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Abstract: In this work, the optimum homogeneous phantom size for an equivalent whole-body
electromagnetic (EM) modeling is calculated. This will enable the simple characterization of plane
wave EM attenuation and far-field link budgets in Active Medical Implant (AMI) applications in the
core region of the body for Industrial, Scientific, Medical and MedRadio frequency bands. A compu-
tational analysis is done to determine the optimum size in which a minimum phantom size reliably
represents a whole-body situation for the corresponding frequency of operation, saving computer and
laboratory resources. After the definition of a converge criterion, the computed minimum phantom
size for subcutaneous applications, 0–10 mm insertion depth, is 355 × 160 × 255 mm3 for 402 MHz
and 868 MHz and a cube with a side of 100 mm and 50 mm for 2.45 GHz and 5.8 GHz, respectively.
For deep AMI applications, 10–50 mm insertion depth, the dimensions are 355 × 260 × 255 mm3 for
402 MHz and 868 MHz, and a cube with a side of 200 mm and 150 mm for 2.45 GHz and 5.8 GHz,
respectively. A significant reduction in both computational and manufacturing resources for phantom
development is thereby achieved. The verification of the model is performed by field measurements
in phantoms made by aqueous solutions with sugar.

Keywords: electromagnetic propagation in absorbing media; biomedical applications of electromag-
netic radiation; biomedical computing; biomedical measurements; implantable biomedical devices

1. Introduction

The fast technological developments in electronics, biomaterials and computer science
constitute an unprecedent impulse towards the improvement of actual medical devices
and the promotion of new ones [1]. These new devices will have the capability to perform
in vivo diagnostic and therapeutic intervention, improving the quality of life for many
patients [2].

In this framework, the study of interaction between Electromagnetic (EM) fields and
biological tissues, commonly called bioelectromagnetics, has become a relevant research
topic. Its applications cover a very wide area within the healthcare system: therapeutic use
(e.g., regeneration of tissues), diagnostic purposes (Magnetic Resonance Imaging—MRI),
cancer and psychological disturbances research, etc. Considerable research has been carried
out on the biological effects which are caused by exposure to RF radiation [3–7].

Understanding the underlying interaction mechanisms caused by EM fields is funda-
mental for evaluating the possible impact on biological tissues and being able to design the
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link with wirelessly operated implanted medical devices (AMI) for improving the quality
of life of patients [2]. In this respect, Transparency Market Research (TMR) estimates that
the global implantable medical devices market will expand at a 4.6% compound annual
growth rate (CAGR) between 2019 and 2027 [8].

In this context, human bodies are modeled by EM phantoms. A phantom is a phys-
ical or numerical model with the same electrical characteristics as the human body to
accurately reproduce the effect of the body on electromagnetic radiation and vice versa.
These models can be classified according to different criteria: (1) nature (physical and
numerical/computer models) (2) composition (homogeneous and heterogeneous) and
(3) geometry (planar, spherical, cylindrical and more realistic models based on MRI im-
ages). The right choice among them depends on the accuracy required by the application.

The physical phantoms are classified as solid-dry, semi-solid and liquid phantoms.
Whenever possible, the latter is the most convenient approach, as a very reasonable trade-
off between complexity and accuracy is achieved. Liquid phantoms are selected in this
paper, as they allow the movement of an antenna-probe inside them to monitor the elec-
tromagnetic dosimetry. Moreover, they have been extensively employed as testbeds for
standard mobile phone compliance with widespread acceptance [9,10]. The impact of their
inherent homogeneous nature has been extensively reported in [11,12]. When employed to
characterize implanted antennas [13], they may be enough to test their performance and
potentially simplify the measurement setup [14]. The slight detuning experimented by an
implanted antenna in a homogeneous phantom [15] may well be made up by the simplicity
of the model, avoiding unnecessary calculations. This is particularly true when the target
is not the design of the implanted antenna but field measurements.

The liquid is usually water plus several additional elements in order to control the
permittivity and conductivity of the liquid. There are different liquid tissue models using
sugar, salt, oil-in-water emulsions or non-ionic surfunctants. Most common recipes add
sugar for low frequencies and Diacetin, Di-ethylene Glycol Butyl Ether (DGBE, sometimes
abbreviated “Glycol”) or Ethoxylated p-tert-octyphenol (Triton® X-100) for higher frequen-
cies (above 1 GHz) in order to control the permittivity [10,16]. Several manufacturers also
provide off-the-shelf tissue-simulating liquids [17,18]. In some countries, the handling of
these products requires the use of protective gear and specialized ventilation [19]. Thus,
for the sake of simplicity, the interest in this study will be focused on liquid, homogeneous,
water solvent and sugar-based phantoms as they are cost effective, simple to fabricate
and do not need any special protective protocol. Their 900 MHz frequency limit [10] will
be reviewed.

In order to provide a comprehensive solution, simplicity of corresponding homoge-
neous numerical phantoms should be consistently provided. It is known that numerical
computation of body phantoms demands a high number of resources. A key factor in
this respect is the phantom electrical size. Dismissing non-representative regions of the
phantom, where the actual field is negligible, would alleviate these required resources. This
is particularly meaningful for implants inserted into the trunk (e.g., pacemakers [20], spinal
cord stimulators [21], gastro-intestinal stimulators [22] and central venous catheters [23],
among others) where there are no clear criteria to define the minimum representative size
at commercial RF frequencies. Extracting the minimum homogeneous phantom size repre-
sentative of the whole body would build on the simplicity of sugar-based homogeneous
phantoms. This will be done in the present paper by studying the convergence of the
electric field attenuation inside a phantom with increasing size. The analysis will be done
in a simulation model, corroborated by anechoic chamber measurements for a specific case.
The bands to be analyzed are set to Industrial Scientific Medical (ISM) bands f = 868 MHz,
f = 2.45 GHz and 5.8 GHz; and MedRadio f = 402 MHz for AMI [24].

The paper is divided as follows: after the introduction, the second section deals with
the employed materials and methods. In the third section, the computational analysis
to determine the minimum required size of the phantom, the corresponding phantom
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characterization and the measurements at the anechoic chamber that will validate the
computer model are shown. The last section describes the conclusions.

2. Materials and Methods

In this section, the computational model that has been built for the analysis is firstly
described. Secondly, the methodology to fabricate a liquid phantom with sugar and the
characterization procedure to determine its dielectric properties are presented. This is
necessary to validate the computational model. Lastly, the setup and procedure followed
for the measurement of a plane wave attenuation in the fabricated physical phantom
is shown.

2.1. Computational Modeling

The particular trunk phantom that was used was modeled in CST Microwave Studio
using the Finite Integral Technique (FIT) solving method (Figure 1).
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The dielectric and conductivity properties were finely tuned to the specific frequency
of interest by a 4 Cole-Cole model based on the methodology explained in [25–27].

Plane wave excitation impinging upon the phantom along z direction was defined
(Figure 1a). As will be shown, the phantom shell can be a rectangular prism different
from a cube. In this case, once the field propagates inside the phantom, reflections from
internal phantom/air interfaces will depend not only on the incident angle but also on
its polarization [28]. Therefore, linear polarization variation (vertical or horizontal) was
also included in the analysis. “Open add space” boundary conditions that mimic physical
phantom construction were used.

E-field was computed along the z axis (Figure 1b). There was no receiving antenna
in the model. It was assumed that a possible implanted antenna would not be electrically
large, with a size according to the wavelength of operation. In this sense, it would be
electrically much shorter than the phantom size that will be proposed. In order to compare
with future measurements, a field normalization was done with respect to the transmitted
field at the interface (Z = 0).

2.2. Phantom Fabrication and Characterization Procedure

As mentioned in the introduction, homogeneous aqueous phantoms with sugar were
analyzed. In order to check the simulation results with a real model, different water- and
sugar-based recipes have been fabricated for the mentioned frequency bands.

There are different measuring techniques for the characterization of the dielectric
properties of materials [29]. In this research work, the 85070E high temperature dielectric
probe [30] and E8362B PNA Network Analyzer [31] have been used (Figure 2). The main
advantage of this method is its suitability for measuring liquids and its simplicity for
broadband characterization of material properties [29].

Figure 2. Setup for measuring the dielectric properties of liquid phantoms. (a) PNA. (b) Dielectric
probe. (c) Platform to move the sample. (d) Tank to store the phantom. (e) Heater and mixer to
fabricate the phantom.

2.3. Characterization of Plane Wave Attenuation

In this subsection, the setup and the procedure that was followed for the character-
ization of electric field attenuation in the fabricated phantoms are shown. In Figure 3,
the setup used in the anechoic chamber to measure the electromagnetic field inside the
phantom is described.
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Figure 3. Setup used in Queen Mary University of London’s anechoic chamber for the characterization of plane wave
attenuation. (A,B) Test bed of the phantom with a probe antenna inside. (1) Absorbing panels, (2) ruler, (3) structure
for moving the antenna, (4) feeding cable with ferrite-based absorbing material, (5) antenna, (6) backside foam structure,
(7) polystyrene box to ensure that the transmitter antenna and the implanted antenna are at the same height. (C) The two
implanted broadband antennas employed to cover the desired frequency ranges. (D) The transmitting horn antenna.

The transmitter horn antenna (model 3164-03 Dual Polarized Horn from ETS Lind-
gren [32]) (Figure 3D) allowed both horizontal and vertical polarization without the need
of rotating the antenna physically. The receiver antenna 1 (ant1) was designed to work
at 402 MHz (MedRadio band) and ISM 2.45 GHz and the antenna 2 (ant2) was designed
to work at ISM 868 MHz [23,33]. Both antennas showed good matching at 5.8 GHz. The
antennas in the described setup were used as field probes when inserted in the phantom. It
has been corroborated by simulations that their normalized radiation patterns were kept
mostly constant with penetration into the phantom (see Appendix A).

As can be seen, to ensure that no reflections were produced near the phantom, the
supporting table was surrounded with absorbing materials (Figure 3A, (1)). The impact of
the feeding cable on the measurement was reduced by several means: firstly by reducing
the cross section exposed to the plane wave on the z axis (see axes in Figure 1), secondly
by covering the feeding cable with a ferrite-based absorber (Figure 3B, (4)) and thirdly by
placing a foam-based absorber in front of it (Figure 3B, (1)). It was very important that the
plane wave impinged upon the cable cross section and not transversally. This guaranteed
that the disturbance in the measurement results was kept under a certain limit. To ensure
that cable position was correct, a foam structure was placed along the backside of the
phantom (Figure 3B, (6)). The ruler (Figure 3B, (2)) and the structure to move the antenna
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along (Figure 3B, (3)) were used to measure the insertion depth of the antenna into the
phantom in the direction of the plane wave radiation (z axis). They were not metallic.

With this setup, ant1 and ant2 were alternatively placed within the phantom at a
certain distance from the front interface (Z = 0) and the S21 was measured with respect to
the transmitting antenna located at 3.32 m (Figure 3). Implanted and transmitting antennas
were placed at the same height. A procedure was followed to measure the S21 parameter
for both polarizations for each position, while progressively introducing ant1 and ant2 in
the liquid phantom every 2 mm (for 2.45 GHz and 5.8 GHz) and every 3 mm (for 402 MHz
and 868 MHz) in the z direction. A change in polarization was made in the transmitter
side. Normalization was performed with respect to the measurement on the interface
of the phantom. This was done to de-embed the transmitted field magnitude (different
with operational frequencies) and the effect of the probe antennas for comparison with the
model. In all the measurements, the S11 parameter was checked to ensure that the antenna
was matched and that the obtained results were, consequently, reliable.

3. Results
3.1. Computational Analysis to Determine the Optimum Phantom Size

The minimum phantom size that reliably represents a whole body for implant commu-
nication and EM attenuation is addressed in this subsection according to the model described
in Section 2.1. An iterative increase of its size was performed until field convergence.

In order to set the direction for the size increment, a general scenario was analyzed.
The electric field distribution in vertical polarization when a 1 V/m (peak) plane wave
impinges upon one side of a 355 × 160 × 255 mm3 phantom with muscle theoretical
properties [25–27] is shown in Figure 4. It illustrates with the same scale the reflection at
the boundaries (outside and inside) and the penetration into the phantom at the different
commercial frequencies present in this study.
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Figure 4. Top view (355 mm × 255 mm) of simulated electric field distribution of a 355 mm × 160 mm × 255 mm trunk
phantom model: (a) f = 402 MHz, (b) f = 868 MHz, (c) f = 2.45 GHz and (d) f = 5.8 GHz.

It was observed that, at 402 MHz and at 868 MHz, internal reflections became signifi-
cant and the dimensions of the phantom should be increased to obtain a representative size
of the whole body. However, the top view in Figure 4 is already considered a limit for the
cross section of a representative human torso. Therefore, the geometrical dimension to be
increased to pursue convergence will be done in the y direction (height). The chosen step
was 100 mm. On the other hand, for the upper frequencies, at 2.45 GHz and at 5.8 GHz,
the convergence was expected to happen before reaching this condition, and a cubical
increment with a step of 50 mm will be performed in the three dimensions at the same time,
as long as 355 mm and 255 mm limits are not overcome for x and z directions. By truncat-
ing at a certain size defined by a convergence criterion, computational and experimental
resources will be saved.

Figures 5 and 6 represent the simulated normalized electric field amplitudes with
insertion distance at the four frequencies with tissue theoretical characteristics [25–27]. In
all cases, the incident field was along the z direction, as mentioned. The difference between
horizontal and vertical polarization was negligible due to the cubical symmetry of the
phantom for the higher frequency cases (Figure 6), as expected.

Convergence with increasing size was then analyzed. The criterion established to
define the optimum size of the phantom was by setting a maximum 2 dB difference
threshold limit at any point of the region of interest between two consecutive plots. For the
lower frequency cases, the worst polarization case was considered. The 2 dB criterion was
separately applied in two regions for the same plots (Figures 5 and 6) for subcutaneous
(0–10 mm insertion depth) and deep (10–50 mm insertion depth) AMI operation. For
example, for a subcutaneous implant, the 2 dB criterion could be met by a 100 mm3

size phantom, whereas the same frequency may well need a more extensive phantom
to accomplish the same criterion up to a 50 mm insertion length (deep implant). The
obtained dimensions for each frequency and cases are summarized in Tables 1 and 2. A
ratio of field attenuation with insertion distance is also provided. As expected, it increases
with frequency.
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Table 1. Minimum phantom size that reliably represents an entire body for implant communication
at a 10 mm to 50 mm insertion depth and corresponding absorption rate.

Freq [GHz]
Size [mm]

Absorption [dB/mm]
x y z

0.402 355 260 255 0.16
0.868 355 260 255 0.2
2.45 200 200 200 0.4
5.8 150 150 150 1.2

The size reductions with respect to a full body model estimated as 65 dm3 [34,35] are
summarized in Table 3. It can be observed that important savings of manufacturing re-
sources for phantom implementation was achieved in all cases and this reduction increased
with frequency. A minimum volume reduction of 49.8% at 402 MHz for deep implants and
up to a maximum of 99.8% at 5.8 GHz for subcutaneous systems with respect to the entire
body was obtained.
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Table 2. Minimum phantom size that reliably represents an entire body for implant communication
and EM attenuation for subcutaneous applications (0–10 mm insertion depth). The average absorption
rate is the same as for deep implants.

Freq [GHz]
Size [mm]

x y z

0.402 355 160 255
0.868 355 160 255
2.45 100 100 100
5.8 50 50 50

Table 3. Volume needed for the phantom for each case and reduction respect to whole body reference.
Subcutaneous (S), Deep implant (D).

Freq [GHz] Case Subcutaneous
(S) Deep Implant (D) dm3 Volume Reduction with Respect to

References [34,35] in. [%]

0.402 S 14.484 77.7
0.402 D 32.589 49.8
0.868 S 14.484 77.7
0.868 D 23.536 63.8
2.45 S 1 98.5
2.45 D 8 87.7
5.8 S 0.125 99.8
5.8 D 3.375 94.8

3.2. Measurements and Model Validation

Once the analysis had been done in the simulation model, simulated results were
corroborated by anechoic chamber measurements for a specific case, following the methods
described in Sections 2.2 and 2.3.

3.2.1. Phantom Dielectric Material Characterization

The results of the characterization of dielectric properties of the muscle homogeneous
phantom are shown in this subsection. A study on the influence of sugar concentration in
water’s dielectric constant and conductivity has been carried out to fabricate a liquid that
mimics muscle tissue. In Figure 7, the obtained values for different sugar concentrations are
shown. Once the target real permittivity was achieved, mostly between 40% and 50% con-
centrations at low frequencies, it could be observed that beyond 1.6 GHz, the conductivity
was higher than the one of the muscle. The opposite happened below this limit.

In this manner, liquid sugar-based phantoms are conducted for each of the studied
frequency bands, where real permittivity matching is prioritized (Table 4).

Table 4. Fabricated muscle phantom properties for the frequencies of interest.

Frequency
(GHz)

Target Properties [25–27] Measured Phantom Properties Phantom Material

εr σ εr σ Sugar (%)

0.402 57.1 0.79 57 0.4 51
0.868 55.1 0.93 54 0.75 51
2.45 52.7 1.74 52.5 2.5 41
5.8 48.5 4.96 48.8 7.5 29
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Figure 7. (a) Measured real part of permittivity (black lines) and (b) conductivity (grey lines) for different sugar concentration
liquids and muscle theoretical values [25–27].

As expected, higher/lower conductivity values were obtained above/below the afore-
mentioned limit of 1.6 GHz. However, for simplicity, they were considered as references
for computer model validation as long as the numerical model imported these consis-
tent properties for comparison. Therefore, emphasis was given to the coherence of the
numerical-experimental validation. Once the results are verified, theoretical permittivity
values corresponding to muscle properties can be adopted without loss of generality.

3.2.2. Computer Model Validation

A 355 mm × 160 mm × 255 mm polystyrene tank was filled with the corresponding
tissue mimicking liquids of Table 4 as a reference design. At lower frequencies (402 MHz,
868 MHz), the chosen height y (160 mm) was below the minimum threshold defined by
Table 1 for deep implants. Oscillations coming from reflections on the boundaries due to the
electrical small phantom size should be expected. This phenomenon should be captured
by the probe antennas inserted in the physical phantom. If the phantom is electrically large
with dimensions mainly above the thresholds dictated by Table 1, as the present case for
the upper frequencies 2.45 GHz and 5.8 GHz, the tendency should be decreasingly linear
with minimum oscillations, regardless of the type of antenna.

In Figure 8, the measured results for the characterization of plane wave attenuation
for the proposed phantom size with the liquids corresponding to Table 4 and the setup
described in Section 2.3 are shown for both antennas and both polarizations for each posi-
tion. Matching of the antennas was corroborated in each situation (Figure 9), disregarding
antenna 2 at 402 MHz in Figure 8a, as expected.

The performances of the antennas at 2.45 GHz (Figure 8c) and 5.8 GHz (Figure 8d)
followed the same trend in all cases. In each case, the difference between the antennas was
due to the gain variety and polarization sensitivity. For distances larger than 60 mm at
2.45 GHz and 20 mm at 5.8 GHz, the measured S21 parameter was below −110 dB and
became erratic in at least one polarization, so this region was neglected as noise. The
four plots mainly overlapped for each frequency (2.4 GHz, 5.8 GHz) once the values were
normalized by their respective maximum (Figure 10). This demonstrated that the antenna
and its polarization did not have an impact on the normalized expected results for these
high frequencies and that the phantom was representative of the whole body.
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A good agreement between the measurements and simulations can be observed when
the properties that were used in the simulation were the ones of the fabricated phantom
(Figure 10, markers and dashed lines, respectively). When real (theoretical) [25–27] proper-
ties were imported in the model, as in the previous section, a different slope with respect
to the measured results was observed (Figure 10, solid lines), as expected. The difference
between the real (theoretical) and the phantom’s conductivities explains the variability of
the plane wave attenuation.

On the other hand, at 402 MHz and 868 MHz, the tendency was not consistent. The
dips were a sign of internal reflections, which were not negligible for lower frequencies
as the phantom exhibited a small electrical size. The internal reflection phenomena at
the phantom boundaries made the radiation pattern variability between antenna 1 and
2 have an impact on the results. This is consistent with a phantom size smaller than the
indicated by Table 1. Moreover, the anechoic chamber was prepared to work efficiently for
frequencies above 1 GHz.

According to Section 2, in the computational model, ideal probes were used inside the
phantom to monitor the field. The equivalence “antenna in the measurement–probe in the
model” was only fulfilled for the 2.45 GHz and 5.8 GHz frequencies where the phantom
was above the dimensions stated by Table 1 for deep implants: convergence was achieved
and reflections were kept at a low level. In Appendix B, simulations showing the effect of
using “open add space” boundary conditions vs. using an unlimited phantom in x and y
axes (“periodic” boundary conditions) are shown to reinforce this idea.

The results certify that the methodology and the simulation tool were working prop-
erly with the aforementioned assumptions. Consequently, the computer model was repre-
sentative of a whole body once the theoretical dielectric values [25–27] were employed in
the analysis (as in Section 3.1) and it allowed to extract conclusions about the significant
size of the phantom depending on the operational frequency.

4. Conclusions

In this work, a methodology to calculate the optimum homogeneous phantom size
for plane wave electromagnetic (EM) attenuation characterization in the human torso is
defined. It is applicable for far-field link budgets calculations in Active Medical Implants
(AMI) at Industrial Scientific Medical (ISM) and MedRadio frequency bands.

Increasing the size of the defined numerical phantom until field convergence is achieved
poses a convenient strategy to truncate the dimensions that represent the whole body.
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By applying a 2 dB convergence criterion, a phantom size of 355 mm × 160 mm ×
255 mm for 402 MHz and 868 MHz frequency bands and 100 mm3 and 50 mm3 cubic
phantoms for 2.45 GHz and 5.8 GHz frequency bands, respectively, are recommended for
subcutaneous applications (0–10 mm insertion).

Likewise, for deep implanted applications (10–50 mm insertion), a size of 355 mm ×
260 mm × 255 mm for 402 MHz and 868 MHz and a cube of 200 mm3 and 150 mm3 for
2.45 GHz and 5.8 GHz frequency bands, respectively, are recommended.

Very significant reductions of the higher frequencies are obtained with respect to a
full body model: between 49.8% and 77.7% for the lower frequency cases and between
87.7% and 99.8% for the higher frequency cases. Thus, solid foundations to reduce the
computational and manufacturing resources to implement representative EM phantoms
are provided.

The measured field results by two implanted broadband probe antennas into simpli-
fied water and sugar liquid phantoms showed virtually the same values when normalized
by the maximum field at the phantom/air interface as soon as the phantom size is above
the specified limits.

These measured results were compared with the model predictions and certified that
they are independent from the implanted antenna as long as the latter was not electri-
cally large.
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Appendix A

In this appendix, the simulations that illustrate that the two antenna’s normalized
radiation patterns are kept mostly constant with penetration into the phantom along short
distances are shown. The dimensions of the phantom are the ones that were taken for
verification purposes in measurements (355 mm × 160 mm × 255 mm). Its properties are
the ones of the measured phantom (Table 4). The antennas are placed in the center of the
phantom according to Figure A1.

Simulated normalized gain patterns at each particular frequency with insertion dis-
tance variation are shown in Figures A2 and A3 to corroborate their stability. The θ = 180◦

direction indicates the direction pointing at the air–phantom interface according to the
coordinate system of Figure 1. Axis x is labeled on the patterns.
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As can be observed, the normalized radiation patterns are kept mostly constant with
penetration into the phantom along short distances.

Appendix B

In this appendix, the simulations that show the effect of using “open add space”
boundary conditions vs. using an unlimited phantom in x and y axes (“periodic” boundary
conditions) are shown (Figure A4). The 3D model takes 355 mm × 160 mm × 255 mm as
the theoretical properties [25–27].

For the high frequency cases (2.45 GHz and 5.8 GHz), the effect for the studied phan-
tom (355 mm × 160 mm × 255 mm) was negligible because the phantom was electrically
large and, consequently, using open add space boundaries or using a phantom infinite in x
and y directions gave the same results. However, the effect was very relevant for the low
frequency cases (402 MHz and 868 MHz) where important changes were observed: when
employing periodic boundary conditions (equivalent to infinite body), the field amplitude
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decreases linearly and oscillations are leveled. This is clearly because the phantom is not
electrically large enough to ignore the reflections due to the boundaries. The model was
conceived to always employ “open add space” boundary conditions in a situation where it
is electrically large. This is done because it was geared to suggest a physical phantom of
the same dimensions.
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