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Abstract: This paper presents a mobile manipulation platform designed for autonomous depalletizing
tasks. The proposed solution integrates machine vision, control and mechanical components to
increase flexibility and ease of deployment in industrial environments such as warehouses. A
collaborative robot mounted on a mobile base is proposed, equipped with a simple manipulation
tool and a 3D in-hand vision system that detects parcel boxes on a pallet, and that pulls them one
by one on the mobile base for transportation. The robot setup allows to avoid the cumbersome
implementation of pick-and-place operations, since it does not require lifting the boxes. The 3D vision
system is used to provide an initial estimation of the pose of the boxes on the top layer of the pallet,
and to accurately detect the separation between the boxes for manipulation. Force measurement
provided by the robot together with admittance control are exploited to verify the correct execution of
the manipulation task. The proposed system was implemented and tested in a simplified laboratory
scenario and the results of experimental trials are reported.

Keywords: mobile manipulation; robot vision; industrial depalletizing

1. Introduction

Industrial automated warehouses are designed to optimize the transportation and
distribution of goods usually stored in cardboard boxes [1]. In this work, we consider
the task of automated depalletizing (unloading) a pallet containing homogeneous boxes,
namely the origin pallet, with the purpose of composing a new pallet containing potentially
different boxes, namely the mixed pallet, by collecting items from different origin pallets.
Homogeneous pallets are organized as a grid of cardboard boxes of the same type arranged
on multiple stacked layers.

Robotic depalletizers in automated warehouses are usually bulky and limited to four
degrees of freedom (DOFs), requiring very high payloads to move large end-effectors.
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Robot end-effectors are usually designed to pick up an entire layer of boxes from the
origin pallet and place it on a distribution and serialization system composed of multiple
conveyor belts, even in the case of light boxes or when only a few boxes are needed to be
transferred from the origin pallet. Moreover, since more than ten thousand different types
of goods may need to be stored in a single food and beverage factory, warehouses require
large buildings for intermediate buffers to temporarily store the depalletized items before
moving them to the destination (mixed) pallets.

In this paper, we address the automated depalletizing problem by defining a new
system able to integrate safety, maneuverability and ease of interaction for a palletiz-
ing/depalletizing task performed in an industrial environment. This system could be
considered a first prototype of a multi-purpose platform with high reconfiguration ca-
pabilities for the interaction and assistance of human operators in a shared warehouse
environment. To this end, our system exploits a serial collaborative robot (cobot) mounted
on an autonomous mobile robot (AMR). Both the serial arm and the AMR must be en-
dowed with collaborative features, since the overall robotic system must be able to safely
operate in an industrial environment shared with humans. The cobot is equipped with an
eye-in-hand time of flight (ToF) 3D camera. The cobot, an UR10e from Universal Robots,
has six DOFs, providing a wide workspace for box extraction, 10 Kg payload, and wrist
force/torque sensor for tool wrench measurement. A shovel-shaped tool mounted on the
cobot end-effector is used to fit in the gap between boxes and to pull the cardboard boxes
one by one on the mobile base for transportation. The choice of this type of tool with
respect to other standard solutions allows to reduce both the total execution time and the
load on the manipulator. The 3D camera is located on the cobot end-effector to detect the
pose of the boxes and the separation gap between them for tool insertion.

The design of the proposed mobile manipulation system was driven by the fact that
payload is one of the main bottleneck problems faced by collaborative mobile robots in
industrial environments. Indeed, due to safety and maneuverability, only small cobots
can be placed on AMRs. Therefore, the proposed solution is based on decoupling object
displacement and lifting operations, leaving the former to the cobot and the latter to an
automatic lifting device located on the AMR, next to the cobot. The cobot manipulates the
item at hand (e.g., a box) without lifting it, but rather by dragging it onto the lifting device.

2. Related Work

The optimization of operations inside a warehouse is currently characterized by sev-
eral research areas. In particular, the implementation of a robotic system able to assist
human workers in their tasks requires the capability to effectively plan and optimize the
sequence of actions [2–4], to correctly localize persons and objects [5] and to interact with
the environment and other systems in the network [6]. Since the advent of Industry 4.0, the
requirements of optimizing the transport and distribution of products has encouraged the
use of autonomous guided vehicles within modern automated warehouses [7]. Moreover,
autonomous mobile robots have been introduced to improve flexibility and robustness in
modern industrial contexts [8]. Nowadays, the potential collaboration between cobots and
mobile platforms has received increasing efforts from industrial and scientific research, par-
ticularly for logistic applications [9]. Bonini et al. [10] explored the possibility of employing
a mobile collaborative system for palletizing operations. The hardware consists of a lifting
device equipped with a pneumatic gripper, a powered conveyor and a set of sensors which
allows interaction between the system itself and the environment. Vacuum grippers are
usually adopted for depalletizing cardboard boxes [11–13]. However, this solution is not
generally safe, since cardboard boxes cannot always hold the weight of the items that they
contain. Nakamoto et al. [13] designed a depalletizing system where a second robot arm
is used to support the boxes during motion. A robot manipulation system based on 3D
vision and a vacuum gripper, for the detection and unloading of cardboard boxes from
shipping containers or semi-truck trailers, is presented in [11]. A fixed-base robot depal-
letizing system designed for supermarket logistic processes is described in [12]. Similarly,
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the application of vacuum technology was proposed in [13,14], whereas Matsuo et al. [15]
developed a mobile robot equipped with a self-weight compensation system. However,
these solutions may lack flexibility, and vacuum gripping solutions may be hard to im-
plement on AMRs, especially small-sized ones. In contrast, with previous systems, a
non-prehensile approach of manipulation was suggested by Lim et al. [16], where items
are dragged aboard the mobile robotized system. Non-prehensile manipulation strategies
are a subject of growing interest, both in the research and industrial fields, because with
the reduction in the overall weight supported by the gripper, the minimization of the risk
of falls and the capability to perform specific motions in a cluttered environment would
be impossible under normal grasping scenarios. In [17], a new planning framework to
exploit the funneling effect of pushing to deal with uncertain and clutter environments
is proposed. Similarly, in [18] a framework that takes into account the human presence
in cluttered environments is analyzed. Acharya et al. [19] presented a motion planning
analysis for the optimization of the stability and control of an asymmetric object during
non-prehensile manipulation. Ardakani et Al. [20] proposed a quasi-static analysis to
define a dynamical system to predict the object behavior in function of friction forces. In the
industrial scenario [21], the manipulation of a flexible belt exploiting the friction between
the belt and the gripper is discussed. Our work aimed to promoting new studies on the
interaction forces between the object to be picked and the support layer to further simplify
the depalletizing operation in a shared human–robot environment.

In terms of perception, similarly to what is proposed in this paper, Hashimoto et al. [22]
presented a genetic algorithm to recognize loads on a pallet. The main differences are that
the method in [22] adopted a fixed gray scale camera placed above the pallet, while we
adopted an eye-in-hand camera system and admittance control to simultaneously achieve
the accurate positioning of the robot arm and a controlled interaction with the boxes.
Yunardi et al. [23] investigated a method to determine the size of parcels moving on a
conveyor belt using RGB cameras. Prasse et al. [24] proposed a system to detect the pose
of parcels located on a pallet by combining a time of flight (ToF) sensor and RFIDs, which
were used to compute the 3D structure of the layer. Katsoulas et al. [25] proposed methods
for the recognition of arbitrary size boxes in cluttered environments using a planar laser
scanner, mounted on a robot arm in eye-in-hand configuration. A drawback is that, since
they are based on 2.5D edge detectors, they could fail to detect aligned boxes in contact
with one another. In [26], a robotic depalletizing system was proposed using uncalibrated
vision and 3D laser-assisted image analysis. All sensors were attached to the ceiling. In [27],
an RGB-D vision system based on pattern matching was developed for the localization of
heterogeneous cases in a depalletizing robotic cell.

3. Concept and Mechanical Design

The items to be handled are cardboard boxes placed on a standard Euro Pallet (EPAL),
in such a manner that the parcel boxes form at most four vertical layers separated by
rigid interlayers. The overall depalletizing task may be subdivided into the following
sequential steps:

• Robot’s self-localization within the workspace;
• Autonomous navigation towards the desired pallet;
• Pose detection of boxes on the top layer of the pallet;
• Extraction of boxes from the pallet and placement aboard the robot.

A manipulation strategy based on dragging goods aboard the mobile robot is em-
ployed, in order to overcome the limitations of standard grabbing manipulation, such as a
limited robot payload or the possibility of handling only packages that are able to sustain
their own weight.

We propose using a serial collaborative manipulator UR10e, provided by Universal
Robots (www.universal-robots.com/products/ur10-robot/, accessed on 24 June 2021),
installed on a Mir100 AMR, supplied by Mobile Industrial Robots (www.mobile-industr
ial-robots.com/en/solutions/robots/mir100/, accessed on 24 June 2021) as illustrated in

www.universal-robots.com/products/ur10-robot/
www.mobile-industrial-robots.com/en/solutions/robots/mir100/
www.mobile-industrial-robots.com/en/solutions/robots/mir100/
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Figure 1. In addition, a scissor lifting mechanism is integrated to collect boxes on board. Thus,
the displacement and lifting functions are decoupled. The top of the lifting mechanism is
equipped with an idler-roller conveyor to allow items to be dragged and collected. During
the manipulation phase, a swivel hatch, mounted on the terminal part of the conveyor, can be
set in either open or closed configuration. The former position enables items to be dragged
either from the pallet to the conveyor or vice versa, whereas the latter position prevents the
boxes from falling out during the AMR navigation.

Figure 1. Overview of the mobile robot and its components.

The operational capability of the overall system is influenced by how the cobot and the
lifting mechanism are integrated on the AMR. For this reason, three different solutions were
analyzed. In the first solution, the cobot is installed on a fixed support, and the installation
height is selected by optimizing the cobot workspace with respect to the box locations. In
this way, system stability is not excessively penalized, but the fixed cobot location limits the
boxes that can be reached. In the second solution, the cobot is installed on top of the lifting
mechanism, thus simplifying task execution, since the cobot base is always aligned with the
conveyor and the box layer to be handled. As a drawback, a more powerful lifting mechanism
is needed. The last solution requires the installation of the cobot on a telescopic actuator,
thus leading to independent movements of the cobot and the lifting mechanism. However,
cost-effectiveness is penalized. Moreover, in both the second and the third solution, system
stability decreases when handling the higher boxes. Another aspect to be considered when
choosing the optimal hardware architecture is that, due to the rectangular footprint of the MiR
AMR, the cobot and the lifting mechanism can be placed in either longitudinal or transverse
arrangement. The former (Figure 2a) enhances stability, but possible interference between
the lifting mechanism and the cobot limits the base joint rotation. On the other hand, the
latter arrangement (Figure 2b) overcomes such limitations by virtue of the larger distance
of the cobot with respect to the lifting mechanism, however, AMR navigation may be more
challenging because of the non-omnidirectional MiR steering system. As a result of the design
analysis (with the latter being thoroughly described in [28]), we chose the installation of the
cobot on a fixed support with a transverse arrangement. It is worth observing that when the
AMR is close to the pallet, at most two boxes can be processed, due to the limited workspace
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of the robot arm; thus, handling the third box of the same row requires the AMR to reposition
on the opposite side of the pallet. This drawback can be overcome by using a cobot with a
larger workspace mounted on a larger AMR.

(a) Longitudinal layout. (b) Transverse layout.

Figure 2. Comparison between transverse (a) and longitudinal (b) layout.

Concerning the lifting mechanism, it is composed of two scissor linkages placed in paral-
lel and a linear electric actuator that acts on a transverse ledger. A four-bar linkage enables the
rotational motion of the swivel hatch, as represented in Figure 3. For the four-bar actuation,
we select a passive solution for the sake of simplicity, lightness and cost-effectiveness. By
employing a crank-slider mechanism, the linear motion of the top wheel installed in the
scissor lifting mechanism can be converted into an angular rotation of the four-bar crank.

Figure 3. Swivel-hatch mechanism equipped with rotating clips.

Friction phenomena during box manipulation might result in an undesired sliding of
the interlayer. Therefore, we use a pair of rotating clips (Figure 3) which keep the interlayer
in place and prevent it from slipping. Each clip comprises a RC-Servo motor, a main body
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rigidly attached to the motor, a sliding rod, and a compression spring. The RC-Servo actuates
the rotation of the main body, resulting in a spring compression and a force applied on the
interlayer.

4. Simulations

The industrial scenarios considered in this work were simulated using CoppeliaSim
(www.coppeliarobotics.com/coppeliaSim, accessed on 24 June 2021) and evaluated in terms
of task execution time and motion feasibility.

Simulations include a comparison between the dragging manipulation approach
against a standard pick-and-place solution.

One layer of 21 palletized boxes (of size 250 × 150 × 300 mm, arranged in a grid of
7 rows, 3 columns) must be transported from an initial pallet to a storage pallet, maintaining
the initial grid arrangement of the boxes. It is assumed that during the manipulation phase
of the items the total payload attached to the robot (i.e., the tool and the box) is always
lower than the UR10e maximum payload.

The first simulated scenario (Procedure 1) involves the usage of a shovel-shaped
tool on the UR10e end-effector. The tool drags the item on the lifting device. In this
case, it is assumed that the AMR can transport only two boxes per journey. Making such
assumptions, the task can be accomplished in 11 journeys: for each of the seven rows of
the box grid, the first two columns items are manipulated in the first seven journeys, then
the items on the third column are handled in the remaining four journeys, with a quite
different picking method. Indeed, a pair of items (in the same row) of the first two columns,
once the AMR is positioned next to them, can be pulled by the manipulator without any
additional motion of the AMR, whereas the AMR must be moved to manipulate a pair of
items (in different rows) of the third column. Figure 4 shows the AMR/cobot system and
the grid of 21 boxes highlighting the items involved in each of the 11 journeys.

Figure 4. The grid of 21 boxes named according to the order of manipulation.

The shovel-shaped tool of the cobot allows to load a box on the lifting device by means
of a linear dragging movement. Firstly, the manipulator executes a collision-free movement

www.coppeliarobotics.com/coppeliaSim
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from its current initial position towards the detected approaching frame between two
consecutive boxes. As will be further described in Section 6, such a movement consists
of different point-to-point motions, because of the need for taking a first 3D image of the
pallet top layer and then a second image closer to the identified gap between two boxes to
refine the detection accuracy. Afterwards, three linear motions are required to insert the
tool into the detected gap, drag the box and finally bring the manipulator back to the next
starting position.

Procedure 1 lists the consecutive motions that are required to perform the loading
(and similarly, the unloading) of a single box on the AMR.

Procedure 1: one-box dragging motion sequence, shovel-shaped tool

1 Point-to-point motion to box target frame
2 Linear downward approaching movement (200 mm)
3 Linear dragging movement (600 mm)
4 Linear upward movement (300 mm)

The collision-free point-to-point motions are generated by means of the Open Motion
Planning Library framework (OMPL) (https://ompl.kavrakilab.org/, accessed on 24 June
2021), exploiting the OMPL wrapper included into CoppeliaSim. OMPL is also integrated
into ROS/MoveIt and employed in the real robot application.

Table 1 shows the average simulated elapsed time for each manipulator motion
performing the loading and the unloading of two boxes placed in the first two columns.
The partial time taken to load and unload the first box are indicated as sTl1 and sTu1,
respectively, while sTl and sTu represent the overall time needed for loading/unloading
two boxes. The left superscript s indicates the shovel-shaped tool. Note also that in Table 1,
motion indices are referred to the steps of the first simulated scenario (Procedure 1).

In order to guarantee proper safety bounds, the manipulator joint velocities and the
end-effector linear velocity are limited to 40 deg/s and 200 mm/s, respectively.

Table 1. Simulated elapsed time for loading/unloading two aligned boxes.

Loading Unloading

Motion Time (s) Time (s)

1 5.75 5.55
Box 2 1.04 1.04

1 3 3.10 3.05
4 1.55 1.55

Partial sTl1 = 11.44 s sTu1 = 11.19 s

1 5.25 3.55
Box 2 1.04 1.04

2 3 3.10 3.05
4 1.55 1.6

Total sTl = 22.38 s sTu = 20.43 s

Therefore, under the further following assumptions:

• Tj is the time required to move the AMR from the initial pallet to the storage pallet;
• Ts = 1 s is the time required to move the AMR from the current to the next column of

the grid,

and the overall time needed to complete the transport of all the 21 boxes can be fairly
approximated as follows:

sTtot = 22 Tj + 7(sTl +
s Tu +

s Tl1 +
s Tu1) + 6 Ts ≈ 464 + 22 Tj (1)

https://ompl.kavrakilab.org/
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where the term 22 Tj considers 11 round-trip journeys, the terms 7 sTl and 7 sTu include the
loading/unloading of the aligned boxes in the first and second grid columns, while 7 sTl1
and 7 sTu1 are the times taken to handle the remaining single box of the third grid column.

It is worth noting that the additional time required to re-execute the procedure in the
case of a collision between the tool and the boxes due to the inaccurate detection of the gap,
as described in Section 6, is not considered here, because it is expected that the probability
of this type of events will be reduced and ideally made negligible for the future industrial
release of the system.

The second manipulation scheme (Procedure 2) involves the usage of a vacuum
gripper mounted on the robot end-effector instead of the shovel-shaped tool. The main
difference with the previous approach is that the robot can execute a standard pick-and-
place operation with approaching movements at different heights, so that the lifting device
is no more required. Moreover, the detection of the gap between boxes is no longer required
and the vision system can identify the picking frame exploiting a single camera acquisition,
so that the first robot motion is faster with respect to the former manipulation approach.
The algorithm of Procedure 2 describes the sequence of robot motions required to pick a
single box from the pallet and place it on the AMR.

Procedure 2: one-box picking/placing, gripper tool

1 Point-to-point motion to box target frame
2 Linear downward approaching movement (200 mm)
3 Close the gripper
4 Linear upward approaching movement (200 mm)
5 Linear movement (600 mm)
6 Linear downward approaching movement (200 mm)
7 Open the gripper
8 Linear upward movement (300 mm)

In this case, the loading/unloading procedures are slower than those of the former
approach because of the necessity of two additional linear motions during the manipulation
phase. The time taken to perform each movement is reported in Table 2. The overall time
to complete the transport of the 21 boxes can be computed by means of Equation (1), with
the following result:

vTtot = 22 Tj + 7(vTl +
v Tu +

v Tl1 +
v Tu1) + 6 Ts ≈ 524 + 22 Tj (2)

Therefore, the former manipulation scheme provides an overall time saving of vTtot−s

Ttot ≈ 60 s. Such a result justifies the choice of equipping the AMR with the lifting device
and using a tool that allows the manipulator to drag the items instead of picking and
placing them.
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Table 2. Simulated elapsed time for loading/unloading two boxes with the vacuum gripper.

Loading Unloading

Motion Time (s) Time (s)

1 4.25 5.90
2 1.05 1.05

Box 4 1.05 1.05
1 5 3.09 3.10

7 1.05 1.05
8 1.55 1.54

Partial vTl1 = 12.04 s vTu1 = 13.69 s

1 3.65 3.35
2 1.05 1.05

Box 4 1.05 1.00
2 5 3.10 3.10

7 1.05 1.10
8 1.54 1.54

Total vTl = 23.48 s vTu = 24.88 s

5. Experimental Setup, Perception and Control System

In order to perform a preliminary evaluation of the proposed depalletizing system, a
prototype was set up, as shown in Figure 5a, which does not include the lifting device on
the AMR. Moreover, only a single layer of boxes is present. Experiments were conducted in
a laboratory environment instead of an industrial setting, due to the ongoing the COVID-19
pandemic. Since we are interested in demonstrating the capability of the system to collect
a limited number of items without manipulating an entire pallet layer, we present the
experiments that involve unloading of two boxes. The 3D camera is shown in Figure 5b, as
well as the paddle tool connected to the manipulator through a custom flange.

The algorithm describing the box extraction task is detailed in Algorithm 1. After the
mobile base has moved closer to the pallet, the system performs detection of parcel boxes as
described in Section 5.1, by moving the 3D camera to an elevated pose in order to have
a complete view of the pallet top layer, and it detects the 3D position of all the boxes
in front of the loading surface of the robot. Then, in the box depalletizing plan phase, the
sequence of picking operations to be performed is determined according to the pose of
the boxes with respect to the robot. Each picking operation is performed as follows. First,
an edge of the box is chosen for the picking and its position is evaluated according to the
camera estimation and the box dimensions. Then, the camera on the arm is moved above
the estimated position to perform a close view refined estimation of the center of the gap
between two boxes, where the tool should be inserted to complete the retrieval (Section 5.2).
Once the estimation is obtained, the robot tool is aligned with the gap center and a tool
insertion operation is attempted. During the insertion, the tool wrench is continuously
evaluated to identify any unexpected collision, possibly due to wrong detection. An
admittance control scheme allows to prevent any damages to the robot and the boxes
during the insertion as reported in Section 5.3. As soon as a collision occurs, the insertion
operation is interrupted, and the estimation of the gap is tried again. If no collision is
detected, the insertion is considered successful and the box, dragged by the robot tool, is
loaded on the robot support surface, which will be replaced by the lifting device in our
future work.
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3D ToF Camera

End E ector

Boxes

MiR 100 AMR

UR10e Cobot

Control and 

Power Supply

Support

Surface

(a) Overview of the experimental setup.

(b) Detailed view of the end-effector and 3D camera.

Figure 5. The experimental setup: the mobile manipulator (a), the paddle tool and the in-hand 3D
camera (b).
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Algorithm 1: Robotized Depalletizing Algorithm
Data: 3D camera image,

robot tool wrench
Result: depalletizing of a box layer
move camera in the detection pose;
perform detection of parcel boxes;
define box picking sequence in box depalletizing plan;
while box picking sequence is not empty do

extraction start: consider the first box in the sequence;
evaluate the box edge position;
move the 3D camera to the evaluated position;
perform refined estimation of the gap between boxes using the 3D camera image;
move the robot tool above the refined gap;
while insert the robot tool in the gap do

if vertical tool wrench > wrench threshold then
extract robot tool;
go to beginning of current section: extraction start;

end
end
drag the box toward the robot;
remove current box from the sequence;

end

5.1. Detection of Parcel Boxes

In the detection of parcel boxes phase, the robot arm first moves to an observation
configuration, where the upper layer of the pallet can be fully observed by the eye-in-hand
infra-red 3D camera (IFM Electronics O3D303). Furthermore, the camera exposure time
texp is set to a constant value texp,far, suitable to observe objects from the current distance
of the sensor to the pallet, as shown in Figure 6a. Then, the camera acquires a depth image
with a of resolution 352 × 264 pixels, which is converted into an organized point cloud
containing 3D points pij. The camera also produces an intensity value rij for each pixel that
contains the amount of light returned to the sensor.

As light intensity rij decreases with distance according to the inverse square law, and
since the amount of light received by the sensor is proportional to the current exposure time
texp, a corrected intensity image R′ =

{
r′ij
}

is computed as r′ij = rij ‖pij‖2 / texp. As the
camera provides its own infra-red lighting, both depth and intensity measurements proved
robust to changes to environmental light conditions compatible with indoor industrial
environments.

In order to ensure stability, pallets are generally arranged as a stack of layers. Each
layer above the first one lies on the top planar faces of the parcel boxes of the layer below. In
industrial environments, the content and the configuration of a pallet is known in advance.
Pallets stored in a warehouse usually contain parcel boxes of the same type. Moreover,
palletizing and depalletizing tasks of single parcels are performed by inserting or removing
the parcel boxes from the top layer.
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(a) 3D camera view of the pallet layer. (b) Result of box detection.

(c) 3D camera view of the gap between two boxes. (d) Detection of the gap between two boxes.

Figure 6. Detection of parcel boxes and their separation gaps.

These assumptions derived from industrial practice are exploited to strengthen the
robustness of our box detection algorithm.

Hence, in this work, we consider a single type of boxes of known size, but the
proposed approach can be easily extended to handle different box formats. Moreover, we
can estimate the equation of the top plane of the highest layer of parcel boxes by applying a
RANSAC-based estimation method when the pallet layer is full, i.e., when no box has been
removed yet. Hence, we assume that the top plane is always known with respect to the
robot. Parcel box detection is constrained to the points pij which are within a small distance
from the plane. Parcel boxes are then detected according to the following steps [29]:

5.1.1. Edge Detection and Candidate Boxes Computation

Edges are detected in both the intensity and the depth image acquired by the camera.
In particular, discontinuities in the intensity image are detected by applying the standard
Canny edge detector, with upper and lower thresholds Ucanny = 120 and Lcanny = 60.
Conversely, depth discontinuities are defined as the pixels whose corresponding points
belong to the top plane of the pallet (with a tolerance thinlier = 5 cm) for which there exists at
least a pixel in the neighborhood which does not satisfy the same condition. Straight lines
are fitted to the union of the two discontinuity images using the Hough Line Transform.

Lines are organized in a connectivity graph by connecting them at intersections. A
set of candidate boxes B is generated by locating cycles of length 4 in the graph, i.e.,
quadrilaterals in the image. A candidate box is only accepted if the edges approximately
intersect at a right angle, with tolerance θbox = 10◦. Moreover, the length of the edges must
correspond to the expected size of the box top face (with tolerance σbox = 2 cm). In the case
of a mixed pallet, multiple possible box sizes could be acceptable in this step.
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5.1.2. Genetic Optimization Algorithm

As the set of candidate boxes B detected in the previous step may contain many
spurious or overlapping boxes, a genetic optimization algorithm is used to locate the best
subset of boxes S. The optimization aims at maximizing the area F(S) of the image (in
pixels) which is covered by exactly one of the boxes. In particular, the objective function to
be optimized is:

F(S) = ∑
S∈S

A(S)− γO ∑
S∈S

O(S)− γI ∑
S∈S

I(S)− γC ∑
S∈S

∑
S′∈SS′ 6=S

C
(
S′, S

)
(3)

The first term is the summation of the areas A(S) (in pixels) of the candidate box S ∈ S, and
the remaining three terms are penalty terms where O(S) is the number of pixels of S, which
do not belong to the top plane of the pallet, I(S) is the difference between the quadrilateral
area and the expected area of the top face of a box, and C(S, S′) is the overlapping area
between box candidates S and S′. Coefficients γO = 2, γI = 8 and γC = 2 are parameters
weighting each penalty term.

The genetic optimization algorithm operates on a population of Gpop = 100 indi-
viduals Si, each representing a subset of the candidate box B. The population is initial-
ized by selecting random subsets of candidate boxes. We define two mutation operators
Mutation1(S) and Mutation2(S), and a crossover operator Crossover(S1,S2). Operator
Mutation1(S), applied with probability PM1 = 0.1, removes up to three random elements
from S. Operator Mutation2(S), applied with probability PM2 = 0.1, removes a random
element from S and replaces it with the element in B which maximizes F(S). Finally,
operator Crossover(S1,S2), with probability PC = 0.7, generates a new individual S′ by
extracting random elements from S1 ∪ S2 as long as they increase the objective function
F(S). Furthermore, we define a Fill(S,B) operator, which generates a superset of S by
repeatedly adding random candidate boxes from B until F(S) stops increasing. By applying
the Fill operator at the initialization and after each operator, we ensure that each individual
is always a greedy local maximum. Optimization ends when the objective function does
not decrease for Gstall = 20 consecutive frames.

The genetic optimization algorithm was implemented in C++ using the OpenGA
library (https://github.com/Arash-codedev/openGA, accessed on 24 June 2021). The
output of the box detection can be appreciated in Figure 6b. Further details on the genetic
optimization approach can be found in [30].

5.2. Refined Estimation of the Gap between Two Boxes

In the refined estimation of the gap phase, the camera on the arm is moved to the esti-
mated position of the gap between two boxes, at a fixed height above the boxes themselves.
The camera is oriented so that the image plane is roughly parallel to the top pallet layer.
Moreover, the image x axis is oriented as the expected direction of the box edge. The
camera exposure texp is adjusted to a low value texp,near to prevent the saturation of the
camera sensor. The 3D camera view at this stage can be seen in Figure 6c.

The gap refinement algorithm consists of three steps. First, 2D lines are detected
through the probabilistic Hough Transform on the corrected intensity image R′. Then, 2D
lines are discarded if their angle with respect to the image x axis is too large or if they
are too far from the image center, as shown in Figure 6d. Through a proper choice of
thresholds, only the horizontal lines in the center of the image remain and most outliers
are discarded. Finally, the gap position pref and orientation θref are computed as the mean
position and orientation of the detected lines, and used to determine the target frame for
the manipulation operation.

https://github.com/Arash-codedev/openGA
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5.3. Controller Design

During the extraction procedure, an admittance control strategy is implemented for
the control of the arm position xref:

xref = xdes + Λ∆xdes (4)

along the tool insertion direction defined by the selection matrix Λ:

Λ = [0 0 1 0 0 0]T (5)

The admittance behavior is based on the tool wrench measure provided by the cobot and
it produces a smooth behavior during tool insertion. In particular, a displacement for the
control reference is defined at each time instant according to the measured wrench, in order
to produce an elastic interaction in the case of collisions and prevent any damage to the
boxes. The induced displacement ∆xdes is obtained by means of a first-order digital filter
to reduce the wrench estimation noise:

∆xdes =
KF

1 + KP z−1 dz(ΛT Fext, Fth) (6)

where z−1 represents the sample-time delay according to the Z-transform notation and Kp
is the filter gain. The wrench signal is evaluated with respect to a predefined deadzone
function dz(·, ·) to prevent undesired oscillations of the control:

dz(F1, F2) =


F1 − F2, F1 > F2

0, −F2 < F1 < F2

F1 + F2, F1 < −F2

(7)

6. Experimental Results

Experiments were performed to show the capabilities of the robot platform and to
evaluate its effectiveness in depalletizing tasks. We report unloading tasks in scenarios
where the mobile platform is already in place to collect the cardboard boxes, as well as in
more dynamic cases where the AMR first approaches the boxes. The experiments were
performed with filter gains KF = 10e−3, KP = 0.1 and force threshold F1 = 10N.

6.1. 2-Boxes Depalletizing and Transportation

A two-boxes depalletizing task is shown in Figure 7. First, the mobile base approaches
a group of boxes by moving to a suitable configuration for the box unloading task, then
the cobot rises the 3D camera to an elevated position to detect the boxes. The two-steps
detection of the gap between adjacent boxes was then executed. Then, the tool is inserted
into the gap between the first two boxes and the first box is pulled on the robot. Then, the
procedure is repeated to manipulate the second box. Finally, the mobile base moves away
with the two boxes onboard. In Figure 8, the Cartesian position and the measured wrench
on the cobot end-effector are displayed along the task. The low values of the measured
wrench confirm that the task was successfully completed without any collision of the tool.
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Figure 7. From top-left to bottom-right: a sequence showing the execution of a 2-boxes depalletizing task by the mobile
manipulator.
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Figure 8. A depalletizing task where two boxes are successfully extracted. The mobile base is
exploited to approach the boxes for the unloading task and to transport the boxes away once loaded
on the robot.
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Figure 9 reports the success rate of the task for 50 box extractions. It can be noticed
that in most cases, the system performed the extraction by the first attempt. Nonetheless,
in a few cases, the first estimation of the gap between boxes was not correct, and a second
attempt was required. This is probably due to unexpected changes in light conditions
or slight motions of the mobile base. In all cases, the second estimation of the gap was
successfully completed and the box was correctly loaded onto the robot.
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Figure 9. Overall insertion success rate with respect to gap detection repetitions.

6.2. Single Box Extraction

The Cartesian position and the measured wrench on the cobot end-effector during
the unloading of a single box are reported in Figure 10a. At first, the box position was
estimated by the in-hand camera. Then, the estimated gap between two adjacent boxes
was refined to obtain the target frame for tool insertion (t = 4 s). Once the target frame was
determined, the tool was aligned with the gap between the boxes (t = 8 s), and an insertion
attempt was performed (t = 12.5 s). During the insertion phase, a collision was detected
(t = 15.5 s), possibly caused by an inaccurate evaluation of the gap position. Therefore,
tool insertion was suspended and a new detection of the gap was performed (t = 21 s).
Since no further collisions were detected (t = 32 s) the cobot completed the insertion and
the box was successfully pulled onto the robot (t = 36 s). It can be noticed that when a
collision occurs, the admittance control allows for a smooth motion of the end-effector, thus
reducing the risk of damaging the robot arm or the target box.

6.3. Complete Layer Depalletizing

A successful example of unloading a pallet layer with four boxes, in a static scenario
where the AMR was fixed, is shown in Figure 10a. In this test case, the target boxes were
extracted one by one until the pallet layer was empty. The AMR was placed so that all
four boxes were inside the robot arm workspace. The boxes were manually removed from
the robot platform once unloaded since the robot platform can carry at most two boxes.
The graph in Figure 10b shows that the system was able to successfully extract all four
boxes. A collision occurred when the tool was inserted to extract the third box, and a
second estimation of the gap was required for the task to be successfully completed. It is
noteworthy that each extraction showed a similar behavior, and a comparable completion
time (with the exception of the collision case). Moreover, the robot was moving at only
10% its maximum speed. Therefore, the expected performance obtained in Section 4 can be
easily achieved if the robot arm was moving at full speed.
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(a) Single box depalletizing task.
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(b) A task where four boxes are successfully extracted from a fixed
position of the AMR.

Figure 10. Robot tool position and wrench during a depalletizing task of a single box (a) and four boxes (b).

7. Conclusions and Future Work

In this paper, a novel mobile manipulator equipped with a 3D perception system for
autonomous depalletizing tasks was presented. The proposed solution shows that it is
possible to unload, in a controlled way, just a few boxes from a pallet, without the need of
disassembling an entire pallet layer. Therefore, the system can be very effective to build
mixed pallets containing different types of goods, in which only a small number of boxes
of the same type are needed.

Future work will be devoted to the evaluation of the proposed system in an industrial
scenario, which was not possible due to COVID-19-related restrictions. Moreover, the
implementation of the depalletizing task will be extended to handle packages of bottles
and cans, which will require a more complex manipulation plan. We will also consider the
task of building a complete mixed pallet, including the collection of small lots of boxes from
multiple single-item pallets and their arrangement on the mixed pallet in a proper order.

Author Contributions: Conceptualization, J.A., A.B., M.C., G.P., L.S.; methodology, R.M., M.B.,
A.B., D.L.R., G.P., F.Z.; software, R.M., D.C., J.R.; validation, G.S., F.Z., D.C., J.R.; writing—original
draft preparation, R.M., J.A., F.Z., A.B., R.D.L., G.I., S.F.; writing—review and editing, M.C., L.S.;
supervision, J.A., R.D.L., C.F., G.I., M.C., D.L.R., C.M., L.S.; funding acquisition, J.A., C.F. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the COORSA project (European Regional Development Fund
POR-FESR 2014-2020, Research and Innovation of the Region Emilia-Romagna, CUP E81F18000300009).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Echelmeyer, W.; Kirchheim, A.; Wellbrock, E. Robotics-logistics: Challenges for automation of logistic processes. In Proceedings

of the 2008 IEEE International Conference on Automation and Logistics, Qingdao, China, 1–3 September 2008; pp. 2099–2103.
2. Khairuddin, U.; Razi, N.; Abidin, M.; Yusof, R. Smart Packing Simulator for 3D Packing Problem Using Genetic Algorithm. In

Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1447, p. 012041.
3. Al-Jodah, A.A.L.; Shirinzadeh, B.; Pinskier, J.; Ghafarian, M.; Das, T.K.; Tian, Y.; Zhang, D. Antlion Optimized Robust Control

Approach for Micropositioning Trajectory Tracking Tasks. IEEE Access 2020, 8, 220889–220907.
4. Al-Azza, A.A.; Al-Jodah, A.A.; Harackiewicz, F.J. Spider monkey optimization (SMO): a novel optimization technique in

electromagnetics. In Proceedings of the 2016 IEEE Radio and Wireless Symposium (RWS), Austin, TX, USA, 24–27 January 2016;
pp. 238–240.

5. Li, Q.; Dong, S.; Zhang, D.; Wang, X. Research on the Lidar-based Recognition and Location Method for Depalletizing Targets. In
Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 683–687.



Appl. Sci. 2021, 11, 5959 18 of 19

6. Wei, C.; Ji, Z.; Cai, B. Particle swarm optimization for cooperative multi-robot task allocation: A multi-objective approach. IEEE
Robot. Autom. Lett. 2020, 5, 2530–2537.

7. Sabattini, L.; Aikio, M.; Beinschob, P.; Boehning, M.; Cardarelli, E.; Digani, V.; Krengel, A.; Magnani, M.; Mandici, S.; Oleari, F.;
et al. The PAN-Robots Project: Advanced Automated Guided Vehicle Systems for Industrial Logistics. IEEE Robot. Autom. Mag.
2018, 25, 55–64. doi:10.1109/MRA.2017.2700325.

8. Cesetti, A.; Scotti, C.; Di Buo, G.; Longhi, S. A service oriented architecture supporting an autonomous mobile robot for industrial
applications. In Proceedings of the 18th Mediterranean Conference on Control and Automation, MED’10, Marrakech, Morocco,
23–25 June 2010; pp. 604–609.

9. Pedrosa, E.; Lim, G.H.; Amaral, F.; Pereira, A.; Cunha, B.; Azevedo, J.L.; Dias, P.; Dias, R.; Reis, L.P.; Shafii, N.; et al. TIMAIRIS:
Autonomous Blank Feeding for Packaging Machines. In Bringing Innovative Robotic Technologies from Research Labs to Industrial
End-Users; Springer: Berlin/Heidelberg, Germany, 2020; pp. 153–186.

10. Bonini, T.; Forni, A.; Mazzolini, M. Design of an Intelligent Handling System using a Multi-Objective Optimization Approach. In
Proceedings of the IEEE 23rd Internationl Conference on Emerging Technologies and Factory Automation (ETFA), Torino, Italy,
4–7 September 2018; Volume 1, pp. 887–894.

11. Doliotis, P.; McMurrough, C.D.; Criswell, A.; Middleton, M.B.; Rajan, S.T. A 3D perception-based robotic manipulation system
for automated truck unloading. In Proceedings of the IEEE Internationl Conference on Automation Science and Engineering
(CASE), Fort Worth, TX, USA, 21–25 August 2016; pp. 262–267.

12. Caccavale, R.; Arpenti, P.; Paduano, G.; Fontanellli, A.; Lippiello, V.; Villani, L.; Siciliano, B. A Flexible Robotic Depalletizing
System for Supermarket Logistics. IEEE Robot. Autom. Lett. 2020, 5, 4471–4476.

13. Nakamoto, H.; Eto, H.; Sonoura, T.; Tanaka, J.; Ogawa, A. High-speed and compact depalletizing robot capable of handling
packages stacked complicatedly. In Proceedings of the 2016 IEEE/RSJ Internationl Conference on Intelligent Robots and Systems
(IROS), Daejeon, Korea, 9–14 October 2016; pp. 344–349.

14. Kavoussanos, M.; Pouliezos, A. Visionary automation of sack handling and emptying. IEEE Robot. Autom. Mag. 2000, 7, 44–49.
15. Matsuo, I.; Shimizu, T.; Nakai, Y.; Kakimoto, M.; Sawasaki, Y.; Mori, Y.; Sugano, T.; Ikemoto, S.; Miyamoto, T. Q-bot: Heavy object

carriage robot for in-house logistics based on universal vacuum gripper. Adv. Robot. 2020, 34, 173–188.
16. Lim, G.H.; Pedrosa, E.; Amaral, F.; Lau, N.; Pereira, A.; Azevedo, J.L.; Cunha, B.; Badini, S. Mobile manipulation for autonomous

packaging in realistic environments: EuRoC challenge 2, stage II, showcase. In Proceedings of the 2018 IEEE Internationl
Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018; pp. 231–236.

17. Dogar, M.R.; Srinivasa, S.S. A planning framework for non-prehensile manipulation under clutter and uncertainty. Auton. Robot.
2012, 33, 217–236.

18. Papallas, R.; Dogar, M.R. Non-prehensile manipulation in clutter with human-in-the-loop. In Proceedings of the 2020 IEEE
International Conference on Robotics and Automation (ICRA), Virtual Workshops, 31 May–30 June 2020; pp. 6723–6729.

19. Acharya, P.; Nguyen, K.D.; La, H.M.; Liu, D.; Chen, I.M. Nonprehensile Manipulation: a Trajectory-Planning Perspective.
IEEE/ASME Trans. Mechatronics 2020, 26, 527–538.

20. Ardakani, M.; Bimbo, J.; Prattichizzo, D. Quasi-static Analysis of Planar Sliding Using Friction Patches. arXiv 2019,
arXiv:1904.06677.

21. Qin, Y.; Escande, A.; Tanguy, A.; Yoshida, E. Vision-based Belt Manipulation by Humanoid Robot. In Proceedings of the 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Online Metting, 25–29 October 2020; pp. 3547–3552.

22. Hashimoto, M.; Sumi, K. Genetic labeling and its application to depalletizing robot vision. In Proceedings of the 1994 IEEE
Workshop on Applications of Computer Vision, Sarasota, FL, USA, 5–7 December 1994; pp. 177–186.

23. Yunardi, R.T.; Winarno, P. Contour-based object detection in Automatic Sorting System for a parcel boxes. In Proceedings of the
2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA),
Surabaya, Indonesia, 15–17 October 2015; pp. 38–41.

24. Prasse, C.; Stenzel, J.; Böckenkamp, A.; Rudak, B.; Lorenz, K.; Weichert, F.; Müller, H.; ten Hompel, M. New Approaches for
Singularization in Logistic Applications Using Low Cost 3D Sensors. In Sensing Technology: Current Status and Future Trends IV;
Mason, A., Mukhopadhyay, S.C., Jayasundera, K.P., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015;
pp. 191–215.

25. Katsoulas, D.; Bastidas, C.C.; Kosmopoulos, D. Superquadric Segmentation in Range Images via Fusion of Region and Boundary
Information. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 781–795.

26. Zhang, B.; Skaar, S.B. Robotic de-palletizing using uncalibrated vision and 3D laser-assisted image analysis. In Proceedings
of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009;
pp. 3820–3825.

27. Arpenti, P.; Caccavale, R.; Paduano, G.; Andrea Fontanelli, G.; Lippiello, V.; Villani, L.; Siciliano, B. RGB-D Recognition and
Localization of Cases for Robotic Depalletizing in Supermarkets. IEEE Robot. Autom. Lett. 2020, 5, 6233–6238.

28. Baldassarri, A.; Innero, G.; Di Leva, R.; Palli, G.; Carricato, M. Development of a Mobile Robotized System for Palletizing
Applications. In Proceedings of the 25th IEEE International Conference on Emerging Technologies and Factory Automation,
Vienna, Austria, 8–11 September 2020; Volume 1, pp. 395–401.



Appl. Sci. 2021, 11, 5959 19 of 19

29. Chiaravalli, D.; Palli, G.; Monica, R.; Lodi Rizzini, D.; Aleotti, J. Integration of a Multi-Camera Vision System and Admittance
Control for Robotic Industrial Depalletizing. In Proceedings of the IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; Volume 1, pp. 667–674.

30. Monica, R.; Aleotti, J.; Rizzini, D.L. Detection of Parcel Boxes for Pallet Unloading Using a 3D Time-of-Flight Industrial Sensor. In
Proceedings of the 2020 Fourth IEEE International Conference on Robotic Computing (IRC), Virtual Conference, 9–11 November
2020; pp. 314–318.


	Introduction
	Related Work
	Concept and Mechanical Design
	Simulations
	Experimental Setup, Perception and Control System
	Detection of Parcel Boxes
	Edge Detection and Candidate Boxes Computation
	Genetic Optimization Algorithm

	Refined Estimation of the Gap between Two Boxes
	Controller Design

	Experimental Results
	2-Boxes Depalletizing and Transportation
	Single Box Extraction
	Complete Layer Depalletizing

	Conclusions and Future Work
	References

