35 43.59 43.42
47.2 50.21 49.36 51.02 50.2
53.1 57.04 57.35 57.38 57.26
5.9 6.6 6.74 6.74 6.69
11.8 13.59 13.28 12.97 13.28
17.7 19.21 19.91 20.25 19.79
23.6 26.03 25.23 25.64 25.63
29.5 32.01 31.41 32.26 31.89
35.4 38.17 38 38.25 38.14
41.3 44.19 44.31 44.7 44.4
47.2 51.04 50.26 51.26 50.85
53.1 57.26 57.59 56.9 57.25
5.9 5.92 6.01 6.36 6.1
11.8 13.53 13.34 13.63 13.5
17.7 20.89 20.13 20.13 20.38
23.6 25.59 26.96 26.52 26.36
29.5 32.66 34.12 32.13 32.97
35.4 38.42 38.86 39.59 38.96
41.3 46.29 44.84 44.78 45.3
47.2 51.8 51.38 51.22 51.47
53.1 57.72 57.76 57.68 57.72
11.8 13.26 13.08 13.32 13.22
23.6 25.69 26.37 25.61 25.89
35.4 38.61 38.53 38.88 38.67
47.2 51.75 51.41 50.94 51.37
11.8 13.82 13.99 13.8 13.87
23.6 25.99 27.67 25.76 26.47
35.4 36.59 38.13 38.9 37.87
47.2 51.02 51.28 51.68 51.33
11.8 13.38 12.23 12.93 12.85
23.6 26.05 25.11 24.11 25.09
35.4 39.08 39.06 38.62 38.92
47.2 51.75 49.73 51.7 51.06
11.8 13.02 12.31 11.95 12.43
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Table A2. Cont.

M_FRT K_FRT1 K_FRT2 K_FRT3 MeanK_FRT

23.6 25.7 25.67 25.28 25.55
35.4 38.94 38.61 38.87 38.81
47.2 51.73 50.93 50.76 51.14
11.8 13.56 13.02 13.12 13.23
23.6 26.3 26.18 26.58 26.35
35.4 38.17 38.74 38.73 38.55
47.2 52.12 51.59 51.4 51.7
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