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Abstract: Text detection in natural scenes is a current research hotspot. The Efficient and Accurate
Scene Text (EAST) detector model has fast detection speed and good performance but is ineffective
in detecting long text regions owing to its small receptive field. In this study, we built upon the
EAST model by improving the bounding box’s shrinking algorithm to make the model more accurate
in predicting short edges of text regions; altering the loss function from balanced cross-entropy to
Focal loss; improving the model’s learning ability on hard, positive examples; and adding a feature
enhancement module (FEM) to increase the receptive field of the EAST model and enhance its
detection ability for long text regions. The improved EAST model achieved better detection results
on both the ICDAR2015 dataset and the Street Sign Text Detection (SSTD) dataset proposed in this
paper. The precision and F1 scores of the model also demonstrated advantages over other models
on the ICDAR2015 dataset. A comparison of the text detection effects between the improved EAST
model and the EAST model showed that the proposed FEM was more effective in increasing the
EAST detector’s receptive field, which indicates that it can improve the detection of long text regions.

Keywords: natural scenes; EAST model; street sign text detection; receptive field; sample balance

1. Introduction

At present, advancements in computer vision technology, like license plate recognition,
have made everyday life significantly more convenient. With the popularity of mobile
devices, such as smartphones, anyone can now easily obtain images and videos of natural
scenes using cell phones or digital cameras and share them on the Internet. Among the
many objects contained in these images and videos, textual information has an important
role. Text information contains rich, precise, and high-level information that gives meaning
to the objects in natural scenes, helping people better access and understand the information
within images and videos [1]. Therefore, acquiring textual content from images of natural
scenes has become a necessary task for machine learning.

A large amount of text in natural scenes contains a wealth of information that can be
used to improve people’s productivity and facilitate daily life. For example, text on street
signs contains geographic location information, which can be used to locate and navigate
vehicles; text on store signs contains information on the store’s services, which helps
customers quickly decide which store to enter; text on product packaging contains detailed
information about the products, helping consumers determine, for instance, whether the
products are expired. In the face of massive quantities of image data, how to efficiently
obtain text from images has become an active area of recent research.

Appl. Sci. 2021, 11, 5962. https://doi.org/10.3390/app11135962 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1928-7385
https://orcid.org/0000-0001-7663-3208
https://orcid.org/0000-0002-4958-2043
https://doi.org/10.3390/app11135962
https://doi.org/10.3390/app11135962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11135962
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11135962?type=check_update&version=2


Appl. Sci. 2021, 11, 5962 2 of 16

Text detection and recognition technologies for the natural scene of the text in street
signs have several applications: (1) for autonomous vehicles, using text information from
street signs can assist in vehicle positioning and navigation; (2) for intelligent transportation
systems, text information from street signs is an important part of the intelligent transporta-
tion system, it can provide geographic location information for the establishment of the
intelligent transportation systems; (3) for automated data entry, when constructing an intel-
ligent transportation system’s database, intelligent detection and recognition of street sign
text can automate traffic data entry, improving productivity and replacing labor-intensive
manual entry; (4) for intelligent translation and text-to-speech technology, detecting and
recognizing street sign text can greatly assist in navigation for the sight-impaired or people
who do not speak a local language, thus facilitating daily life. As the number of vehicles
continues to increase, traffic congestion has become a major problem for many cities, and
intelligent transportation systems and autonomous driving technologies present them-
selves as effective solutions. Because of the importance of street sign text detection and
recognition for intelligent transportation systems, autonomous driving technology, and
helping determine the general utility of text recognition, a study was conducted to make a
feasible proposal for text detection in street sign scenes.

The sections of this paper are structured as follows: Section 1 introduces the back-
ground and significance of research on text detection in natural scenes and street scenes;
Section 2 analyzes the challenges and existing results of text detection in natural scenes
and street sign scenes; Section 3 proposes corresponding points for improvement based on
the shortcomings of the EAST model; Section 4 analyzes and verifies the modified EAST
model through experimental results and comparison with the original EAST model on the
ICDAR2015 dataset [2] and the SSTD dataset proposed in this paper; and finally, Section 5
summarizes this paper’s findings and proposes directions for future research.

2. Related Work

For detecting text regions in natural scenes, existing methods can be broadly classified
into two categories: methods based on text features and methods based on deep learning.
Methods based on text features can be further divided into those based on connected
component analysis and those based on sliding windows. Methods based on connected
component analysis tend to detect text regions by designing feature extraction algorithms,
among which the stroke width transformation (SWT) [3] and maximum stable extremal
regions (MSER) [4] algorithms are representative. Methods based on sliding windows [5–7]
slide a window over the original image, use a classifier to determine whether the window
contains text, and finally post-process using non-maximum suppression. For example,
Lee et al. [5] use six different categories of text features to build weak classifiers, following
which they construct a strong classifier from a combination of weak classifiers.

Although detection methods based on text features have achieved a certain amount
of success, their results are not satisfactory when facing complex natural scenes. The
background of natural scenes is complex, containing vehicles, buildings, trees, pedestrians,
and other noises that can interfere with detection. The fonts, sizes, and colors of text in
natural scenes also vary. Finally, images of natural scenes are affected by the shooting
environment, and there may be problems with different resolutions and blurred images
caused by noise. In the face of these challenges, deep-learning-based methods have
become the mainstream method and area of research for natural scene text detection.
The models designed by deep-learning-based methods can be further divided into two
categories: region proposal methods and semantic segmentation methods. Region proposal
methods are usually built on classical target detection algorithms, such as Region-Based
Convolutional Neural Networks (R-CNN) [8], Faster R-CNN [9], Single Shot MultiBox
Detector (SSD) [10], and You Only Look Once (YOLO) [11].

Liao et al. [12] proposed a network structure of TextBoxes based on the SSD model
to detect horizontal text regions by setting six candidate bounding boxes with different
aspect ratios. Later, Liao et al. [13] proposed the TextBoxes++ model based on TextBoxes,
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which can detect text regions in any direction by adding angle information to the predicted
bounding boxes. Tian et al. [14] proposed the Connectionist Text Proposal Network (CTPN)
model based on Faster R-CNN, which treats text regions as sequential information and
introduces CNNs for processing. CTPN is better for long text region detection, but the
introduction of CNNs greatly increases the number of parameters of the model, and
the model is not effective in detecting text regions with high tilt angles. Shi et al. [15]
proposed the SegLink model based on CTPN, which divides text region detection into
two parts: detection and linking. SegLink can link eight directions during linking, which
resolves CTPN’s issues with detecting high-tilt-angle text regions, but is also susceptible
to detecting separate pieces as a whole for denser text regions. Semantic segmentation
approaches [16–19] often draw on classical semantic segmentation algorithms, such as Fully
Convolutional Networks (FCN) [20] and Feature Pyramid Networks for Object Detection
(FPN) [21], which use deep neural networks to extract multi-layer feature maps, perform
multi-level feature fusion to obtain a feature map containing rich information, and then
predict target segmentation results based on the fused feature maps. The TextField model,
proposed by Xu et al. [19], uses directional fields to represent the features of text regions
to detect irregularly shaped text. Hu et al. [22] argued that character-level detection is
needed in scenarios such as mathematical formulas, but current datasets are text line-level
or word-level annotations. To correct this issue, they proposed a WordSup model that
can be trained with weak supervision to perform character-level detection on text-line
and word-level annotated datasets. Cao et al. [23] Ma et al. [24] introduced bidirectional
feature pyramids to enhance the model’s learning ability and achieved better detection
results, but bidirectional feature pyramids significantly increase the computational load of
model training and are difficult to use in practice. Ma et al. [24] introduced graph CNNs to
improve the prediction of link relationships between text primitives and the detection of
arbitrarily shaped text regions. However, the introduction of graph CNNs brought with
it greater parameters and computational effort. Nagaoka et al. [25] proposed a novel text
detection CNN architecture sensitive to text scale to improve the prediction of small texts.
However, multiple RPN modules complicated the module structure and introduced more
parameters, and the module needed to be pre-designed with anchors. Table 1 summarizes
the strengths and weaknesses of previously studied text region detection models.

Table 1. Advantages and disadvantages of select text region detection models.

Item Year Model Advantages Disadvantages

1 2016 CTPN [14] Good detection for long text
areas

Cannot detect text areas with large tilt angles; a
large number of parameters and operations

2 2017 SegLink [15] Can detect inclined text areas Easily misidentifies dense text as a single
whole area

3 2018 TextField [21] Can detect text areas with
curvature The post-processing process is complicated

4 2021 Cao et al. [23] Good detection of quadrilateral
text areas

Bidirectional feature pyramid leads to a large
number of model parameters and computations

5 2021 Ma et al. [24] Good detection of arbitrarily
shaped text areas

The introduction of graph convolutional neural
networks leads to a high parameter number and

computation

6 2021 Nagaoka et al. [25] Good detect small texts
Multiple RPN modules complicate the module
structure and introduce more parameters; need

pre-designed anchors

Analysis of classical models and literature [23,24] suggests that current text region
detection models are steadily improving, and the shapes of text regions that can be detected
are becoming increasingly broad. However, these enhancements come at the cost of
increasingly complex network structures, larger models, a larger number of parameters,
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and more computational effort, making them difficult to apply in practice. Therefore, the
goal of this study was to propose a text region detection model with the simplest possible
structure, smaller parameter numbers, less computation, and better performance for the
detection and recognition of text in street sign scenes.

At present, research on text detection in natural scenes has made progress, but research
on text detection in street signs is still lacking. In addition to the problems that exist with
general natural scene text recognition, the following problems exist for street sign scene
text detection.

(1) Street signs contain multiple types of text, such as Chinese characters, English, num-
bers, and punctuation marks.

(2) Differences in image brightness can be significant owing to backlit shooting or night-
time shooting.

(3) Because of different shooting angles, the tilt angle on the street sign text area may be
large, leading to a perspective phenomenon.

Classic text region detection models [11,12] tend to divide text region detection into
multiple stages, separately detecting sub-sections of the whole region before merging,
which is insufficiently accurate and highly time-consuming. In contrast, the EAST model
proposed by Zhou et al. [18] simplifies the intermediate process steps and achieves end-to-
end text region detection, which greatly improves text detection accuracy and speed, and
can detect quadrilateral regions with a large tilt angle in street signs. However, the EAST
model has a small receptive field and is not effective in detecting long text regions.

Therefore, this paper presents an improved EAST model, modified from the original
EAST model in the following aspects: an improved shrinking algorithm for the bounding
box while analyzing text region shape features, an added feature enhancement module
(FEM) to increase the model’s receptive field and ability to extract features for long text
regions, and a Focal loss function to address imbalances between numbers of positive and
negative samples and hard versus easy samples for text region detection. The effect of the
improved EAST model is then discussed on the public ICDAR2015 and the SSTD datasets.

3. Improving the East Model

The overall flow of the EAST model is shown in Figure 1. First, EAST generates the
quadrangles of the dataset, expressed by the smallest external rectangle of the bounding
box and the angle between that rectangle and the horizontal plane. The area used to extract
features is then shrunken by a certain ratio. The images are fed into a Fully Convolutional
Network (FCN) for feature extraction and merging, and then the results corresponding
to the label geometry (rotated box or quadrangle) are output. Finally, the gap between
labeled information and the output result, i.e., the loss function, is calculated. The loss
function calculation result is used to update the parameters of the network. In this paper,
we establish that the shortcomings of the EAST model are threefold: in the label generation
process, the shrinkage ratio of the bounding box quadrangle is unreasonably set to 0.3
for both long and short edges; the receptive field for the network’s feature extraction is
insufficient, making it difficult to extract relevant feature information between distant parts
of a longer text region; the loss function is set to the balanced cross-entropy loss function,
which faces issues with resolving imbalances of sample difficulty in the dataset. In the
following sections, we propose improvements to address these three shortcomings.

3.1. Label Generation

As shown in Figure 2, the labeled region of the EAST model is first shrunk by 0.3
on the long side and then by 0.3 on the short side, and the resulting region is used for
extracting features, which can reduce interference factors introduced by labeling errors.
One feature to be learned from this region is the location of the smallest outer rectangle of
the bounding box, which is measured by the distance from each pixel location to the four
edges. Another feature to be learned from this region is the rotation angle between this
minimized outer rectangle and the horizontal plane.
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Figure 2. Label geometry of EAST.

The EAST model has moderate success by shrinking the long and short edges by
0.3 to reduce labeling error; however, the following problems remain. For a small text
area, shrinking the short edge by 0.3 will lead to a large change in the features of Chinese
characters and some English letters in upper- and lower-case formats, which affects feature
extraction from the text area and eventually leads to an inaccurate prediction bounding box
for the text area. As shown in Figure 3, for letters such as p, g, and i, shrinking the short edge
by 0.3 changes the meaning of letters in the region, leading the model to output inaccurate
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prediction boxes. Therefore, this paper proposes improving the shrinkage algorithm of
the bounding box by retaining the shrinkage ratio of 0.3 for long edges and reducing the
shrinkage ratio to 0.1 for short edges. The final shrinkage strategy algorithm is as follows:
input the vertices coordinates of the text region; determine which pair of edges is the long
edge and which pair is the short edge by calculating the Euclidean distance between the
vertices of adjacent corners; shrink the long edge by 0.3 and the short edge by 0.1; and
finally, output the new region’s shrunken coordinates of the vertices.
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3.2. Improving the Network Structure of the EAST Model

The network structure of the EAST model can be roughly divided into three parts [18]:
feature extractor stem, feature-merging branch, and output layer. The EAST model’s
network structure is shown in Figure 4a. The EAST detector uses PVANet as its backbone
network to extract features and obtains four levels of feature maps, f1, f2, f3, and f4, with
sizes of 1/4, 1/8, 1/16, and 1/32 of the input image, respectively. Larger feature maps
have shallower depths and smaller receptive fields, and contain more details, and are used
to extract features of small targets; smaller feature maps have larger depths and receptive
fields, contain more high-level semantic information, and are used to extract features of
large targets. The feature maps f1, f2, f3, and f4 are then merged using the U-shape idea to
obtain a feature map that contains both high-level and low-level information. This feature
map is then fed into the output layer, and, by mapping across different convolutional
layers, the network obtains a score map and a multi-channel geometry map. The geometry
feature map contains two parts: RBOX geometry, with axis-aligned bounding box (AABB)
information and rotation angle information, and QUAD geometry, with eight channels of
coordinate shift information.

The classic VGG16 network proposed by Simonyan et al. [26] is used for the feature
extraction stem of the network, removing the final fully connected layer and only preserving
the front portion of the full convolutional layer to constitute the core network. However,
the theoretical receptive field of the VGG16 network is only 212, and the actual receptive
field is smaller, hampering feature extraction for large-scale text regions with input size of
512 × 512 pixels. Therefore, this paper proposes an FEM to increase the receptive field of
the model. The network structure of the improved EAST model is shown in Figure 4b.

The FEM is inspired by dilated convolution, proposed by Yu et al. [27], and the
Inception structure, proposed by Szegedy et al. [28,29]. A brief description is given below.

As shown in Figure 5a is a 3× 3 convolution with a dilation factor of 1, with a receptive
field per element of 3 × 3, and Figure 5b is a 3 × 3 convolution layer with a dilation factor
of 2, with a receptive field per element of 7 × 7. Dilated convolution can increase the
receptive field exponentially without exponentially increasing the number of parameters.

Szegedy et al. [28] proposed a structure that aggregates multiple features at different
scales, merges them, and then outputs them, namely the Inception V1 module, which can
widen the network and control parameter numbers when extracting high-dimensional
features. In 2016, Szegedy et al. [29] improved on the previous model by proposing
that a 5 × 5 convolution can be decomposed into two 3 × 3 convolutions, and an n × n
convolution can be decomposed into a combination of a 1 × n convolution and an n × 1
convolution to further reduce parameters, such that a convolution kernel’s number of
parameters can be reduced from n × n to 2n.
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The structure of the FEM designed in this study is depicted in Figure 6. Inspired by
the Inception module, the FEM extracts features using a total of four sizes of convolution
kernels, 1 × 1, 3 × 3, 5 × 5, and 7 × 7, and then merges the extracted features. Considering
the reduced number of parameters, the convolution kernels of sizes 3 × 3, 5 × 5, and 7 × 7
are split; that is, the convolution kernel of 3 × 3 can be split into a combination of 1 × 3
and 3 × 1. Moreover, long strip-like convolution kernels like 1 × 3 are also more similar to
the shapes of text regions in daily life, which is beneficial for feature extraction from text
regions. In the structure of Figure 6, except for the 1 × 1 convolution kernel, all the other
convolution kernels set the dilation factor to 2. Since the FEM in this study mainly contains
a few convolutional layers with a small number of parameters, the number of additional
parameters does not add too much computational burden.
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3.3. Loss Function

The loss function has two parts [18]: the score map loss function, Ls, and the geome-
tries’ loss function, Lg. The formula is as follows:

L = Ls + λgLg (1)

where λg represents the importance between two losses, which is set to 1 by the EAST model.
The geometric loss function consists of two parts: the AABB loss function, LAABB, and

the angle loss function, Lθ . The AABB loss function is as follows:

LAABB = − log IoU(R̂, R∗) = − log

∣∣R̂ ∩ R∗
∣∣∣∣R̂ ∪ R∗
∣∣ (2)

where R̂ represents the predicted AABB geometry and R∗ represents the true geometry.
The loss function of the rotation angle is calculated as follows:

Lθ(θ̂, θ∗) = 1− cos(θ̂ − θ∗) (3)

where θ̂ represents the predicted rotation angle and θ∗ represents the true rotation angle.
The total geometric loss function is calculated as follows:

Lg = LAABB + λθ Lθ (4)

where λθ is the balance factor, which is set to 10 according to the literature [18].
One of the problems in text region detection is the imbalance in the number of positive

and negative samples and the number of hard and easy samples. In the images of the
ICDAR2015 dataset, the text region area accounts for less than 5% of the image area. A large
amount of background and few regions containing text create an imbalance of positive
and negative samples. As shown in Figure 7, the predicted bounding boxes can be divided
into positive and negative samples usually. Boxes with an intersection-over-union (IoU)
ratio between predicted and true boxes greater than the threshold (usually set to 0.5) are
considered positive samples, and boxes with an IoU less than the threshold are considered
negative samples. Most of the predicted bounding boxes are not found where the real
boxes overlap with the background. These are considered simple samples, which can then
be classified as simple positive samples and simple negative samples. As the number of
simple negative samples constitutes the largest proportion of all samples, the loss function
is dominated by simple negative samples, and simple positive samples have a limited
effect on parameter convergence. Thus, to improve the model’s effect, we had to make the
model focus more on hard positive samples. Therefore, in this paper, we propose using
Focal loss, which was introduced by Lin et al. [30], instead of the original loss function.

The cross-entropy loss function for ordinary binary classification is calculated
as follows:

CE(p, y) =

{
− log(p)
− log(1− p)

y = 1
otherwise

(5)

where p is the predicted probability of the sample in the class, y is the sample label, and y = 1
means y is a positive sample. If Equation (8) is used to represent p, standard cross-entropy
can be simplified and expressed as Equation (9).

Pt =

{
p

1− p
y = 1

otherwise
(6)

CE(p, y) = CE(pt) = − log(pt) (7)

However, the weights in standard cross-entropy are the same for both positive and
negative samples, so they will be affected by an imbalance of positive and negative samples,
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resulting in the model being influenced by a large number of negative samples with poor
results. To balance the positive and negative samples, the balanced cross-entropy loss
function used by Yao et al. [31] introduces a balancing factor, αt, and αt is calculated as
in Equation (8), where α ∈ [0, 1]. The balanced cross-entropy is calculated as shown in
Equation (9). The EAST model uses the balanced cross-entropy loss function. The specific
calculation formula is shown in Equation (10) [16]:

αt =

{
α

1− α

y = 1
otherwise

(8)

CE(pt) = −αt log(pt) (9)

Ls = balanced− xent(Ŷ, Y∗)
= −βY∗ log Ŷ− (1− β)(1−Y∗) log(1− Ŷ)

(10)

where Ŷ = Fs represents the predicted score map, and Y∗ represents the true value. β is
the balancing factor between positive and negative samples, and the formula is calculated
as follows:

β = 1−
∑ y∗∈Y∗y∗

|Y∗| (11)

Although the balanced cross-entropy loss function improves the imbalance between
positive and negative samples, it still does not solve the imbalance between hard and easy
samples. Focal loss, in order to adjust both positive and negative samples and hard and
easy samples, adds a modulating factor to balanced cross-entropy, and its equation [25] is
as follows:

FL(pt) = −αt(1− pt)
γ log(pt) (12)

When a sample is a simple sample, pt, close to 1, the modulating factor (1− pt)
γ is

close to 0, decreasing the loss contribution of the simple sample. Conversely, when the
bounding box is misclassified, pt is relatively smaller, the modulating factor is close to 1,
and its contribution to the loss calculation is nearly unaffected by the modulating factor.
This way, the model can focus more on the hard positive samples and enhance the model’s
efficacy. The parameters in the Focal loss calculation formula are set to αt = 0.25 and γ = 2
according to the literature [25].
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4. Experiment
4.1. Experimental Environment and Evaluation Metrics

The experiments in this study were developed on a Window 10 operating system using
PyCharm, and the deep learning framework was pytorch1.0.1. The hardware environment
was: Intel Corei9 (2.80 GHz) processor, 64 GB memory, and NVIDIA RTX 2080 SUPER (8 G
memory) graphics card.

The evaluation metrics were precision, recall, and F1 score, which were calculated
as follows. TP represents the number of samples that were positive and predicted to be
positive; FP represents the number of samples that were actually negative and predicted to
be positive; FN represents the number of samples that were actually positive and predicted
to be negative, and TN represents the number of samples that were actually negative and
predicted to be negative.

prescision = TP
TP+FP

recall = TP
TP+FN

F1 = 2 ∗ precision∗recall
precision+recall

(13)

4.2. Experimental Steps

The experiment in this study had two main steps: constructing the dataset and training
and validating the model. The overall process is shown in Figure 8.
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4.3. Construction of SSTD Dataset

The SSTD dataset constructed in this study contained a total of 1000 pictures taken on
actual roads and publicly available street sign-related pictures on the Internet, including
pictures of street signs on both sides and above roads, highway road signs, scenic road
signs, and other scenes. For a street sign scene image, which is greatly influenced by the
brightness of ambient light and the noise of daily shooting, the collected pictures were
expanded by randomly increasing or decreasing the brightness and randomly increasing
Gaussian noise to the dataset. A total of 2000 pictures were obtained, 1500 of which were
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used for the training set and 500 for the test set. Select pictures from the SSTD dataset are
shown in Figure 9.
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4.4. Experiment and Analysis

The public dataset used in this study was the ICDAR2015 dataset, which contained
1500 images taken in natural environments containing text. There were 1000 images in
the training set and 500 images in the test set. The input image size was uniformly scaled
to the VGG16 network model trained on ImageNet, which was used as the pre-training
model. Moreover, the batch size was set to 6, the initial learning rate was set to 0.001, and
the learning rate was reduced by a multiplier of 0.1 for every 300 epochs, with a minimum
learning rate of 0.00001, until the model performance no longer improved.

This study’s ablation experiments were trained and tested on the ICDAR2015 dataset.
The effects of the three improvements on the EAST model proposed in this paper are shown
in Table 1. The EAST model with VGG16 as the core network is used as the reference
object, and the rest of the improved model’s core network also uses VGG16. As can be seen
from Table 2, changing the loss function to Focal loss rather than balanced cross-entropy
improved the precision, recall, and F1 scores by enhancing the model’s learning for hard,
positive samples. By improving the shrinkage strategy of label generation, the model
more accurately predicted the short edge of the bounding box; thus, the precision and
F1 scores improved. After adding FEM, although the precision decreased to some extent,
the recall was improved from 73.52% to 76.94% because of the increased ability to detect
long text, and the final F1 score was improved from 79.95% to 81.03%, thereby improving
the overall model performance. As seen from Table 1, the effects of this paper’s proposed
improvements to the EAST detector were verified. As shown in Table 3, the results of
this paper’s improved EAST model were compared with other models on the ICDAR2015
dataset. In terms of recall, the proposed model was inferior to the original EAST model
using the deeper ResNet50 as the core network. However, owing to the proposed model’s
advantages in precision, the F1 score and overall performance were nevertheless better
than those of the other models.

Table 2. Comparison of the effects of ablation experiments.

Model Precision (%) Recall (%) F1 (%)

EAST + VGG16 80.50 72.80 76.40
EAST + Focal loss 82.28 73.56 77.68

EAST + Focal loss + improved
shrinking algorithm 87.61 73.52 79.95

EAST + Focal loss + improved
shrinking algorithm + FEM 85.59 76.94 81.03
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Table 3. Comparing detection effects of the improved EAST model with other models on the
ICDAR2015 dataset.

Model Precision (%) Recall (%) F1 (%)

CTPN + VGG16 74.20 51.60 60.90
Seglink + VGG16 73.10 76.80 75.00

WordSup 77.03 79.33 78.16
Yao et al. [31] 72.26 58.69 64.77

EAST + VGG16 80.50 72.80 76.40
EAST + ResNet50 77.32 81.66 79.43

EAST + PAVNET2x 83.60 73.50 78.20
EAST + PAVNET2x MS 84.64 77.23 80.77

STN-OCR [32] 78.53 65.20 71.86
Poly-FRCNN-3 [33] 80.00 66.00 73.00

RFPN-4s [34] 85.10 76.80 80.80
Ours 85.59 76.94 81.03

Figure 10 compares the detection effects of the EAST model with this paper’s improved
model on the ICDAR2015 dataset. It can be seen that the improved EAST model was more
accurate in generating bounding boxes of long text compared with the original model.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17 
 

WordSup 77.03 79.33 78.16 
Yao et al. [31] 72.26 58.69 64.77 

EAST + VGG16 80.50 72.80 76.40 
EAST + ResNet50 77.32 81.66 79.43 

EAST + PAVNET2x 83.60 73.50 78.20 
EAST + PAVNET2x MS 84.64 77.23 80.77 

STN-OCR [32] 78.53 65.20 71.86 
Poly-FRCNN-3 [33] 80.00 66.00 73.00 

RFPN-4s [34] 85.10 76.80 80.80 
Ours 85.59 76.94 81.03 

Figure 10 compares the detection effects of the EAST model with this paper’s im-
proved model on the ICDAR2015 dataset. It can be seen that the improved EAST model 
was more accurate in generating bounding boxes of long text compared with the original 
model. 

 
Figure 10. Comparison of detection effect between the EAST model and improved EAST model on 
the ICDAR2015 dataset. 

Table 4 and Figure 11 compare the detection effects of the original EAST model with 
this paper’s improved model on the SSTD dataset. On the SSTD dataset, the improved 
EAST model saw higher scores in both precision and recall compared with the EAST 
model, increasing the F1 score from 78.84% to 81.48% and overall performance. The com-
parison in Figure 11 shows that the improved EAST model was indeed more accurate in 
predicting longer text regions compared to the EAST model, which verified the effective-
ness of this paper’s proposed EAST model improvements. At the same time, the perfor-
mance of the model on the SSTD data set verifies that the model proposed in this paper 
can solve the three challenges proposed in the second section. Our model can detect im-
ages obtained from multiple shooting angles in a bright or dark environment. Images of 
different resolutions contain multiple types of text such as Chinese characters, English, 
numbers, and punctuation marks. 

  

Figure 10. Comparison of detection effect between the EAST model and improved EAST model on
the ICDAR2015 dataset.

Table 4 and Figure 11 compare the detection effects of the original EAST model with
this paper’s improved model on the SSTD dataset. On the SSTD dataset, the improved
EAST model saw higher scores in both precision and recall compared with the EAST model,
increasing the F1 score from 78.84% to 81.48% and overall performance. The comparison in
Figure 11 shows that the improved EAST model was indeed more accurate in predicting
longer text regions compared to the EAST model, which verified the effectiveness of
this paper’s proposed EAST model improvements. At the same time, the performance
of the model on the SSTD data set verifies that the model proposed in this paper can
solve the three challenges proposed in the second section. Our model can detect images
obtained from multiple shooting angles in a bright or dark environment. Images of different
resolutions contain multiple types of text such as Chinese characters, English, numbers,
and punctuation marks.
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Table 4. Comparing detection effects of the improved EAST model with the EAST model on the
SSTD dataset.

Model Precision (%) Recall (%) F1 (%)

EAST + VGG16 73.80 84.61 78.84
Ours 78.30 84.94 81.48
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4.5. Discussion

There has been a trend toward using deeper feature extraction networks such as
ResNet50, and adding complex structures such as bidirectional feature pyramids, to im-
prove text detection model performance. In this paper, grounded in the purpose of practical
application, we do not introduce complex structures to improve model performance in
order to avoid an increasing number of parameters and computational burden. Instead, our
FEM significantly increased the receptive field while only introducing very small increases
in parameters. After calculation, the parameter of the original EAST model is 15.09 MB, and
the parameter of each FEM module is 0.62 MB, that is, the four FEM modules introduce a
total of parameters. It is 2.48 MB. It can be seen that the improvement of this article does not
introduce too much parameter. The improved EAST model proposed in this paper inherits
the structural advantages of the EAST model, and our model doesn’t require pre-designed
anchor frames. From the experimental results in Tables 2–4, this paper’s modified EAST
model improved upon the EAST model without using deeper feature extraction networks
and increasing structural complexity. Overall performance of the improved EAST model
was higher compared with other models, which verified that this model is an efficient street
sign text detection model.

5. Conclusions and Future Prospects

This paper produced the SSTD dataset for street sign natural scenes and, based on
analysis of existing natural scene text detection models and the characteristics of street
sign text scenes, proposed an improved EAST model based on the original EAST detector.
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To address the EAST model’s deficiencies in detecting long text regions because of small
receptive fields, three improvements were proposed: altering the shrinkage calculation
during label generation, adding a feature enhancement module (FEM), and changing
the loss function approach to Focal loss. Compared with the original EAST model, the
improved model increased the F1 score from 76.40 to 81.03 on the ICDAR2015 dataset, and
from 78.84 to 81.48 on the SSTD dataset. The improved EAST model’s detection effects for
long text regions were also enhanced. Ultimately, this paper proposed an improved EAST
model with the better overall performance for text region detection in street sign scenes.

In future research, based on the work we did before, on the one hand, we will expand
the data set with pictures containing Chinese characters of minority nationalities, so that
the model can detect more kinds of characters. On the other hand, we will tackle text
recognition from regions with high tilt angles and perspective distortion, as well as street
sign scenes that contain Chinese characters, English letters, numbers, and punctuation
marks. Then we will propose a model that recognizes the text detected by the improved
EAST model, to propose a combined model that can fully detect and recognize street sign
text from end to end. In addition, we will conduct research on the application of our work
in the field of assisted navigation for autonomous driving and intelligent translation.
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