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Abstract: In order to obtain panoramic images in a low contrast underwater environment, an
underwater panoramic image mosaic algorithm based on image enhancement and improved image
registration (IIR) was proposed. Firstly, mixed filtering and sigma filtering are used to enhance the
contrast of the original image and de-noise the image. Secondly, scale-invariant feature transform
(SIFT) is used to detect image feature points. Then, the proposed IIR algorithm is applied to image
registration to improve the matching accuracy and reduce the matching time. Finally, the weighted
smoothing method is used for image fusion to avoid image seams. The results show that IIR algorithm
can effectively improve the registration accuracy, shorten the registration time, and improve the
image fusion effect. In the field of cruise research, instruments equipped with imaging systems, such
as television capture and deep-drag camera systems, can produce a large number of image or video
recordings. This algorithm provides support for fast and accurate underwater image mosaic and has
important practical significance.

Keywords: image mosaic; IIR; image enhancement; SIFT; weighted smoothing

1. Introduction

With the rapid development of image processing technology, image mosaic has become
a hot topic in the field of image processing, which refers to combining multiple images
with overlapping parts into a panoramic image that mainly consists of image registration
and image fusion. In the study of image registration, Hines et al. [1] proposed a method of
phase correlation in 1975 using Fourier transformation to effectively register images with
translation. However, when the image gets larger, the time of the Fourier transformation
increases exponentially, which seriously reduces the efficiency of the algorithm. In 1988,
Harris et al. [2] proposed a feature-based registration algorithm that improved the matching
speed and accuracy compared with the method of phase correlation, but the calculation
of the Harris response function was related to the empirical value and lacked stability. In
2004, Lowe et al. [3] proposed a new image registration algorithm based on scale-invariant
feature transform (SIFT). This algorithm applies to images with translation, rotation, and
distortion, and its stability is greatly improved. However, it is difficult to avoid many
false matching points, and the execution speed of the algorithm is slow. In 2006, Edward
et al. [4] proposed an algorithm called features from accelerated segment test (FAST), which
significantly improved the detection speed but lacked a description of the feature points.
In the same year, Bay et al. [5] proposed the speed-up robust features (SURF) algorithm,
which solved the disadvantages of SIFT, but its stability and number of feature points
were inferior to SIFT. Then, Michael et al. [6] proposed an improved algorithm based on
FAST, named oriented FAST, and Rotated BRIEF (ORB). Moreover, the advantage of this
algorithm was that it had a significant increase in noise resistance and speed, but it lacked
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scale-invariance. Accuracy, rapidity, and stability are three important evaluation indexes in
the study of image registration [7].

In terms of the purification of matching point pairs, Liu et al. [8] eliminated some
mismatching points by modifying the threshold values of Euclidean distance and integral
images, and realized the effective utilization of feature points, but the registration accuracy
was still not high. Zhu et al. [9] proposed an improved SIFT algorithm based on the idea
of block matching, which had a good registration effect for remote sensing images. To
solve the problem of algorithm stability, Yi et al. [10] proposed an iterative SIFT algorithm
based on adaptive non-maximum suppression, which realized the high robustness of UAV
cognitive navigation but also increased its complexity. Aimed at the problem of poor
registration effect caused by simply improving SIFT, scholars started to combine SIFT and
the random sample consensus (RANSAC) algorithm for image registration, which was
famous for its robustness. Even if there are a few wrong data points, it can still obtain an
ideal model parameter.

Rahul et al. [11] presented a comprehensive overview of existing research in RANSAC-
based robust estimation, and provided a universal framework for RANSAC (USAC) al-
gorithm. Shi et al. [12] presented an improved RANSAC (I-RANSAC) algorithm for SIFT
feature point matching. Li et al. [13] proposed an algorithm based on a double-column his-
togram, which has a good application in remote sensing images. Zhao et al. [14] proposed
an algorithm based on the consistency principle of matching distance and realized high
matching accuracy. Eduardo et al. [15] proposed a dynamic distributed robust RANSAC
algorithm, which improved the stability index. Gao et al. [16] proposed a rotating average
pipeline based on layered RANSAC to handle relative rotational outliers, and improve the
accuracy index. Lati et al. [17] proposed an image mosaic algorithm based on effective blur
technology, which has good recognition performance for motion blur images. In terms of
image fusion, classical fusion algorithms include direct fusion, weighted smooth fusion,
PCA fusion, wavelet transformation fusion, and multi-scale transformation fusion [18].
The traditional RANSAC method has obvious disadvantages, because it only produces
reasonable results under certain probability, and improves the accuracy through multiple
iterations of the optimal solution of model parameters, which increases the complexity of
the algorithm.

In addition, in terms of underwater image mosaic, Chen et al. [19] scombined SIFT
and wavelet transformation, but the image registration speed was slow. Xie et al. [20]
applied the SURF algorithm to underwater images and obtained a good mosaic effect, but
only for images of shallow water with good illumination. Rahul et al. [21] proposed a seam-
less underwater image mosaic technology based on alpha clipping. Due to degradation
problems such as low contrast and color deviation of underwater images, traditional image
mosaic algorithms cannot be directly applied to underwater image mosaic.

In the above-mentioned studies, there exist three problems. Firstly, the algorithms
have high computational complexity. Secondly, the algorithms focus on improving the
effectiveness of a single index and less on improving the performance of two or three
indicators. Thirdly, they are seldom used for low contrast and low definition in image
processing. Based on these problems, in this paper, we proposed an improved image
registration (IIR) algorithm to realize the rapidity of calculation and accuracy of image
processing, by optimizing the solution of the Homography matrix according to the number
of inner points. In addition, the proposed algorithm was tested on the images from
the Oxford Buildings Dataset [22] to verify that it has high feasibility since this dataset
is recognized by the academic community for image processing research and is highly
representative, containing thousands of images. Finally, the IIR algorithm was implemented
in underwater image processing to improve the quality of underwater image mosaic.
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2. Materials and Methods
2.1. Method of Image Enhancement
2.1.1. Mixed Method for Image Contrast Enhancement

Due to the influence of the complex underwater environment, the underwater images
have different degrees of degradation, resulting in low contrast of the original image
performance, which directly affects the subsequent image registration and image fusion.
The method of piecewise linear transformation is actually to enhance the contrast of various
parts of the original image [23]. It enhances the gray area of interest in the image and
suppresses that of no interest.

lout =


0 linp < lmin

255×
( linp − lmin

lmax − lmin

)
lmin ≤ linp ≤ lmax

255 linp > lmax

(1)

In Equation (1), linp is the pixel value of the input pixel, lout is the pixel value of the
output pixel, lmin is the set minimum pixel threshold, lmax is the set maximum threshold
of the pixel, and the maximum grayscale value of the pixel is 255. The piecewise linear
method is simple and produces very good results, but is not effective for areas that contain
a lot of darkness or light.

The method of histogram equalization is adopted to map the pixel gray level and
stretch the image nonlinearly [24–28], and thus the probability density of the transformed
image gray level is evenly distributed and the overall contrast of the image is improved. In
two-dimensional image space, it is assumed that r and s are the gray level of the image
before and after transformation, respectively, and the probability density of r is p(r). Then,
for the gray level rk, the corresponding probability density after transformation is Sk
as follows:

sk =
k

∑
c=0

p(rc) =
k

∑
c=0

nc

Nn
, k = 0, 1, . . . , 255 (2)

In Equation (2), nc is the number of pixels of rk, Nn is the total number of pixels of the
image, and k is the gray level of the transformed image. When k is 255, it is the maximum
gray level. However, if the original image contains many pixels and the grayscale value is
equal to the minimum brightness, the formula will scale up the grayscale value of these
pixels, making histogram equalization difficult to apply and may reduce the image contrast.

Therefore, the combination of piecewise linear method and histogram equalization
method is called mixed method, which is used to improve image contrast. The idea of our
algorithm is to first map the interval between the set minimum brightness and maximum
brightness to the whole interval using piecewise linear method, so that the number of pixels
whose brightness is less than lmin and lmax is less than 1% of all the pixels of the image,
thus reducing the serious impact of those few very low or very high pixels on histogram
equalization. Then all the pixels are evenly distributed on as many gray levels as possible
through histogram equalization. The hybrid method produces enhanced images with high
contrast and a large dynamic range.

2.1.2. Sigma Filtering for Original Image Denoising

Digital images are usually distorted by noise, which is usually classified as Gaussian
noise and impulse noise. The common method to reduce Gaussian noise is to replace the
brightness of pixel P with the average value of brightness near pixel P. Average filtering
replaces the center pixel value by obtaining the average value of all pixels in the sliding
window. When a pixel is obviously different from its neighbor, it is easy to appear a
rectangular frame, resulting in unnecessary image distortion. This situation can be avoided
when Gaussian filtering is used. According to the two-dimensional Gaussian law, the
Gaussian filtering adds a gray value that attenuates with the distance from the center of
the window, which can produce a better noise suppression effect. However, both kinds
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of filters will blur the image. The median filter replaces the center pixel value by taking
the median of all the pixels in the sliding window [29,30]. This filter is highly effective
at suppressing salt and pepper noise, but it has a fatal drawback. It severely distorts the
image and removes some rectangular stripes [23].

Sigma filtering is effective for noise cancellation, which removes the noise while
keeping the edge sharp. In two-dimensional image space, it is assumed that the center
pixel is I(x0, y0), and the size of the sliding window is n× n. In the sliding window, the
pixel values other than the center point are I(x, y), x and y are not more than n. The center
pixel transformed by Sigma filtering can be described as:

δ(x, y) =
{

0, |I(x, y)− I(x0, y0)| > t
1, |I(x, y)− I(x0, y0)| ≤ t

(3)

I′(x0, y0) =

n
∑

k=1

n
∑

l=1
δ(k, l) · I(k, l)

n
∑

k=1

n
∑

l=1
δ(k, l)

(4)

In Equations (3) and (4), δ(x, y) is used to count the pixel positions in the window
where the difference in pixel intensity from the center point does not exceed a fixed
tolerance t, and pixels with a large difference are not allowed to participate in the average
effect. Choosing the appropriate t value can remove the isolated point noise without
damaging the image structure.

2.1.3. Quality Evaluation Index of Image Enhancement Effect

After mixed method and sigma filtering, to prevent artificial image distortion, the
three indexes of mean square error α, peak signal to noise ratio β, and one-dimensional
image entropy γ are used to test and evaluate the image quality after the process of image
enhancement [31–33]. The calculation formulas are given below.

α =
1

m× n ∑
0≤x′0<m

∑
0≤y′0<n

(
ex′0y′0

− e′x′0y′0

)2
(5)

β = 10× lg
l × l

α
(6)

γ = −
255

∑
v=0

ξv logξv. (7)

In Equations (5)–(7), m and n represent the length and width of the image, respectively,
ex′0y′0

is the pixel value of the point (x0, y0) in the original image, e′x′0y′0
is the pixel value of

the point (x′0, y′0) in the enhanced image, ξv is the probability of the occurrence for the gray
level v in the image, l is the maximum gray value of the pixel in the image, and the value
of l is 255.

Firstly, the mean square error α is a measure of the difference between the original
image and the enhanced image, which can judge the filtering effect. Secondly, the peak
signal to noise ratio β is a statistic of the pure error between the original image and
the enhanced image, which reflects the denoising effect. Finally, the one-dimensional
image entropy γ is a measure of the average uncertainty of the image, which reflects the
information of image gray distribution. Thus, the three indexes are appropriate for image
quality evaluation after mixed method and sigma filtering. Three indexes will be discussed
in Section 3, which can detect the differences between the original image and enhancement
image, and the degree of difference determines whether image distortion occurs.
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2.2. Detection of Feature Points with SIFT

Harris corner detection method is robust and rotation invariant. However, it is
scale varying. Fast algorithm has rotation invariance and scale invariance, and has better
execution time. But when there is noise, its performance is poor. SURF corner detection
speed is better than SIFT, but its stability and number of feature points are not as good as
SIFT. SIFT algorithm has rotation invariance and scale invariance, and is more effective in
the case of noise [7]. By comparing the advantages and disadvantages of each algorithm
and considering the underwater noise environment, the SIFT algorithm is utilized to carry
out feature transformation.

2.2.1. Detection of Scale-Space Extrema

For the two-dimensional image I(x, y), its scale space L(x, y, σ) can be constituted by
the convolution of the image I(x, y) and the two-dimensional Gaussian kernel function
G(x, y, σ). The Gaussian difference pyramid D(x, y, σ) can be obtained by performing
difference operations on images of different scales. The calculation formula is as follows:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ)
= I(x, y) ∗ (G(x, y, kσ)− G(x, y, σ)).

(8)

In Equation (8), G(x, y, σ) = 1
2πσ2 e−(x2+y2)/2σ2

is the two-dimensional Gaussian kernel
function, σ is the variance of the two-dimensional Gaussian kernel function, k embodies
different scales, and ∗ is the convolution. After construction of the pyramid D(x, y, σ), the
extremum point on a certain scale can be defined as the maximum or minimum point of a
total of 27 pixels points in a 3 × 3 × 3 template centered on that point.

2.2.2. Accurate Keypoint Localization

Since not all the extremum points solved by the above process are feature points,
some points sensitive to noise or poor stability need to be removed by the operation of the
keypoint location. In this work, two existed approaches have been used. The scale-space
function L(x, y, σ) is expanded at the sampling point x = (x, y, σ)T through Taylor series
to delete the extremum point with low contrast [34,35]. At the same time, the edge effect of
D(x, y, σ) is reduced by using the ratio of trace and determinant of the Hessian matrix [36].

2.2.3. Orientation Assignment

After filtering out the extremum points with low contrast or poor stability, it is nec-
essary to determine the direction of the remaining extremum points to meet the scale
invariance. In some improved SIFT algorithms, the gradient information of the neighbor-
hood pixels of the key points is used to specify direction parameters for each feature point.
The size and direction of the gradient are defined as d(x, y) and λ(x, y), respectively, and
the calculation formulas are as follows:

d(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2, (9)

and

λ(x, y) = arctan
L(x, y + 1)− L(x, y− 1)
L(x + 1, y)− L(x− 1, y)

. (10)

In Equations (9) and (10), (x,y) is the index of any point in the image.

2.2.4. Keypoint Descriptor

After assigning the scale, position, and direction information to each feature point, a
feature descriptor needs to be defined for object matching. In this research, a
16 × 16 template-sized window is taken as the center of feature points and divided into
16 4× 4 subblocks. The gradient size and histogram of the gradient direction in 8 directions
including 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦ are calculated on each subblock [35].
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Therefore, a 4×4 subblock can obtain a descriptor with 8 directions, and then 16 subblocks
can obtain 128 direction descriptors, and the 1 × 128 dimensions vector is named as a
feature descriptor vector. Figure 1 describes the key points through SIFT.
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Figure 1. SIFT key point detection. (a) is the input image [37]. and (b) is the key point description
image, which is represented by a small circle at the function position, and the direction of the feature
points will be displayed inside the circle. (Source: The Oxford Buildings Dataset).

2.3. Accurate Matching of Feature Points Based on the IIR Algorithm
2.3.1. A Universal Framework for RANSAC

After roughly matching with SIFT, some missing matching pairs will inevitably occur.
To eliminate the error caused by false matching, the RANSAC algorithm is a good and ac-
curate matching algorithm [38]. However, low efficiency, slow speed, and easy degradation
are three limitations of the classic RANSAC algorithm [39]. On this basis, many improved
algorithms have flourished. Rahul et al. [11] presented a comprehensive overview and
provided a universal framework called USAC for RANSAC algorithm, by analyzing and
comparing various methods, which have been deeply explored over the years. For different
modules, different algorithms that have been proved effective can be used.

2.3.2. The IIR Algorithm

In the improved RANSAC (I-RANSAC) algorithm [12], the fundamental purpose is to
construct the optimal Homography matrix H, which refers to the invertible homogeneous
transformations between two planes, plays a very important role in multi-view image.
Then, the coordinate transformation can be shown as follows: xb

yb
1

 =

 h0 h1 h2
h3 h4 h5
h6 h7 1

 xa
ya
1

. (11)

In Equation (11), (xa, ya) and (xb, yb) are respectively the image coordinates before
and after the transformation.

H =

 h0 h1 h2
h3 h4 h5
h6 h7 1

. (12)

In Equation (12), h0~h7 are eight parameters in the Homography matrix H, which can
be calculated by selecting 4 feature points, i.e., four-point algorithm [12,40], on each of the
two images.

However, when the I-RANSAC algorithm shown in Ref. [12] is adopted to achieve
image matching, if the number of image feature points obtained after SIFT processing is
large and the degree of correlation between feature points is small, then the difficulty of
acquiring the Homography matrix increases, which affects the matching accuracy and
matching time of the image feature points. To meet the requirements of simultaneously
improving the accuracy and speed, on the basis of RANSAC universal framework, this
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paper proposes IIR in the module of model generation to optimize the Homography matrix
through a decision rule for the total number of interior points. The specific implementation
process is given below.

Firstly, 4 pairs of feature points that are not on the same line are randomly selected
after the rough matching with SIFT, and the distance among the matching points can be
calculated, which is denoted as a set dH . The purpose of selecting 4 pairs of non-collinear
matching points is to solve the 8 parameters in the Homography matrix H and obtain the
unique Homography matrix H [41].

Secondly, the ratio of the nearest distance dmin and sub-nearest distance dmin0 should
be calculated according to the nearest-neighbor principle in dH , and then the results will be
divided into 4 groups from large to small.

Thirdly, the number of inner points TH for the 4 groups of matching pairs that are
randomly selected in the group with the smallest ratio are calculated. If TH ≥ 3, then
the selected matching pair is retained, and the remaining matching pairs are successively
executed in the above process; otherwise, 4 groups of feature points are randomly selected
again for the operation.

Finally, a comparison is made between the accumulated inner points THall and
the pre-set threshold TH0. If THall ≥ TH0, then the total process finishes; otherwise, it
is restarted.

A flow chart for IIR is shown in Figure 2.
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Figure 2. IIR algorithm flow chart. The goal of IIR algorithm is to obtain the optimal Homography
matrix, and then to realize the accurate coordinate space transformation; that is, to delete and select
the correct feature matching pairs.

Depending on the aforementioned steps and flow chart, in IIR algorithm, the distance
among the matching points can be calculated, while the ratios of the nearest distance dmin
and sub-nearest distance dmin0 are divided into 4 groups from large to small, with the
principle of nearest-neighbor. Thus, when selecting matching pairs from the smallest ratio
group, it can ensure that the selected matching pairs are evenly distributed in the image,
which can avoid selecting some isolated feature points. In addition, the judging condition
TH ≥ 3 means that most of the feature points selected from the smallest ratio group have
the same area attributes and model attributes. Therefore, the conditions that these feature
points satisfied should remain unchanged. Finally, by comparison of the accumulated
inner points THall and threshold TH0, the current Homography matrix can be updated and
optimized, which is likewise the purpose of IIR algorithm.

2.4. Image Fusion Method

After image registration, if the method of direct fusion is adopted, the fusion effect
will be stiff and it is easy to produce an obvious image seam and then the fusion image
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will be blurred due to the simple addition of pixels. Therefore, the method of weighted
smoothing is adopted in this paper for image fusion [42].

It is assumed that F1(x1, y1) and F2(x2, y2) are respectively the pixel values of the two
images to be fused at the indexes of (x1, y1) and (x2, y2); F3(x3, y3) are the pixel values of
the fusion image at the index of (x3, y3); wF1 and wF2 are the weights of the two images to
be fused, respectively. The fusion condition should be satisfied as follows.

F3(x3, y3) =


F1(x1, y1), (x3, y3) ∈ F1
F2(x2, y2), (x3, y3) ∈ F2
wF1 × F1(x1, y1) + wF2 × F2(x2, y2), (x3, y3) ∈ F1 ∩ F2

(13)

In Equation (13), wF1 and wF2 are related to the width of the overlapping region of the
two images, and 0 < wF1 , wF2 < 1, and wF1 + wF2 = 1. In practice, wF1 should be slowly
reduced from 1 to 0 and wF2 should be slowly increased from 0 to 1 in the overlapping
region of the two images to achieve the smooth transition of the weight.

3. Results and Discussion

In this study, image mosaic refers to combining two original images with overlapping
regions into one image, which is completed through three steps including image enhance-
ment, image registration, and image fusion. The two original images are respectively
defined as the reference image and the be-registered image (the image to be registered).
The former can be regarded as a standard reference image without any change, and the
latter will be mapped to the former via the spatial transformation with dynamic change.
The image processing platform was unified as one laptop, and the detailed information of
which was as follows: Windows 10 system, Intel(R) Core(TM) i5-7200u CPU @2.50 GHz
2.71 GHz, and 8 GB of memory.

Firstly, two-group images (four images) with low contrast and low definition were
randomly selected as experimental objects from the Oxford Buildings Dataset, as shown
in Figures 3 and 4. The two-group images are named T1 and T2; and the original images
of each group included a reference image and a be-registered image that corresponded to
Sub-figure (a) and Sub-figure (b), respectively.
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After mixed method and sigma filtering, Figures 5 and 6 are the enhanced results of
the two-group images. To evaluate the enhancement effect quantitatively, three indexes,
including the mean square error α, the peak signal-to-noise ratio β, and one-dimensional
image entropy γ, were used to evaluate the image quality before and after enhancement.
Table 1 lists the specific information of the three indexes.
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Table 1. Three image quality indexes of T1 and T2.

Group
α β γ

Reference Be-Registered Reference Be-Registered Reference Be-Registered

T1 8.42 9.13 49.87 49.28 0.03 0.02
T2 7.48 7.61 48.96 48.43 0.12 0.15

Mean 7.95 8.37 49.42 48.86 0.08 0.09
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The improvement of the image contrast and definition can be visually seen in
Figures 5 and 6. Through a quantitative analysis of the data in Table 1, the average
mean square error for the reference image and be-registered image were 7.95 and 8.37, re-
spectively; the average peak signal-to-noise ratio for the reference image and be-registered
image were 49.42 and 48.86, respectively; and the average one-dimensional image entropy
for the reference image and be-registered image were 0.08 and 0.09, respectively. Therefore,
the three indexes all meet the conditions of image non-distortion that the mean square error
was smaller, the peak signal-to-noise ratio was larger, and the difference of one-dimensional
entropy was also smaller. Thus, there was no artificial distortion between the enhanced
images and the original images, and subsequent processes of the image registration and
image fusion can be carried out.

To prove that the proposed algorithm in this paper can effectively eliminate many
mismatching points, Figures 7 and 8 respectively show the image registration effect of
two-group images processed by the I-RANSAC algorithm [12] and the IIR algorithm.
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Figure 7. The registered images for T1: (a) I-RANSAC; (b) IIR. The blue line indicates the correspond-
ing matching points of the two pictures. The registration accuracy of T1 (a) is 89.20%, and that of T1
(b) is 91.37%, as shown in Table 3.
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Figure 8. The registered images for T2: (a) I-RANSAC; (b) IIR. In complex scenarios, I-RANSAC
mismatches, as shown in T2 (a), and IIR eliminates mismatches, as shown in T2 (b).

Compared to the I-RANSAC algorithm, in Figures 7 and 8, the number of lines for
matching points in the registration images by the IIR algorithm was greatly reduced, effec-
tively avoiding some mismatching points. To quantitatively prove that the IIR algorithm
can simultaneously improve the accuracy and speed in the process of image registration,
Table 2 shows the specific information of feature points for the two-group images in image
registration, and Table 3 shows a comparison of the matching accuracy and matching time
among five algorithms, i.e., ORB, FAST, SURF, I-RANSAC, and IIR.

Table 2. A comparison of feature point information between two algorithms.

Algorithm Group
Feature Point Match Pair

Reference Be-Registered Rough Uniformly

I-RANSAC
[15]

T1 541 856 213 190
T2 1069 1087 124 109

IIR
T1 478 671 197 180
T2 716 783 98 91

Table 3. A comparison of the matching accuracy and matching time between different algorithms.

Features Group ORB [6] FAST [4] SURF [5] I-RANSA [12] IIR

Matching
accuracy

T1 87.76 84.71 87.12 89.20 91.37
T2 86.33 84.78 86.42 87.90 92.86

Mean 87.04 84.74 86.77 88.55 92.12

Matching
time

T1 2.58 2.17 2.35 2.63 2.43
T2 2.89 2.53 2.78 2.94 2.88

Mean 2.74 2.35 2.57 2.79 2.67

Compared with the I-RANSAC algorithm, the IIR algorithm reduced the number of
feature points and the number of consistent matching pairs, as shown in Table 2. The
reason for this is that the improved algorithm is more rigorous in the selection of feature
points and more accurate in the solution of the Homography matrix, which effectively
eliminates the mismatching pairs. Moreover, accuracy and rapidity are two important
indexes for image registration, which will be displayed as matching accuracy and matching
time. According to Table 3, when compared with the I-RANSAC algorithm alone, the IIR
algorithm can greatly improve the matching accuracy and matching time. Regarding the
average matching accuracy and average matching time of the two-group images, the IIR
algorithm improved the average matching accuracy by 3.54% and reduced the average
matching time by 4.30%. When compared with the existing four algorithms of ORB, FAST,
SURF, and I-RANSAC, the IIR algorithm was close to the four existing algorithms in
matching time but it significantly improved the matching accuracy. The average matching
accuracy was 92.12%, which was the best among the five algorithms.
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Considering the randomness of the two groups of experimental images randomly
selected, the experimental results may be unconvincing. Therefore, this paper conducts
multiple groups of experiments to verify the effectiveness of the IIR algorithm by obtaining
the mean (M) and standard deviation (SD). Table 4 shows the specific matching accurate
information of the experimental images of different groups.

Table 4. The information of matching accuracy with different groups of images.

Features Group ORB [6] FAST [4] SURF [5] I-RANSAC [12] IIR
M±SD M±SD M±SD M±SD M±SD

Matching 5 87.13 ± 1.74 85.42 ± 2.52 86.96 ± 1.61 88.78 ± 1.51 89.34 ± 1.37
10 88.34 ± 1.81 88.10 ± 2.04 88.27 ± 1.75 89.75 ± 1.28 91.26 ± 1.04

Accuracy 15 87.92 ± 1.56 87.68 ± 1.63 87.71 ± 1.38 88.96 ± 1.34 91.54 ± 1.16
20 88.12 ± 1.18 87.83 ± 1.34 88.04 ± 0.96 89.41 ± 0.92 92.17 ± 0.87

As shown in Table 4, with the increases of the number of groups, in IIR algorithm, the
average of matching accuracy takes the first place, while at the same time, the standard
deviation of matching accuracy is the smallest, among the five algorithms. So, it is obvious
that the IIR algorithm is effective and stable in image registration.

To further prove that the IIR algorithm proposed in this paper can also partly improve
the image fusion effect, Figures 9 and 10 show the fusion effect of two-group images
by the method of weighted smoothing after image registration through the I-RANSAC
algorithm [12] and IIR algorithm.
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As shown in Figures 9 and 10, the same method of weighted smoothing was adopted
to image fusion, but the final results were different. Compared with the I-RANSAC
algorithm, the image fusion effect by the IIR algorithm is better because image seams
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disappear in the fusion images. The reason for this is that the IIR algorithm can eliminate
more mismatching points in image registration, which improves the percentage of accurate
matching pairs. Therefore, the fusion effect has also been improved. According to the
above experimental results, the following conclusion can be drawn: the proposed IIR
algorithm can simultaneously improve the matching accuracy and matching time.

Due to the sharp increase of the research cruises, together with the large amounts of
images and video recordings for underwater topography, it is a great demand for image
mosaic and processing. We have demonstrated the effectiveness of the IIR algorithm in
the Oxford Buildings Dataset and then applied it in underwater scenarios. The proposed
algorithm has been used to study underwater image mosaic. Two-group images (four
images) with low contrast and low definition were randomly selected as experimental
objects from the image dataset of manganese nodules, as shown in Figures 11 and 12.
Specifically, four images were segmented from the two original images. The purpose of
that is to obtain the experimental images with similar sizes and attributes and make the
appropriate overlap area between the reference image and be-registered image. Then,
two-group images were named T3 and T4, respectively; and the original images of each
group similarly included the reference image and be-registered image, which corresponded
to Sub-figure (a) and Sub-figure (b).
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Similar to the process of T1 and T2, Figures 13 and 14 show the enhancement effect of
the two-group underwater images. Also, the information of three image quality evaluation
indexes corresponding to each group before and after the process of image enhancement is
given in Table 5.
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Table 5. Three image quality indexes of T3 and T4.

Group
α β γ

Reference Be-Registered Reference Be-Registered Reference Be-Registered

T3 0.49 0.37 55.23 55.44 0.01 0.04
T4 0.62 0.57 57.43 57.97 0.12 0.09

Mean 0.56 0.47 56.33 56.71 0.07 0.07

Compared with Figures 11 and 12, the image contrast and definition in Figures 13
and 14 are significantly improved, which can be intuitively sensed by the naked eye. A
quantitative analysis of the data in Table 5 shows that the average mean square error
for the reference image and the be-registered image were 0.56 and 0.47, respectively; the
average peak signal to noise ratio for the reference image and be-registered image were
56.33 and 56.71, respectively; and the average one-dimensional image entropy for the
reference image and the be-registered image both were 0.07. Therefore, the three indexes
better meet the conditions of image non-distortion that the mean square error was smaller,
the peak signal-to-noise ratio was larger, and the difference of one-dimensional entropy
was smaller as well. Thus, the subsequent processes of image registration and image fusion
can also be carried out.

To prove that the proposed algorithm in this paper can also effectively eliminate many
mismatching points on underwater images, Figures 15 and 16 respectively show the image
registration effect of two-group images processed by the I-RANSAC algorithm [12] and the
IIR algorithm.
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Figure 16. The registered images for T4: (a) I-RANSAC; (b) IIR. The number of matching pairs of
the two algorithms cannot be directly distinguished visually. This is because the number of feature
points of the two images in group T4 is too large, and the proportion of false matching pairs is
very small.

As shown in Figures 15 and 16, compared with the I-RANSAC algorithm, the number
of lines for matching points in the registration images by the IIR algorithm was reduced, ef-
fectively avoiding some mismatching points. To quantitatively prove that the IIR algorithm
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can simultaneously improve the accuracy and speed in the process of image registration,
Table 6 shows the specific information of the feature points for the two-group images in
image registration. Table 7 shows a comparison of the matching accuracy and matching
time among the ORB, FAST, SURF, I-RANSAC, and IIR algorithms.

Table 6. A comparison of feature point information between two algorithms.

Algorithm Group
Feature Point Match Pair

Reference Be-Registered Rough Uniformly

I-RANSAC
[15]

T3 2103 2269 740 690
T4 2344 2648 816 735

IIR
T3 1686 1761 623 586
T4 1851 2096 676 628

Table 7. A comparison of matching accuracy and matching time between different algorithms.

Features Group ORB [6] FAST [4] SURF [5] I-RANSAC
[12] IIR

Matching
accuracy

T3 90.10 87.46 91.13 93.24 94.06
T4 87.62 85.37 88.36 90.07 92.90

Mean 88.86 86.42 89.75 91.66 93.48

Matching
time

T3 2.39 2.21 2.33 2.51 2.42
T4 2.46 2.28 2.41 2.61 2.49

Mean 2.43 2.25 2.37 2.56 2.46

Compared with the I-RANSAC algorithm, the IIR algorithm reduced the number of
feature points and the number of consistent matching pairs, as shown in Table 6. The reason
for this is that the improved algorithm is more rigorous in the selection of feature points
and more accurate in the solution of the homology matrix, which effectively eliminates
the mismatching pairs. Moreover, according to Table 7, when compared to the I-RANSAC
algorithm alone, the IIR algorithm can improve the matching accuracy and matching time.
Regarding the average matching accuracy and average matching time of the two-group
images, the IIR algorithm improved the average matching accuracy by 3.54% and reduced
the average matching time by 4.30%. Compared to the existing four algorithms (ORB,
FAST, SURF, and I-RANSAC), the IIR algorithm is close to the four existing algorithms in
matching time but significantly improved the matching accuracy. The average matching
accuracy was 92.12%, which was the best among the five algorithms.

To further prove that the IIR algorithm can also partly improve the image fusion
effect, Figures 17 and 18 show the fusion effect of two-group images by the method of
weighted smoothing after image registration through the I-RANSAC algorithm [12] and
IIR algorithm.
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gorithm, the image fusion effect by the IIR algorithm was better because the image 
seams disappeared in the fusion images. The reason for this is that the IIR algorithm can 
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image fusion of T3 (a) can see the stitching trace, while the fusion trace of T3 (b) disappears.
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The same method of weighted smoothing was adopted for image fusion, but the
final results are different, as shown in Figures 17 and 18. Compared to the I-RANSAC
algorithm, the image fusion effect by the IIR algorithm was better because the image seams
disappeared in the fusion images. The reason for this is that the IIR algorithm can eliminate
more mismatching points in image registration, which improves the percentage of accurate
matching pairs. Therefore, the fusion effect is also improved. Therefore, the algorithm in
this paper also has a good application in underwater image mosaic, which cannot only
improve the accuracy and rapidity but also improve the image mosaic quality.

4. Conclusions

The problems of image registration and image fusion are studied in this paper. Firstly,
mixed method and sigma filtering are used to enhance the images with low contrast and
low definition. Then, IIR is proposed for image registration based on USAC. Finally, the
method of weighted smoothing is used for image fusion. We tested the IIR algorithm
via the Oxford Buildings Dataset to verify the effectiveness. Then, the algorithm was
applied in an underwater environment. Compared with ORB, FAST, SURF, and I-RANSAC
algorithms, the quantitative analysis results show the IIR algorithm can reduce the number
of feature points and that of consistent matching points, and improve the fast index and
accurate index. Furthermore, the algorithm in this paper avoids the appearance of image
seams in the image quality, thus improving the image fusion effect.
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