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Abstract: For autonomous vehicles, it is critical to be aware of the driving environment to avoid
collisions and drive safely. The recent evolution of convolutional neural networks has contributed
significantly to accelerating the development of object detection techniques that enable autonomous
vehicles to handle rapid changes in various driving environments. However, collisions in an au-
tonomous driving environment can still occur due to undetected obstacles and various perception
problems, particularly occlusion. Thus, we propose a robust object detection algorithm for envi-
ronments in which objects are truncated or occluded by employing RGB image and light detection
and ranging (LiDAR) bird’s eye view (BEV) representations. This structure combines independent
detection results obtained in parallel through “you only look once” networks using an RGB image
and a height map converted from the BEV representations of LiDAR’s point cloud data (PCD).
The region proposal of an object is determined via non-maximum suppression, which suppresses
the bounding boxes of adjacent regions. A performance evaluation of the proposed scheme was
performed using the KITTI vision benchmark suite dataset. The results demonstrate the detection
accuracy in the case of integration of PCD BEV representations is superior to when only an RGB
camera is used. In addition, robustness is improved by significantly enhancing detection accuracy
even when the target objects are partially occluded when viewed from the front, which demonstrates
that the proposed algorithm outperforms the conventional RGB-based model.

Keywords: LiDAR; RGB image; object detection; occlusion; height map

1. Introduction

According to a recent technical report from the National Highway Traffic Safety Ad-
ministration (NHTSA), 94% of collision accidents on roads are caused by careless drivers,
and efforts are being made to develop technologies to prevent such accidents, e.g., au-
tomated driving systems (ADS). Recently, with the development of artificial intelligence
technology, a driving environment recognition algorithm that can determine lanes, obsta-
cles, and roads using various sensors has been applied to improve ADS performance [1].

Most driving environment recognition algorithms that mimic artificial intelligence
applied to ADS use convolutional neural networks (CNN), which are characterized by end-
to-end learning that automatically extracts and learns features from image data [2]. CNNs
are essential for perceiving the driving environment because they can easily understand the
characteristics of an image by scanning the entire image through the convolution kernel [3].
In the process of detecting an object using a CNN, a process to classify a specific object class
in an image and a regression process to predict a bounding box (representing the geometric
information of an object) are performed simultaneously [4]. The detection accuracy of
these algorithms has improved gradually with the availability of large amounts of labeled
data through the ImageNet visual recognition challenge [5] and Pascal VOC challenge [6].
In addition, its commercial use is increasing with the accelerated learning and testing
computation afforded by parallel GPU computation [7].

Object detection technology in ADS is used actively to detect various objects on the
road, e.g., vehicles, pedestrians, and cyclists, and many safety-related studies have been con-
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ducted because defects in the detection system can have serious consequences. However, in
an autonomous driving environment, collision accidents can still occur due to undetected
obstacles and various recognition problems [8]. According to a California Department of
Motor Vehicles autonomous vehicle accident report, Google-Waymo, which has driven the
longest distance in autonomous driving mode, has an ADS system defect when detecting
and responding to rear collisions [9]. Such system faults are caused by sensor inputs being
influenced by weather conditions, e.g., rain and fog, or by environmental variables, e.g.,
occlusion or truncation of surrounding vehicles and pedestrians [10]. Thus, developing an
ADS that can predict and respond to these situations accurately remains a challenge [11,12].
Occlusion occurs when an object to be detected is positioned behind a fixed element or
other objects in the image, and truncation occurs when the camera cannot observe the
entire object. Therefore, to develop an ADS that is more robust to environmental variables,
algorithms that analyze and synthesize information from various areas using RGB cameras
and light detection and ranging (LiDAR) to determine the situation have been proposed
previously [13,14].

An RGB camera creates an image by combining the reflected visible light with the
intensity values of the RGB color spectrum (0–255) for each of the three channels. Similar to
human vision, the characteristics of the surface and appearance of objects in the detection
area can be displayed in detail, thereby improving basic detection performance. RGB cam-
eras are the most cost-effective among the various sensors used in ADS object detection;
however, their performance can deteriorate when lighting is weak due to shadows, the
object to be detected is blocked by obstacles, or poor weather conditions occur, e.g., snow,
rain, and fog [15].

LiDAR emits a highly linear laser signal, and the reflected signal is represented by a
large amount of point cloud data (PCD), which contain precise 3D geometric information
and the reflectance of reflected objects expressed in Cartesian coordinates. Accordingly, the
PCD are converted to a feature map based on horizontal disparity, height, and depth quan-
tity through 3D geometric information, which is then used for object detection. Note that
LiDAR is more robust in dark environments than RGB cameras because data are processed
through signals derived from the sensor itself. However, both sensors can suffer from
reduced recognition performance in severe weather conditions [16]. In addition, if voxeliza-
tion is employed for 3D object detection, despite its ability to acquire rich 3D geometrical
information, it has increased processing time due to its complicated system structure and
operation [17].

RGB cameras and LiDAR systems have mutually complementary features; thus, when
developing an ADS that integrates both of these technologies, the advantages of both
sensors can be utilized effectively [18,19]. This can make the ADS robust against changes
in the external environment. For example, the reliability of information acquired using an
RGB camera may be low in dark and foggy conditions; therefore, a more secure ADS can
be developed by relying more on information from LiDAR. Object detection algorithms
in autonomous driving have been studied previously and demonstrate high detection
accuracy. For example, 2D object detection performance is on average 15% more accurate
than 3D object detection because not only the location of the object expressed in the pixel
coordinate system and the object expressed in the world coordinate system should be
detected accurately to predict a 3D bounding box [20,21].

Most 2D object detection studies that combine RGB images and PCD from LiDAR are
using LiDAR front view (FV) representations. Here, the PCD are converted to an image
map based on the LiDAR FV representations having the same bounding boxes as the RGB
image in Figure 1a and are then combined together. Figure 1b,c shows maps created with
the pixels of the distance and height of the PCD, respectively. LiDAR FV representations
improve the performance of conventional RGB image-based object detection systems
significantly because the lack of a camera, which can be affected by lighting conditions,
can be compensated by the PCD acquired by the LiDAR system. Note that the system
structure of this technique is relatively simple because the RGB camera and LiDAR have
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the same viewpoint. In a previous study [22], we proposed a method to detect objects
by combining detections from RGB images, a depth map, and a reflectance map using
LiDAR FV representations. We verified the detection performance of this method in
night environments where objects are darkened by shadows or relatively limited lighting.
However, this method is still susceptible to occluded objects due to the limitations of the
viewpoint. Using the map based on the LiDAR’s bird’s eye view (BEV) representation in
Figure 1d, we can assume that occluded/truncated objects can be detected easily. However,
there is a lack of research on the development of object detection algorithms that combine
the LiDAR BEV representation and RGB images [23,24].

Figure 1. RGB image and PCD map in FV and BEV: (a) RGB image, (b) LiDAR depth map in FV,
(c) LiDAR height map in FV, (d) and LiDAR height map in BEV.

Thus, in this paper, by employing RGB images and LiDAR BEV representations, we
propose a 2D object detection algorithm that is robust to environments in which objects are
truncated or occluded. The proposed algorithm maintains the high accuracy of the existing
FV representation-based method and compensates for the weaknesses of occluded objects
using the LiDAR BEV representations. This structure combines the independent detection
results obtained in parallel using an RGB image and a 2D height map converted from the
BEV representations of the LiDAR point clouds.

Here, the “you only look once” (YOLO) network is adopted for each single detection
modality based on a camera and LiDAR, and the intermediate detection result obtained us-
ing the LiDAR BEV representations is converted to an FV representation using a multilayer
perceptron (MLP). After all viewpoints are matched to the front, the final decision-making
phase determines the object via synthesis of each detection result from the camera and
LiDAR. As evident from the proposed system’s performance evaluation with the KITTI
autonomous driving dataset [25], the detection accuracy in the case of information fusion
from PCD BEV representations is better than when only an RGB camera was used. We
confirm that robustness is improved by enhancing detection accuracy significantly in com-
plex environments, e.g., parking lots and roads with many vehicles. We also found that
robustness was improved in occlusion cases.

In summary, when using an image viewed from the front, objects are detected accu-
rately; however, detection performance deteriorates if the objects are occasionally occluded
by constraints that depend on the viewpoint. In such cases, using the PCD BEV representa-
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tions, it is possible to obtain a top view of the object such that overlapped objects can be
separated when viewed from the front, and the occluded object can be better predicted. Ex-
isting methods are primarily used for 2D conversion of PCD BEV representations through
perspective projection for 3D object detection. In this study, the PCD BEV representations
are converted to a 2D height map and learned through YOLO. Then, the predicted detection
results are converted to an image viewed from the front through the MLP.

2. Related Works
2.1. Preliminaries on YOLO

CNNs first appeared in 2012, and they have demonstrated improved performance
compared to existing machine learning methods. In addition, an end-to-end learning-based
object detection algorithm was proposed to extract and learn features from an image. State-
of-the-art object detection algorithms are divided into two-stage [26–28] and single-stage
algorithms using an R-CNN according to the detection stage. YOLO is a representative
single-stage detector that predicts the bounding box and exhibits reliability for multiple
classes. The existing two-stage detector performs object detection in a region of interest
generated by a CNN in which an object may exist. In contrast, YOLO performs object
detection at once by scanning the entire image.

The first version of YOLO, i.e., YOLOv1 [29], divides the input image into S× S grid
cells, and each cell predicts the object present at the center of the cell, where B bounding
boxes and their confidence scores are estimated. YOLO process for object detection is
illustrated in Figure 2. The confidence score, Sconf, is defined as Pr(Object) × IOUtruth

pred ,
where Pr(Object) is the probability that the cell contains an object in the predicted bounding
box as described in Table 1, and IOUtruth

pred is the intersection of union (IOU) of the predicted
bounding box and the ground truth. A certain cell i in the bounding box also predicts the
conditional class probabilities, Pr(Classi|Object) , for C objects to determine which class
the object in the bounding box belongs to. Finally, by multiplying the confidence scores
Sconf, which represent the fitness between bounding boxes and objects predicted by each
cell and the conditional class probabilities Pr(Classi|Object) , the class-specific confidence
score, CSconf, for B bounding boxes is calculated in Equation (1). This simultaneously
predicts the class-specific confidence score and bounding boxes of the objects in the image.

CSconf = Pr(Object)× IOUtruth
pred × Pr(Classi |Object ) = Pr(Classi)× IOUtruth

pred (1)

Figure 2. YOLO process for object detection: (a) the image is divided into S × S grid cells, (b) pre-
dicted bounding boxes and their confidence scores, (c) probability map with class-specific confidence
scores, and (d) detected objects and classifications.
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Table 1. Confidence scores according to the probability of YOLO.

Probability Case Confidence Score

Pr(Object) = 0 If the bounding box is included in
the background area Scon f = 0

Pr(Object) = 1 If the bounding box is included in
the area where the object exists Scon f = IOUtruth

pred

YOLOv1 detects objects faster than other models in real time at a rate of 45 frames per
second (fps); however, detection performance deteriorates when the size of the objects is
small or when objects overlap. YOLOv2 [30] and YOLOv3 [31] were proposed to overcome
this limitation, and these methods employ several strategies, e.g., multiscale learning,
dimensional clusters, and anchor boxes, and they implement convolutional layers to
improve detection performance for small objects.

2.2. Detecting Partially Occluded Objects

Most studies that have attempted to detect occluded objects are limited to using
only an RGB camera. Methods that integrate potential variables [32,33] or split an input
image [34] have been proposed to correctly find objects when parts of the image are hidden.
However, such methods are limited to a specific detection model because they attempt to
solve the problem through additional learning of an image in which occlusion/truncation
exists without explicit analysis of the occluded object. In the literature [35], pixels containing
an object that is blocked from the line of sight are found in the input image, and the object
is detected by subdividing the histogram of oriented gradients (HOG), which represents
the direction of their edges with a histogram at various viewpoints. Another method [36]
creates a new bounding box map through the pixels included in the bounding box of the
area affected by occlusion, and the generated map is utilized through binarization of each
pixel value (depending on the existence of an object). Note that these methods are more
effective than existing object detection techniques because they redefine the characteristics
of the pixels in the area occluded by other objects. However, there are limitations in
predicting the exact size of a hidden object using only the occluded image. From a different
perspective, a previous study [37] proposed a method to predict an occluded object by
converting the coordinates of the RGB image viewed from the top to those viewed from
the front using the MLP. However, this method also only uses an RGB camera; thus, the
detection performance deteriorates when it is influenced by external environmental factors,
e.g., weather and lighting conditions. Therefore, a new technique is required to effectively
detect objects partially blocked from sight without using only an RGB camera.

3. Methodology
3.1. System Overview

The architecture of the proposed object detection system is shown in Figure 3. The pro-
posed system comprises three modules for image data processing. As shown in Figure 3a, all
objects in an image are detected in a parallel manner through the learned YOLOs based on
the RGB image of FV and the PCD image of BEV, respectively. Here, each YOLO takes an FV
RGB image and BEV LiDAR height map, which is encoded by height from the LiDAR PCD
BEV representations and classified in terms of the viewpoint as input.
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Figure 3. Architecture of proposed object detection system: (a) detect objects in parallel structure
comprising a set of single YOLO modalities, (b) convert bounding boxes to the same viewpoint using
MLP, and (c) converge detection results based on NMS.

In Figure 3b, detections from the YOLO based on the PCD image of BEV are con-
verted to FV through MLP. To convert the viewpoint of the bounding box obtained from
YOLO through the height map to FV, additional features of the geometric information of
the bounding box are applied to the MLP with fH

YOLO(BEV), which enables continuous
convolution. The input of the MLP, i.e., f H ′

YOLO(BEV), comprises (η, θ), which is the dis-
tance and angle between the LiDAR and the objects in the bounding box, and fH

YOLO(BEV),
which is (xBEV, yBEV, wBEV, hBEV), representing the predicted bounding box. The MLP is
trained with the target of the bounding box in FV, and its output fH

YOLO(FV′ ) is the result
of converting the viewpoint from BEV to FV represented as (xFV′ , yFV′ , wFV′ , hFV′ ).

Finally, as shown in Figure 3c, to optimize fR
YOLO(FV) and fH

YOLO(FV′ ), i.e., the pre-
dicted bounding boxes from multiviews of underlying entities, non-maximum suppres-
sion (NMS) is applied to concatenated bounding boxes to output fR+H

YOLO, which is
the final object detection result with reduced redundancy in terms of reliability. Here,
⊕ denotes an operation that stacks each detection comprising the geometric informa-
tion (xV, yV, wV, hV) of a bounding box and its confidence score. Here, V refers to the
viewpoint (either FV or BEV).

3.2. Object Detection Using YOLOs in Parallel

LiDAR represents the reflected laser signal as PCD with 3D position information
according to the world coordinate system; therefore, it can be utilized at various points
of view, unlike an RGB camera, which expresses an image only in FV. In particular, when
PCD BEV representations are used, it is possible to detect nearly all objects that are not
visible in FV due to occlusion, which enables the detection of objects at higher accuracy.

As shown in Figure 4a, LiDAR generates data in the form of a point cloud at the point
where the laser signal is reflected in 3D space, and the data of the area included in the
viewing angle of the RGB camera are separated and utilized as shown in Figure 4b. The
extracted PCD are converted to a height map through pixelization based on the density of
the xy-plane coordinates and encoding process based on the height value of the z-axis.
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Figure 4. Process of conversion to height map: (a) 3D PCD, (b) PCD extraction from the RGB
camera’s point of view, (c) pixelization, (d) single channel encoding, (e) scaling by height value, and
(f) converted height map.

The world coordinate system of a 3D PCD is converted to a pixel coordinate system
by dividing it into an m× n grid according to its density based on the xy-plane (Figure 4c).
Here, to divide the data into a uniform grid, the area of the PCD is limited to 0 < x < 60 (m)
and −30 < y < 30(m). The height value of the z-axis is encoded as intensity (0–255) of
the pixel to the grid of xy-plane coordinates, as shown in Figure 4d,e. Finally, the PCD
converted to the pixel coordinate system have the height of the corresponding grid as a
pixel value, and the data are scaled to an m× n× 1 dimension according to its pixel value
to generate the height map (Figure 4f).

The height map generated is applied to a single object detection model configured
in parallel separately from the RGB image. The RGB image and height map are learned
by targeting the FV and BEV bounding boxes in the pixel coordinate system, respectively,
and the BEV bounding box is created by projecting the 3D bounding box of the world
coordinate system to the pixel coordinate system of the height map. Here, each object
detection model, i.e., a single YOLO, adjusts the parameters through a learning process
that minimizes the IOU of the proposed and target bounding boxes in an area divided by
an arbitrary grid. The original resolution of an RGB image is 1242 × 375 and the height
map is scaled to a resolution of 416 × 416, depending on the viewpoint, and then divided
into 13×13 grid cells. Here, each grid cell predicts the bounding box and its confidence
score for an object whose center point is within the area of the cell. Each YOLO comprises
24 convolutional layers and two fully-connected layers, which output detection results,
fR

YOLO(FV′ ) and fH
YOLO(BEV′ ), respectively.

3.3. Conversion of Image Viewpoint Using MLP

To use the detection results of two different YOLOs together, a viewpoint transfor-
mation of the bounding box predicted from the YOLO based on the BEV height map is
required. Thus, it is converted to FV through the MLP, and its output is defined as fMLP.
Here, the MLP acts as a fitting function on the projection matrix to convert a BEV bounding
box to an FV through nonlinear mapping. Generally, when using FV representations of
PCD, the 3D world coordinate system of the PCD is converted to an RGB image coordinate
via a perspective projection.

Therefore, it is necessary to convert fH
YOLO(BEV), i.e., the bounding box predicted

by the YOLO with a height map, to an FV. Here, the MLP is trained with an input XBEV
comprising the geometric features of the bounding box extracted with fH

YOLO(BEV) and
the FV bounding box, YFV, as the target. XBEV and YFV are defined in Equation (2), and
[x, y, w, h]T represents the horizontal and vertical pixel coordinates, width, and height
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of the geometric center of the bounding box. Note that these parameters are normalized
according to the image resolution.

XBEV EVxBEV, yBEV, wBEV, hBEV, η, θ]TYFV = [xFV, yFV, wFV, hFV]
T (2)

Here, η and θ represent the distance and angle from the LiDAR to the bounding box,
respectively, and these are features additionally extracted from its geometric center. Note
that all of these parameters are normalized to a maximum value according to the image
resolution, but exhibit different data distributions. Here, [x, y]T indicates the position of
the center coordinate of the bounding box; thus its variance is greater than the variance of
[w, h]T. In particular, when the bounding box is close to the lower left or upper right of
the image plane, the deviation between x and y becomes quite large. Therefore, predicting
[x, y]T indicating the center point of the bounding box among variables constituting YFV is
more difficult than [w, h]T, which indicates its size.

To solve this problem, fH
YOLO(BEV), i.e., the geometric information of the bounding box,

and [η, θ]T, i.e., a feature that can express position information, are assigned to the input of
the MLP such that a nonlinear mapping can be improved. It is used to help finely predict the
position of the bounding box in the transformed FV. Here, the observation point is (0, 0.5)

based on the image coordinates of fH
YOLO, and [η, θ]T is defined as η =

√
(x− 0.5)2 + y2,

θ = tan−a( y
x−0.5

)
. The MLP comprises a single hidden layer with 40 nodes and is trained

using the Levenberg–Marquardt optimization scheme [38]. The network optimizes the
connection parameter vector w ∈ Rm×1 in the direction of minimizing E(w), which is
the sum of the squares of the residual vector e(w) ∈ Rn×1 between the target tk and the
network’s output, fMLP

(
fH′

YOLO(BEV),k, w
)

.

E(w) = e(w)Te(w) =
n

∑
k=1
‖ tk − fMLP(fH′

YOLO(BEV),k, w) ‖2 (3)

As a result, its update formula is expressed as follows.

∆w = −[Jr
T(w)Jr(w) + λdiag

(
Jr

T(w)Jr(w)
)
]
−)

Jr
T(w)e(w) (4)

Here, Jr(w) is a Jacobian matrix defined by Equation (5), diag
(
Jr

T(w)Jr(w)
)

is the
diagonal term of the Hessian matrix and is a value representing curvature, and λ is a
parameter to ensure the Hessian matrix is invertible.

Jr(w) =


e1(w)

w1
· · · e1(w)

wm
...

. . .
...

en(w)
w1

· · · en(w)
wm

 (5)

The Levenberg–Marquardt optimization method can solve the local minimum, which
is a problem of gradient descent, by changing the attenuation constant λ according to
the error reduction rate in the learning process. In addition, the network is optimized by
reflecting the curvature in the process of updating the weights. In addition, through the
product of λ and the diagonal terms of the Hessian matrix, an optimal solution can be
found faster than the Levenberg learning algorithm, which slows convergence when λ

increases [38].

3.4. Region Proposals through NMS

Region candidates are proposed based on the detections obtained from different
sensors, i.e., fYOLO(FV′ )

H and fYOLO(FV)
R . Here, fYOLO(FV)

R and fYOLO(FV′ )
H are the detections

obtained based on the data generated from different viewpoints; thus, their characteristics
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clearly differ. Therefore, an optimal bounding box is proposed using a late fusion structure
that can exploit the advantages of FV and BEV. The region proposals estimated from the
two sensors are applied to the NMS block, and the region of the object detected is finally
determined according to Equation (6).

f YOLO
R+H = GNMS[GYOLO(mapR)⊕ GMLP(GYOLO(mapH)

)]
= GNMS[( f YOLO(FV)

R ⊕ GMLP( f YOLO(BEV)
H′ ))]

= GNMS[ f YOLO(FV)
R ⊕ f YOLO(FV′ )

H ]
(6)

Here, G represents the input/output process in each model; mapR and mapH are color
map and height map applied to a single object detection model, respectively; and ⊕ refers
to data concatenation.

This late fusion structure combines each decision output of detection models com-
posed of multiple sensors. Thus, fYOLO+MLP is an optimized bounding box based on
various proposals estimated from their respective single object detection models; fMLP is a
region proposal that converts the object detection result with PCD BEV representations to
FV. At this time, unlike the data acquired from an FV of the object, the height map can see
the object to be detected from a top view, and thus, can separate all their bounding boxes.
This enables the detection of obscured or partially occluded objects that are very difficult
to detect in FV. Therefore, a late fusion structure of detection results of each single model
can be both highly accurate in FV using an RGB camera, and robust to enable the detection
of even occluded objects in a top view using a LiDAR.

The final region proposal is determined through NMS, which suppresses the bounding
boxes of adjacent regions. The NMS sorts the detected bounding boxes in descending
order according to their reliability, and then sequentially compares their IOUs to remove
those having a value above a certain threshold. Therefore, if an object is detected multiple
times in an adjacent area, all other bounding boxes are removed except the one having
the highest confidence score. In the proposed system, the parameter for removing the
bounding box of the adjacent area is set to 0.6.

4. Experimental Results
4.1. Assessment Details

An RGB camera image and PCD of the 64-channel Velodyne LiDAR in the KITTI
dataset were used to train and evaluate the performance of the proposed system. Of the
data containing 7481 image sequences, 45% were used for training, 15% for validation,
and the remaining 40% for testing. The hardware used for learning included an Intel
i7-8700 CPU, NVIDIA GTX 1080ti GPU (11 GB), and 32 GB of memory. The software
environment comprised YOLOv3 (https://github.com/AlexeyAB/darknet (accessed on
15 May 2021)), Opencv 3.4.0, CUDA V10.1, and Cudnn v.7.6.4 on Ubuntu 16.04.5 (4.15.0–
38 kernel). In addition, the average precision (AP), which is generally used as an object
detection performance index, was used to evaluate the performance of the proposed
system.

The labels in the KITTI dataset are divided into three difficulty levels, i.e., “Easy,”
“Moderate,” and “Hard,” depending on the geometric size of the object to be detected
and the degree to which a part of the object is occluded. The “Easy” level describes when
all objects are fully visible and the pixel height is greater than 40. The “Moderate” level
describes when only a part of the object is occluded and the pixel height is greater than
25, and the “Hard” level describes when the object is in higher occlusion state. The goal
of the proposed strategy is to establish a robust system that can detect objects occluded
by other objects while maintaining high detection performance based on RGB cameras.
Therefore, the performance evaluation was performed according to the degree of difficulty.
In addition, we examined whether the detection performance of invisible objects was
enhanced using PCD.

To assess the proposed system’s overall level of object detection capability, a test
evaluation was performed by changing the IOU threshold without classifying the difficulty
level. In addition, to verify whether an occluded image could be detected, the detection

https://github.com/AlexeyAB/darknet
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ability in an environment where the object was occluded was evaluated by intentionally
adding block noise to the FV image. According to the criteria of the KITTI evaluation
metric [39], an evaluation based on vehicle detection difficulty was also performed by
considering only the IOU of the final estimated bounding box and a ground truth of 0.7
or more. Here, the IOU values were changed to 0.3, 0.5, and 0.7 to evaluate the overall
detection capability in the presence of block noise.

4.2. Evaluation Results

Based on the KITTI dataset, we compared fYOLO(FV)
R , i.e., only an RGB camera, to

fYOLO
R+H , which is the proposed architecture, to evaluate the difficulty level. In addition, we

conducted a comparative evaluation with existing detection systems with an RGB image
and a LiDAR FV representation using YOLO [22,40]. To evaluate the difficulty level, we
compared fYOLO(FV)

R , i.e., only an RGB camera, to fYOLO
R+H , which is the proposed design,

using the KITTI dataset. In addition, we conducted a comparative evaluation with existing
detection systems with an RGB image and a LiDAR FV representation using YOLO [22,40].
gYOLO(FV)

R and hYOLO(FV)
R are networks that use only RGB cameras, and gYOLO

R+DR and hYOLO
R+DR

are networks that mix RGB images, and LiDAR depth and reflectance maps. Note that
these systems are similar to the proposed detection scheme; however, the YOLO version
differs. Nevertheless, YOLOv3 in the proposed framework has not been used in previous
studies; thus, the existing methods [22,40] were used to estimate and compare the extent of
performance improvement obtained by the proposed method compared to using only an
RGB camera.

The results of the performance comparisons are summarized in Table 2. As can be
seen, the proposed system, i.e., fYOLO

R+H , demonstrates improved detection performance

at all difficulty levels compared to fYOLO(FV)
R . For each difficulty level, fYOLO

R+H exhibited

performance improvements of 0.05%, 1.89%, and 4.3%, compared to fYOLO(FV)
R . In addition,

gYOLO
R+DR [40] and hYOLO

R+DR [22] improved detection performance by ~2% for the “Hard” level

compared to gYOLO(FV)
R [40] and hYOLO(FV)

R [22], which are intermediate results obtained
using only an RGB camera. When comparing the improved detection rate of fYOLO

R+H to
gYOLO

R+DR and hYOLO
R+DR, we observe a difference of up to 4% (or greater). We found that as the

difficulty level increased, fYOLO
R+H enhanced performance by detecting objects that could not

be detected with using only an RGB camera, i.e., fYOLO(FV)
R and fYOLO(BEV)

H are detections
from different viewpoints that complement each other’s limitations to enhance detection
performance.

Table 2. Comparative evaluation according to difficulty level.

Detection
Model

YOLO
Version

Viewpoint

2D AP (%)

Difficulty (IOU = 0.7)

Easy Moderate Hard

gYOLO(FV)
R [40] V2

V2
FV 73.93 61.69 54.00

gYOLO
R+DR [40] FV 75.13 62.74 55.10

hYOLO(FV)
R [22] V2 FV 88.78 76.20 50.77
hYOLO

R+DR [22] V2 FV 90.89 81.67 52.78

fYOLO(FV)
R

V3 FV 95.01 87.52 77.43
fYOLO
R+H V3 FV + BEV 95.06 89.41 81.73

Next, the object detection performance of fYOLO(FV)
R and fYOLO

R+H was compared using
the entire KITTI dataset by changing the IOU threshold according to the Pascal VOC
metric. To confirm the effectiveness of the proposed method based on the viewpoint
conversion of LiDAR, comparisons with fYOLO

R+DR, i.e., detections using a combination of

fYOLO(FV)
R and fYOLO(FV)

DR , were conducted according to the literature [22]. Here, fYOLO(FV)
DR is
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the estimated bounding box using the PCD FV representations, a distance and reflectance
map represented as pixel values from LiDAR.

Following the test evaluation shown in Table 3, by changing the IOU threshold used
for AP to 0.3, 0.5, and 0.7, fYOLO

R+DR and fYOLO
R+H , which also utilized LiDAR with the camera,

outperformed fYOLO(FV)
R regardless of the threshold value. In addition, fYOLO

R+H with PCD
BEV representations obtained the best performance. Accordingly, the method that utilizes
PCD BEV representations when integrating an RGB camera and LiDAR can more effectively
compensate for the shortcomings that occur when only RGB images are used, thereby
effectively enhancing the detection performance of fYOLO(FV)

R .

Table 3. Performance comparisons for entire KITTI dataset.

Detection
Model

YOLO
Version

Viewpoint

2D AP (%)

IOU Threshold

0.3 0.5 0.7

fYOLO(FV)
R

V3

FV 87.67 85.89 72.56
fYOLO
R+DR FV 88.17 86.40 73.58

fYOLO
R+H FV+BEV 89.59 88.07 76.06

fYOLO(FV)
R (noise) FV 86.47 84.52 69.90
fYOLO
R+H (noise) FV+BEV 89.11 87.43 73.14

When the IOU was set to 0.7, the detection performance of fYOLO
R+H was enhanced signif-

icantly compared to fYOLO(FV)
R because objects that are difficult to detect from an FV were

detected effectively with the help of the MLP. In the fYOLO(FV)
R case, the confidence score of

the estimated bounding box only increased when the objects were fully visible. However,
when the objects were influenced by external environmental factors, their confidence score
became low. Consequently, the IOUs between the ground truth and bounding box became
relatively low. However, fYOLO(BEV)

H can increase the reliability of the detected objects,
which enhances the detection performance of fYOLO

R+H . The results are shown in Figure 5,
where Figure 5a,b shows the image in FV and height map in BEV with the bounding boxes
at the two viewpoints detected through fYOLO(FV)

R and fYOLO
R+H , respectively. In the image

in FV, blue represents the ground truth, and green represents the detected bounding box.
In the height map in BEV, the PCD represent the objects, and the detected bounding boxes
are shown in green. As shown in Figure 5b, when an object undetected by fYOLO(FV)

R is
complemented by the MLP and then detected, it is marked with a red bounding box.

Finally, to evaluate robustness to changes in the external environment, a test was
performed by adding random block noises to the image. Here, the number of block noises
was generated on a logarithmic scale of the number of bounding boxes detected in the
corresponding image sequence, and the block size was set randomly in the range of the
minimum and maximum values of the detected bounding boxes. On the image plane, the
x-coordinate of the block, i.e., blockx, was selected randomly in the range of the minimum
and maximum values of the x-coordinates of the bounding boxes b.bx. The y-coordinate
blocky was set randomly in the range of the minimum value of the y-coordinate of the
bounding boxes b.by, divided in half and its maximum value to reflect a situation when
the car was on the road; this is shown in Equation (7).

blockx ∈
[
b.bx(min), b.by(max)

]
, blocky ∈ [

b.by(min)

2
, b.by(max)] (7)
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Figure 5. Comparison of object detection performance under normal condition by (a) fYOLO(FV)
R and

(b) fYOLO
R+H .

The evaluation results obtained with the block noises are shown in Figure 6, where
the image attributes, i.e., the height map and bounding box, are the same as in Figure 5. We
confirmed that detection is feasible with the help of PCD BEV representations even when
the object to be detected is partly occluded when viewed from the front because it is very
difficult to obtain complete information about an object in FV when it is partly occluded
in a real environment. However, in BEV, there is a higher probability that all information
about the object can be captured.
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Figure 6. Comparison of object detection performance when block noise is applied by (a) fYOLO(FV)
R

and (b) fYOLO
R+H .

5. Conclusions

In this paper, we proposed a 2D object detection method to make autonomous driving
more effective by integrating an RGB camera image and LiDAR PCD. The proposed system
employs YOLO based on the FV image of the RGB camera and top view PCD of LiDAR
for single object detection and then combines their respective results. The object detection
model based on RGB images detects objects with images in FV and demonstrates superior
detection performance; however, this technique is vulnerable to changes in external envi-
ronment such as occlusions. Therefore, the proposed method performs an additional object
detection process based on PCD in BEV using LiDAR to compensate for the weakness of
the single RGB image-based object detection model.

The KITTI dataset was used to assess the extent to which the proposed system can
detect objects, and a test evaluation was performed by varying the difficulty level and IOU
threshold values. Additionally, the ability to detect objects in an occluded environment
by intentionally adding block noise to the FV image was evaluated and compared to
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the existing single RGB-based object detection model. The results confirmed that object
detection is feasible with the proposed method even when the target objects are partially
occluded when viewed from the front, which demonstrates that the proposed method
outperforms the conventional RGB-based model; in particular, it showed more than 4%
higher object detection performance on “Hard” difficulty.

In the future, we plan to conduct research and experiments to supplement the detection
performance of RGB cameras through BEV representation, even if low-resolution low-
channel LiDAR is grafted into the FV representation system.
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