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Abstract: Cracks are pathologies whose appearance in ceramic tiles can cause various damages due
to the coating system losing water tightness and impermeability functions. Besides, the detachment
of a ceramic plate, exposing the building structure, can still reach people who move around the
building. Manual inspection is the most common method for addressing this problem. However, it
depends on the knowledge and experience of those who perform the analysis and demands a long
time and a high cost to map the entire area. This work focuses on automated optical inspection to find
faults in ceramic tiles performing the segmentation of cracks in ceramic images using deep learning
to segment these defects. We propose an architecture for segmenting cracks in facades with Deep
Learning that includes an image pre-processing step. We also propose the Ceramic Crack Database, a
set of images to segment defects in ceramic tiles. The proposed model can adequately identify the
crack even when it is close to or within the grout.

Keywords: deep learning; segmentation; ceramics; cracks; image

1. Introduction

In civil construction, buildings must be able to withstand the action of degradation
agents for a predetermined or predicted time [1]. The building’s facades include the
cladding system that serves to protect the building from external degradation agents,
in addition to providing functional and aesthetic comfort to its users [2]. Pathological
manifestations are common at these points, and they occur more frequently in ceramic
materials, which are used on a large scale in buildings. Besides, these manifestations arise
in other types of materials, such as mortar and stone. They can be related to several factors
such as excessive load, humidity variation, thermal variation, biological agents, material
incompatibility, and atmospheric agents [3]. These manifestations compromise the essential
function of protection, which aims to protect the coated surfaces against the agents that
cause deterioration that can present themselves in different ways. Thus, the consequences
can range from aesthetic problems or performance of coating to risks of accidents with
people, substantially aggravated by the height of the buildings [4].

The main types of pathological manifestations associated with ceramic facade cover-
ings are cracks, efflorescence, detachment, and those resulting from biological processes.
Among these, the fissure is the most found in the literature since it compromises the build-
ing safety, puts at risk the people that travel around it, and presents a more critical aesthetic
aspect [3,5–7].

A fissure’s main characteristic is the rupture appearance on the ceramic plate surface
or body, causing the loss of the facade’s integrity and uncovers some of its components,
the plates, or joints. When the fissure happens, a detachment of the substrate plate is
generated [4].

Image processing techniques (IPTs) are currently applied in civil engineering for
images collected from inspections. These techniques emerged to detect cracks in the civil
infrastructure, partially reducing the work done by human beings, and used several image
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processing techniques to extract characteristics of cracks in the surfaces of the images [8].
However, many structure analyses and inspections are carried out manually, and this
requires a lot of knowledge, experience, and time from those who will perform this activity,
thus making the activity long and time-consuming.

Automatic crack detection is essential in places that are difficult to access due to height
or scale, to avoid exposing people to dangerous situations, and to speed up the inspection
process [9]. On the other hand, applying procedures takes time due to the complexity of
the work performed, including the installation of scaffolding, observation of a large area,
and even the use of elevators or Bosun’s chair.

Therefore, to create an automatic crack detection solution in ceramics, we focus on
an image segmentation methodology. Such methodology includes a pre-processing step
because many ceramics have textures in opposition to concrete that has linearity in its
texture. The proposed methodology also includes a deep learning model to solve the
problem of crack detection in ceramics, which in the future may be coupled to drones to
carry out these inspections in a less manual, faster, and less dependent on human action
with specific knowledge for the area. This solution also allows the location of the crack to
be identified by means of the segmented image, since the crack is segmented, showing its
exact location, because in facade inspections, in addition to identifying that there is a crack,
which other works do through classification, it is important to know where it is located. We
can generate an overlay of the images, highlighting where the crack is for future analysis
through segmentation. We created a database to implement the segmentation models that
contain images of defective ceramic plates and the basic crack truth in each image.

In summary, this work has as a novelty the detection of cracks through segmentation.
The proposed methodology identifies the exact location of the crack in the image. A
pre-processing step in the input enables such identification to increase the prominence
of the cracks in the raw images. Thus, it facilitates the model’s learning process. As a
novelty, the work also brings a database of cracks in ceramics that can be used to improve
future research.

This paper is organized as follows. We present related works in Section 2 and the
proposed approach to address the segmentation problem in Section 3. In Section 4, the
metrics, the loss function, and the experimental configuration are described, and we also
present our set of images for segmentation of ceramic cracks. In Section 5, the results are
described, and the experiments are discussed. Finally, in Section 6, we present our main
conclusions and describe future research.

2. Theoretical Foundation

Image segmentation is a process that aims to divide images into regions or objects
of interest that are homogeneous. This activity is the initial step in image processing
applications, such as pattern recognition and image analysis. Image analysis includes
characterization and representation of objects and measurement of resources. This process
is mainly used to find objects and shapes [10]. There are currently several types of segmen-
tation, usually based on formats, pixel characteristics, histograms, and movement. Each
type supports common features in pixels or a group of pixels. [10,11]. The evolution of
deep learning to various kinds of computer vision problems in the literature encourages
this work to build a crack segmentation model based on deep learning.

IPTs had a significant advance in the last years. However, other problems have no
solution found by IPTs yet, such as the real world’s perception (lack of context of images,
images with shadow, textures, variation in lighting), shading, and lighting variation. In
parallel to this, there has been an exponential growth in the use of convolutional neural
networks (CNN), and they have obtained better results for these problems. CNNs, too,
have been used to classify cracks and fissures [8,9,12–15]. However, none of the proposed
CNNs deals specifically with coating ceramics.

There are several studies in the literature on crack detection [8,9,11,12,16–18], but
regarding cracking in ceramics there are few works and each surface has its specificity.
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Young-Jin Cha in [8] applied a vision-based method using a deep architecture of convo-
lutional neural networks (CNNs) to detect concrete cracks without calculations as defect
characteristics. He aimed to create a model that could solve the problem without the use
of processing image techniques. Moreover, Young-Jin Cha compared the obtained results
with traditional methods based on edge detection. CNNs obtained the best performance,
but the work is not related to identifying the location of the crack in the image, but in
an evaluation of an intact or cracked part, which for a facade inspection is not ideal, and
it is necessary to identify where the crack is located. In this work, it was resolved using
segmentation, managing to extract the exact location of the fissure

In another study, Silva W.R.L [12] aimed to increase the level of automation in the
inspection of concrete infrastructure when combined with unmanned aerial vehicles. The
crack detection model developed is based on an image classification algorithm of the deep
learning convolutional neural network (CNN). A relatively heterogeneous dataset has been
provided. The authors claimed that deep learning allows the development of a concrete
crack detection system responsible for several conditions, such as different light, surface
finish, and humidity that a concrete surface can display. In this work, the model VGG16 [19]
was used as a backend to the transference-learning technique. Silva’s best experiment
produced a model with an accuracy of 92.27%. However, Silva’s work deals with image
classification, stating whether or not there are cracks in concrete structures. Moreover, it
does not make clear where the crack is located, which is essential for automated inspection
of structures.

In Ahmed Mahgoub Ahmed Talab [18], the authors presented a new approach in
image processing to detect cracks in the images of concrete structures. The method involves
three steps. Firstly, changing the image to grayscale to use the Sobel method to detected
edges and find the cracks. Second, determining an appropriate threshold in a binary image
and classifying all pixels into two categories: background and foreground, and obtaining
the region’s area. Finally, using the filter area and changing the area if it is smaller than
the specified number. Third, after applying the Sobel filter to eliminate residual noise,
performing the Otsu method to detect large cracks. The article describes a method for
detecting crack patterns in cement using image processing techniques. According to the
author, this method’s advantage is the precise and accurate detection of cracks in the
images. The experimental work shows that the method is better than other widely used
techniques. However, it does not use deep learning, and it is limited only to the use of
image processing, which has the advantage of the low computational cost. Moreover, the
work from Talab does not present the same generalization capacity as CNNs. In opposition,
the methodology proposed in this work includes the combination of deep learning with
image processing, improving the generalization in crack detection.

3. Crack Segmentation of Ceramic Surface

This work presents an architecture for segmenting cracks in facades with Deep Learn-
ing that was named the CCS model (Segmentation Model for cracks in ceramics) that
includes a pre-processing step and a deep neural network for segmentation proposal fol-
lowed by a threshold operation, as shown in Figure 1. The output is a binary image that
brings white lines where the cracks were located, and, through overlapping images, it is
possible to highlight the cracks in the original image. At CCS, pre-processing is done in the
database before using the segmentation model. The pre-processed image with its label is
adopted as input to perform the model’s training. After training, only the original image is
needed to run this network.
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Figure 1. Architecture for crack segmentation in CCS model.

3.1. Data Pre-Processing

Pre-processing became necessary due to differences in context in the images, as just a
grayscale image binarization is not enough, as much of the area of interest in the image is
lost, and in some cases, the cracks present in the image disappearedm as shown in Figure 2.
With that, it is necessary to apply some techniques in addition to binarization. Several
experiments were carried out regarding the detection of lines, edges, and objects through
computer vision to find a generic pre-processing for this problem.

Figure 2. Example of a pre-procesing: (up) Original image, (middle) simple binarization, and (down) performed pre-
processing on the original image.

The techniques used are listed below:

1. Histogram equalization;
2. Gaussian filter (with kernel 3 × 3);
3. Light and contrast adjust;
4. Inversion;
5. Erode and dilate functions (with kernel 5 × 5);
6. Finally, Otsu thresholding.
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As seen in Figure 2, the pre-processing result highlights the area of interest, becoming
much more in evidence, thus facilitating the neural network’s performance in the extraction
of characteristics.

This configuration was obtained through several attempts to highlight the images’
cracks, using digital image processing techniques until reaching an acceptable result, where
it obtained a better learning result by the model. The histogram equalization was used
to change the image values’ distribution, allowing the sharp differences to be reduced
and accentuating details not previously visible. The Gaussian filter was used to soften
the image, blurring it to remove noise, using a 3 × 3 kernel to make a smaller effect since
the kernel’s size influences the blurring power. Light and contrast adjustment was used
to correct images with excessive lighting problems, not impacting those with standard
lighting. The pixel inversion used in the images was necessary to comply with the standard
established in the labeling of the images, where it was decided that everything white would
be cracked surfaces and what was black would be parts of the ceramic, so the inversion
made what was black turn white, and whatever was white turned black, since the grayscale
highlighted the cracks in black. The erosion and dilation process was applied to solve the
discontinuity of some cracks that broke during the blurring process, using a 5 × 5 kernel to
continue the cracks, and lastly, a threshold was used. Some other techniques were tested
but, in analysis, no significant change was seen for the objective that wanted to be achieved
(highlighted in the fissures) and did not significantly influence the learning of the model.

3.2. Segmentation Model

The segmentation model uses the U-Net, proposed by Ronneberger et al. [20], which
stands out in the segmentation problems due to the better performance, even with few
images for training. The peculiar name of U-Net is due to the “U” shape of its architecture.
The network input is the image that needs to be segmented. The output is the image label,
a label that represents the model’s expected output.

The network has a typical convolutional network architecture; however, it has two
complementary paths, the contracting path (left side) and the expansive path (right side).
The contracting path handles executing controls to extract characteristics from the image.
This process reduces the dimensionality and increases the filters applied to extract features,
generating a map for each level. On the other hand, the expansive path handles reducing
the filters and increasing the dimensionality. A concatenation process is performed with
the correspondingly cropped feature map from the contracting path to reach the segmented
image’s formation.

The contraction path is a typical convolutional network architecture. It contains
nine learning convolutional layers and four max pooling operations after every three
convolutions [20]. We applied two 3 × 3 convolutions in our implementations, each
followed by a rectified linear unit (ReLU) and a 2× 2 max pooling operation with stride 2
for downsampling. The number of feature channels is doubled for each downsampling step.
A cropping process is made during the expansive path to avoid the loss of border pixels
in every convolutional operation [20]. In our implementations, the feature map is halved
by a 2 × 2 up-convolution [20] in an up-sampling process, followed by concatenation
with the correspondingly cropped feature map from the contracting path, and two 3× 3
convolutions. A ReLU operation follows each convolution. Cropping is necessary due to
the loss of edge pixels in every convolution. A 1× 1 convolution is used in the final layer
to map each feature vector of the component to the desired number of classes.

3.3. Threshold

As a final step, it is necessary to apply a simple threshold to perform a binarization of
the image and ensure that the end of the image values is of 0 (zero) or 1 (one), with 0 points
for no cracks and 1 point for cracks in the semantic segmentation of pixel by pixel. For each
pixel, the limit value used was 0.5, where, if the pixel value is less than the limit, it will be
set to 0. Otherwise, it will be defined with the maximum value defined, in this case, 1.
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4. Methodology

This section describes the methodology followed in this article. First, we describe the
loss function used in the segmentation models. Next, we describe the database, metrics,
and the experimental setup to obtain the results.

4.1. Loss Function

In this work, we used the Jaccard distance as our loss function. The Jaccard distance
measures dissimilarity between sample sets. This function is complementary to the Jaccard
coefficient or intersection over union. The loss function is calculated as:

L(A, B) = 1− |A ∩ B|
|A ∪ B| ,

where A and B, in the CCS model, are binary images of the same size.

4.2. Ceramic Cracks Database

We propose a ceramic crack database with 167 ceramic crack images. The images were
collected by students of the University of Pernambuco from the civil engineering depart-
ment. The database consists of images of a fixed resolution of 256 × 256 in RGB format
without any pre-processing. Each element is labeled with a binary image of segmented
cracks. The data has various characteristics, like different sizes, angles, illumination, dis-
tances, or even materials and textures. The database has images of building facades with
ceramics with cracks of different shapes, both superficial and more profound. Besides,
the database has images of ceramics with different colors and textures, which enrich its
diversity and give more information to the model used. Figure 3 shows examples of the
database images, the first line (up) shows the original images resize by 256 × 256, and the
second line (down) shows the respective segmented label.

Figure 3. Examples of images collected to assemble the database and their respective ground truth
(black and white).

A label corresponding to the images is required to perform the training of the segmen-
tation networks. Those labels are the expected results of the network. They were manually
generated for all the collected data and featured white for the original image regions
characterized by a crack and black for all other regions. The database will be available for
public use in future works related to the ceramic crack segmentation problem at the link
https://github.com/gerivansantos/ceramic-cracks-dataset (accessed on 2 June 2021).

https://github.com/gerivansantos/ceramic-cracks-dataset
https://github.com/gerivansantos/ceramic-cracks-dataset
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4.3. Metrics

The described metrics compare the previously mentioned approaches and evaluate
which provided the best solution. For this purpose, the metrics selected are the Intersection
over Union (IoU), Precision, Recall, the Kappa Coefficient, and Specificity.

4.3.1. Intersection over Union

IoU or Jaccard coefficient is a measurement commonly used to validate semantic
segmentation, and it is direct and effective. It is the intersection between predicted seg-
mentation and ground truth divided by the union between the two, as demonstrated in
Figure 4. This metric oscillates between 0 and 1, or 0 and 100%, wherein 0 indicates no
intersection and 1 indicates an intersection equal to the union.

Figure 4. Representation of the Intersection over Union.

4.3.2. Precision and Recall

Precision demonstrates the percentage of the relevance of the results. Conversely, recall
illustrates the percentage of relevant results that are correctly classified by the algorithm. It
relates the number of correct positive predictions to all positive predictions. The following
equations calculate precision and recall:

Precision =
TruePositives

TruePositives + FalsePositives

Recall =
TruePositives

TruePositives + FalseNegatives

4.3.3. Kappa Coefficient

The Kappa Coefficient is a statistic that evaluates the relation between two sets of data,
calculated as follows:

k =
P0 − Pe

1− Pe
,

where P0 is the relative acceptance rate and Pe is the hypothetical acceptance rate. Thus,
the closer k is to 1.0, the more the two data sets are related.

4.3.4. Specificity

Specificity was also measured, and it is defined as the proportion of real negatives
predicted to be negatives (True Negatives), as illustrated in the following equation. It im-
plies another portion of real negatives that were predicted to be positives (False Positives),
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which must equal 1 when summed with specificity. Another existing metric is sensitivity,
which measures the proportion of correctly classified real negatives.

Speci f icity =
TrueNegatives

TrueNegatives + FalsePositives

4.3.5. Confusion Matrix

The Confusion Matrix contains information on the real data and a classifying system’s
predictions, and it is commonly used to evaluate such a system. It is a table with four
different relations between real and predicted values: True Positives (TP), correctly pre-
dicted positives; True Negative (TN), correctly predicted negatives; False Positives (FP),
type 1 error, incorrectly predicted positives; False Negatives (FN), type 2 error, incorrectly
predicted negatives. Thus, it is useful in measuring Precision, Recall, and Specificity.

4.4. Experimental Setup

This paper sets a benchmark over the proposed database, using state-of-the-art models.
The 70% of the data is randomly allocated for training and 30% towards testing in the
several experiments performed, which were used as comparative parameters for the
database. The models selected to make a comparison with the proposed model were
variations of implementations of U-Net [20] and LinkNet [21]. The criteria for its selection
are the relevance in the image segmentation literature and the good accuracy in solving the
proposed problem. Data augmentation was also applied to improve the generalization of
the model.

The used architecture, backbone, and weight initialization method are illustrated in
Figure 5. The backbone is the network architecture implemented in each model. In this
work, we use the different architectures like resnet34 [22], resnet50 [22] and vgg16 [19],
which are 34 layers deep, 50 layers deep and 16 layers of deep, respectively. The initializa-
tion of the weights is carried out randomly and using the weights of the pre-trained neural
network with the ImageNet database [23].

Input images are set with size 224 × 224 to U-Net and LinkNet models. We apply the
Adam algorithm, a stochastic gradient descent method based on the adaptive estimation of
first-order and second-order moments [24]. In our experiments, we set the hyperparameters
to the Adam algorithm with β1 = 0.9, β2 = 0.999, and ε = 10−07, with a learning rate of
α = 0.001.

A total of 20 experiments are performed 30 times to ensure that the results were
statistically significant, and from them were extracted the metrics used to compare the
results. Additionally, since fine-tuning presents good results in deep learning applications,
we analyzed its efficiency in this work approach.

Figure 5. Conducted experiments, where (A) are models, (B) are backbones, and (C) are weight
initialization, where “None” is the initialization of the weights carried out randomly.
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5. Results and Discussions

The models were selected according to their success in the segmentation of images, as
previously presented. After that, 20 fine-tuning experiments were performed, altering the
models’ backbone and the weight initialization. Table 1 outlines each model’s three best
results, utilizing the IoU metric.

Table 1. Result of the metrics for the U-Net and LinkNet models, and the different network architectures. The weights of a
pre-trained network with ImageNet are used to initialize each of the models.

Metrics

Models

U-Net LinkNet

CCS † resnet50 † resnet50 resnet34 resnet34 resnet34 † vgg16

IoU 0.865 0.685 0.681 0.675 0.697 0.684 0.672
Precision 0.999 0.713 0.727 0.720 0.727 0.711 0.704

Recall 0787 0.946 0.933 0.929 0.946 0.922 0.897
Kappa 0.724 0.805 0.808 0.803 0.814 0.794 0.775

Specificity 0.999 0.988 0.988 0.988 0.988 0.987 0.988

† For these models, weights were randomly initialized.

In terms of average IoU, our model CCS overcame the IoU value from the other
models. We obtain an index of 86.5% in CCS model, and in the U-Net and LinkNet models,
the value is around 68%. The obtained average precision in our approach in the U-Net
model reaches a value of 99.9%. The U-Net and LinkNet models demonstrate that the
resnet50 and resnet34 models, when initialized with the ImageNet weights, present an
average precision of 72.7%. Regarding the average recall, to U-Net with resnet50 backbone,
without weight initialization, and LinkNet with restnet34, initialized with the ImageNet
weights, obtained percentages were equal to 94.6%. This value overcomes the average
recall of our approach, with a value of 78.7%. Our approach shows a high value of accuracy
and a low recall. However, most of our predicted labels are correct.

The best average kappa coefficient is obtained by a LinkNet model with a resnet34
backbone, using the ImageNet weights, with 81.4%. All the models to U-Net and LinkNet
achieve a value of kappa coefficient around 80%. The lower value is from our approach,
with 72.4%, followed by the LinkNet model with vgg16 and ImageNet initialization.
We observe that the models with vgg16 architecture reach the low values of the kappa
coefficient. The average value of specificity for the U-Net and LinkNet models reached a
value of around 98%. Our approach obtains a value of 99.9%, overcoming the other values;
nonetheless, it does not seem to show a significant difference.

Regarding the confusion matrix, our approach correctly classified 99% of the pixels
that belong to the crack (Figure 6a). However, 27% of the pixels that are not from the crack
are classified as part of it. Using the U-Net model, resnet50 with the random initialization,
95% of the pixels are correctly classified as cracks (Figure 6b). For all other implementations
(Figure 6c,d), 93% of the crack is correctly classified. The Linknet model, with resnet34
and initialization with ImageNet, correctly classify 95% of the crack pixels (Figure 6e),
surpassing the other implementations (Figure 6f,g) with values of 90% and 84%.
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(a) CCS † (b) U-Net resnet50 † (c) U-Net resnet50

(d) U-Net resnet34 (e) LinkNet resnet34 (f) LinkNet resnet34 †

(g) Linknet vgg16

Figure 6. Confusion matrix from the prediction to (a–d) U-Net model, where (a) is CCS model, (e–g) LinkNet model. The
weights of a pre-trained network with ImageNet are used to initialize each of the models (For the models †, weights were
randomly initialized).

Qualitative analysis can be illustrated with the results presented in Figure 7. The
Figure shows an example image (Figure 7a) and its ground truth (Figure 7b). The original
image is inputted to the network, having the expected output (Figure 7c–i). It is possible
to observe mistakes in segmentation labeling in some regions. Figure 7c,h shows a thick
segmentation in comparison with the other predictions, overestimating the region where
the crack is. A fine segmentation can lose crack representation. In Figure 7e, some parts
of the crack are not identified. It should be noted that the models above can segment the
cracks that are above or near the grouts. In some IPTs, such as fissures, they are easily
confused with grouts. During the training, some analyses were made, and it was observed
that by increasing the number of epochs in the training, the model was able to learn more,
including understanding when the cracks were overlapping in the grout reducing the
problem of not identifying cracks near or overlapping the grout.



Appl. Sci. 2021, 11, 6017 11 of 13

(a) Original image (b) Ground truth

(c) CCS † (d) U-Net resnet50 † (e) U-Net resnet50

(f) U-Net resnet34 (g) LinkNet resnet34 (h) LinkNet resnet34 †

(i) LinkNet vgg16

Figure 7. Example of (a) an original image and (b) the ground truth used for testing. Prediction of the (c–f) U-Net, where (c)
is CCS, and (g,h) LinkNet models. The weights of a pre-trained network with ImageNet are used to initialize each of the
models (For the models †, and weights were randomly initialized).



Appl. Sci. 2021, 11, 6017 12 of 13

6. Conclusions

In this work, we analyze deep learning models’ capabilities in the segmentation of
cracks in ceramics tiles. We propose a pre-processing methodology to improve the perfor-
mance of models to ceramic crack segmentation. Besides, we present the Ceramic Cracks
database, a set of images with ceramic tiles with cracks destined for crack segmentation.
Our results show that it is possible to identify cracks in ceramic images, although there
are a few minor errors. The crack is identified with a high precision value in the model
using a pre-processing methodology. The U-Net and LinkNet models achieve good results,
using the resnet50 and resnet34 as backbones, respectively, and the weights of a pre-trained
network with ImageNet to initialize. By increasing the number of epochs during training,
the models manage to segment cracks even when they are in the tiles’ grout.

Thus, other researchers can use the proposed study and database to improve their
segmentation issues using computer vision. This paper then contributes to a new seg-
mentation problem and a new database for crack segmentation in ceramic tiles. Future
works are expected to compare the proposed solution’s efficiency to other deep learning
segmentation models and update the database, increasing the number of instances. We
also intend to study the computational cost of the proposed solution and other solutions in
the literature. On the other hand, we expect to implement this work in drones for optical
facade inspection, which allows a more efficient inspection at a low cost.
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