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Abstract: The purpose of this research was to present a simulation modelling of a crack propagation
trajectory in linear elastic material subjected to mixed-mode loadings and investigate the effects of
the existence of a hole and geometrical thickness on fatigue crack growth and fatigue life under
constant amplitude loading. For various geometry thickness, mixed-mode (I/II) fatigue crack growth
studies were carried out to utilize a single edge cracked plate with three holes and compact tension
shear specimens with various loading angles. Smart Crack Growth Technology, a new feature in
ANSYS, was used in ANSYS Mechanical APDL 19.2 to predict the cracks’ propagation trajectory and
their consequent fatigue life associated with evaluating the stress intensity factors. The maximum
circumferential stress criterion is implemented as a direction criterion under linear elastic fracture
mechanics (LEFM). According to the hole position, the results demonstrate that the fatigue crack
grows towards the hole due to the unbalanced stresses on the hole induced crack tip. The results of
this simulation are verified in terms of crack growth paths, stress intensity factors, and fatigue life
under mixed-mode load conditions, with several crack growth studies published in the literature
showing consistent results.

Keywords: stress intensity factors; fatigue life; failure analysis; influence of hole position; geometry
thickness; loading angles; ANSYS Mechanical

1. Introduction

Most structures are subjected to cyclic loading, tension, and shear loads, known
as mixed-mode fatigue loading. Fatigue failure is the most common type of failure in
such configurations, caused by cracks and other defects in the components. The primary
objective of fracture mechanics is to evaluate whether or not a structure will fail based
on the presence of a crack. Crack growth is crucial in engineering structures, because it
significantly impacts the quality and stability of engineering structures. Thus, the safety or
reliability of engineering structures is vital to predicting the crack propagation path. As
a result, in many industries, the accurate estimation of the crack path and fatigue life is
essential in terms of reliability. Fracture mechanics is an essential tool in current materials
science for enhancing the mechanical performance of mechanical components. A significant
parameter for estimating a cracked structure’s lifetime is the stress intensity factor (SIFs).
The stress intensity factor is defined physically as the intensity of load transmitted through
the crack tip area due to introducing a crack into the component [1].

The SIFs evaluate the severity of the stress induced by remote loading around the crack
tip. The associated instantaneous value of SIFs would follow the changes in crack geometry
and stresses during crack growth. The stress intensity factor has a complicated function of
the load, boundary conditions, crack propagation, geometry, and material characteristics.
The fatigue crack propagation is evaluated using the equivalent stress intensity factor
in Paris’ law. Experimental investigations are essential for fatigue assessment in several
applications, such as the aerospace industry and the aviation industries. However, accurate
calculation methods are needed to analyze crack propagation to prevent crack propagation
and fatigue life in both static and dynamic loading [2]. The failure was caused by (a) faults
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such as interfaces and cracks and (b) the nature of fluctuating loads. When exposed to
variable loads, cracks tend to initiate and grow until the structure no longer bears the load,
leading to catastrophic failure. These cracks are characterized as fatigue cracks, and the
predicted life is one of the most critical factors in determining the structure’s reliability. It
can be calculated by adding the required number of loading cycles to nucleate the fatigue
crack and cause the failure. The crack propagation rate is generally determined using the
relationship between SIFs and the crack geometry. Crack initiation and propagation are
always associated with SIFs in a complicated state in general [3–6]. In recent studies, the
extended finite element technique (XFEM) introduced by [7] has frequently been adopted
to study the fracture due to crack growth. Based on a standard finite element framework, it
uses a unique displacement feature to allow for discontinuities, eliminating the need to
re-mesh continuously during the crack tip growth process.

XFEM was utilized to perform crack growth analysis without updating the mesh to
evaluate SIFs [8–10]. Nowadays, numerous codes could be used to model cracks propa-
gating through structures, e.g., FEM [11] and BEM [11,12], both in mixed-mode [13–16]
or in-plane [17]. In addition, the methods used for calculating K values, kink angles, and
crack-growth rates can be numerous [6–8]. Significant work was done to establish appropri-
ate models for evaluating the fatigue crack growth (FCG) and fatigue life to avoid fatigue
failures. Numerous experimental methods were proposed; nevertheless, the methods are
frequently time-consuming and expensive to perform. Using a simulation strategy that
involves numerical analysis and the ANSYS APDL.19.2 finite element approach to decrease
laboratory effort, time, and expenses is a great way to save time and money. Meanwhile,
there are several of modern finite element simulation tools for fatigue crack propagation
problems, including ANSYS, ABAQUS, FRANC3D, etc. Many fatigue crack problems
identified to date by the literature use different computational approaches in simulation
for simple and complex structures in 2D and 3D [2,18–24]. An energy-based criterion
was developed by [25] using additively manufactured materials to analyze the effects of
material anisotropy on the behavior of fatigue creak growth. The criteria are established
based on the concept of strain energy density in the anisotropic domain by including
T-stress into the solution and considering the effects of the specimen geometry. Therefore,
this work uses the ANSYS APDL 19.2 to predict the mixed-mode SIFs accurately and the
associated fatigue life for the single edge cracked plate and compact tension shear speci-
mens. In particular, three methods have been widely used to illustrate the fatigue analysis
of materials: the method of fracture mechanics developed by Paris and Erdogan [26], the
method of strain-life independently proposed by Coffin [27], and the method of stress-life
proposed by Wöhler [28]. The first approach was employed in this study for predicting
fatigue life, whereby the crack tip could be described separately by the stress intensity
factors. The primary motivation for this study was to make a significant contribution to the
use of ANSYS as an efficient tool for modelling FCG under the condition of mixed-mode
loading and monitoring the influence of the holes on the crack growth trajectory.

2. Mixed Mode Fatigue Life Evaluation Procedure Using ANSYS

ANSYS can model three kinds of cracks: arbitrary, semi-elliptical, and pre-meshed.
The smart crack growth analysis tool uses the crack front in the pre-meshed crack approach,
and the stress intensity factor is the failure criteria. The rendered nodes will distribute to
the front, bottom, and top of the crack, and the front of the crack is included in the pre-
meshed crack process, which is used by the “Smart Crack Growth” simulation tool. This is
used instead of employing the XFEM’s enrichment area (splitting), which eliminates the
re-mesh process around the crack tip and assumes that the discontinuities cut the element
entirely. In this case, the displacement formulation does not account for the presence of
singularity. As the crack propagates, the newly introduced crack segments are always
assumed to have cohesive zone behavior. SMART automatically updates the mesh from
crack geometry changes due to crack propagation on each solution stage, reducing the
need for long pre-processing sessions. The sphere of influence was used to refined the
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crack tip mesh and around the geometric edge that passes through the thickness. The
geometric regions ‘contain the crack tip, the crack’s top surface, and the bottom surface
of the crack. However, each of these regions is connected to a set of nodes that will be
utilized for analysis. In order to analyze a mixed-mode fracture, it is essential to have
a proper understanding of the crack growth direction. The direction of crack extension
is defined by an angle θ measured from the initial crack plane [29–31]. The direction of
a mixed-mode crack is definitely determined by the ratio of modes stress intensity at
the crack tip. The ANSYS software considers mixed-mode loading where the maximum
circumferential stress criterion is implemented. The following are the formulas for the
direction of crack propagation in ANSYS [32,33]:

θ = cos−1

3K2
I I + KI

√
K2

I + 8K2
I I

K2
I + 9K2

I I

 (1)

where:
KI = Max KI during cyclic loading and KII = Max KII during cyclic loading.
In the present simulation using ANSYS, the simulation of crack propagation is re-

stricted to region II of the typical crack propagation under fatigue loading that can be
represented as:

da
dN

= C(∆Keq)
m (2)

From Equation (2), for a crack increment, the number of life cycles of fatigue may be
predicted as:

∆a∫
0

da
C(∆Keq)

m =

∆N∫
0

dN = ∆N (3)

The equivalent range for the stress intensity factor formula can be found as follows [19]:

∆Keq =
1
2

cos
θ

2
[(∆KI(1 + cos θ))− 3∆KI I sin θ] (4)

where:
∆KI = the range of SIF in mode I loading and ∆KI I = the range of SIF in mode

II loading.
Based on numerical analysis, there are many methods formulated for estimating the

SIFs. The integral interaction method is usually the most accurate method that can estimate
KI and KII separately. ANSYS proposes two methods, the Displacement Extrapolation
Method (DEM) and the Integral Interaction Method (IIM), to determine SIFs. The second
method was adopted because it is numerically easier to implement and has better precision
and less mesh requirement. This approach depends on the domain integral approach [34],
where an auxiliary field uses to separate KI from KII, as this ability is missing in the domain
integral itself. The energy release rate is expressed in terms of mixed-mode stress intensity
factors KI, KII, and KIII, which were proposed by [34,35] as follows:

Equation (5) becomes for the superimposed state:

J(s) =
K2

I + K2
I I

E∗
+

1 + ν

E
K2

I I I E∗ =

[
E

(1−ν2)

E
Plane strain
Plane stress

(5)

where
JS(s) = 1

E∗

[
(KI + Kaux

I )2 + (KI I + Kaux
I I )2

]
+ 1+ν

E (KI I I + Kaux
I I I )

2

= J(s) + Jaux(s) + I(s)

I(s) = 1
E∗ (2KIKaux

I + 2KI IKaux
I I ) + 1+ν

E (2KI I IKaux
I I I )

(6)
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where superscript (S) denotes the superimposed state, J(s) is the actual state domain
integral, Jaux(s) is the auxiliary state domain integral, and I(s) is integral with interacting
auxiliary and actual terms.

By setting Kaux
I = 1 and Kaux

I I = Kaux
I I I = 0, Equation (6) yields:

KI =
E∗

2
I(s) (7)

By setting Kaux
I I = 1 and Kaux

I = Kaux
I I I = 0, that gives the relationships between KII, KIII

as follow:
KI I =

E∗

2
I(s) (8)

KI I I = µ I(s) (9)

where E and µ are the modulus of elasticity and modulus of rigidity, respectively.

3. Numerical Results and Discussion
3.1. Single Edge Cracked Plate with a Three-Hole

A rectangular plate with a dimension of 120 mm × 65 mm × 16 mm contains two
holes with a diameter of 13 mm near both ends of the plate and a 20-mm hole near the
center of the plate, as depicted in Figure 1a. An initial crack of 10 mm is located at the center
edge of the plate. The plate is made from Aluminum 7075-T6 with a Young’s Modulus of
71.7 GPa, yield strength of 469 MPa, the ultimate strength of 538 MPa, Paris’ law coefficient,
C = 5.27 × 10−10, Paris law exponent, m = 2.947, fracture toughness of 938.25 MPa mm 0.5,
and a Poisson’s ratio of 0.33. A 100 N load was applied at the top and bottom holes. The
applied force is P = 20 kN with a stress ratio R = 0.1, and the behavior of the material is
assumed to linear elastic. The initial mesh generated by Ansys is shown in Figure 1b, with
an element size of 1 mm, generating 495,354 nodes and 348,892 elements.
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Figure 1. (a) 2D and 3D geometric Details of the single edge cracked plate with a three-hole, (b)
Initial mesh.

As seen in Figure 2, a straightforward comparison is made of the crack path simulated
with ANSYS software on the present study, one from experiment [36], the other three from
XFEM [36], XFEM with ABAQUS software [37], and by using XFEM with a controllable
crack propagation strategy [38] as displayed in Figure 2a–d. It can be shown that the
numerically obtained crack path agrees well with the predicted experimental path.
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The effect of thickness on fatigue crack growth parameters was investigated for this
geometry using three different thicknesses, 4, 8, and 16. It is noticeable that there no
influence of the geometry thickness on the crack extension trajectory. In contrast, there is a
more significant influence on the stress and strain distribution as the thickness increased or
decreased. Therefore, as thickness increases, the stress–strain field in the crack tip tends to
change from the plane–stress state to the plane–strain state, meaning that the crack tip is
in the tension state in all three directions and small scope the plastic zone will be limited.
As the geometry thickness increases in a plane strain state, critical fracture toughness
decreases, and brittle fracture is more likely to occur, which is much more dangerous than
ductile fracture.

Consequently, as the geometry thickness is increased, the equivalent Von-Mises stress
and the maximum principal stress were decreased with approximately the same ratio
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as shown in Figure 3. Figure 4 illustrates the equivalent elastic strain distribution for
the three different thicknesses and gives additional insight into the effect of thickness on
mechanical properties. The equivalent elastic strains decreased as the thickness increased,
approximately in the same proportion as the equivalent Von-Mises and maximum principal
stresses, as seen in this figure. The stress concentration is greater at the crack tip on the right
top of the hole, as shown in Figure 3. The other stress value, which is somewhat lower than
the previous value, is concentrated on the mid-right of the hole, providing the continuity
of the crack to grow until the right end of the specimen, similar to the experimental study.
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Figures 5 and 6 display the estimated values of the two SIFs modes, KI and KII,
respectively. As it can be seen in these two figures, the expected values for both KI and KII,
while still under plane stress for geometry thicknesses of 4 mm and 8 mm, were very close
to each other and much higher than those for 16-mm thickness, which was considered a
plane strain condition. The values of KII were increased with negative values, which only
affect the crack growth direction to deviate toward the hole.
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Since the fatigue life cycles are associated with the equivalent stress intensity factor, the
number of cycles changes as ∆Keq changes. The fatigue life cycles for different specimens
is as follows: 16 mm start at 9109 and go up to 11,031, 8 mm start at 18,228 and go up to
20,284, 4 mm start at 20,766 and go up to 22,734, as shown in Figure 7.
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3.2. Compact Tension Shear Specimen (CTS)

Figure 8a shows CTS geometry, while Figure 8b shows its proposed loading angles.
The distribution of forces according to the load angles considered in ANSYS is shown in
Figure 9. The applied load F is compared with the corresponding loads on other holes of
the six holes, based on the given formulations [39]:

F1 = F6 = F(0.5 cos α +
c
b

sin α) (10)

F2 = F5 = F sin α (11)

F3 = F4 = F(0.5 cos α− (c/b) sin α) (12)

where c and b are length parameters (c = b = 54 mm) and α is the loading angles as
represented by Figure 2. Table 1 shows the results for all loading forces at different
loading angles.
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Table 1. Forces F1 to F6 as a function of loading angle α.

α F2 = F5 F1 = F6 F3 = F4

30 0.5 F 0.933 F –0.067 F
45 0.707 F 1.061 F –0.354 F
60 0.866 F 1.116 F −0.616 F

The considered material was Aluminum alloy having the following material properties
as shown in Table 2:

Table 2. Properties of the considered material.

Properties Metric Units Value

Elasticity Modulus, E 74 GPa

Poisson’s ratio, υ 0.33

Yield strength, σy 517 MPa

Ultimate strength, σu 579 MPa

Threshold SIF, Kth 3.15 MPa
√

m

Fracture toughness, KIC 32.95 MPa
√

m

Paris’ law coefficient, C 4.3378 × 10−7

Paris law exponent, m 2.6183

The simulation is conducted under fatigue loading ratio R = 0.1, applied load F = 14 kN,
and the ratio of the initial crack length to the width of the specimen (a/W = 0.5). This sim-
ulation considered three different thicknesses, which are 3 mm, 6 mm, and 12 mm, for
three angles of loading 30◦, 45◦, and 60◦. The Ansys simulated model shown in Figure 7 is
entirely compatible with the experimental work conducted by [40–43].

Figure 10 shows the typical finite element mesh for each specimen with different
thickness associated with the number of nodes and elements simulated by ANSYS. The
element size in all simulation was 1 mm, and the total number of nodes and element for
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the three different thicknesses are shown in Table 3. The geometry is meshed using (Q8)
eight-noded isoparametric quadrilateral elements. At each step of the crack propagation,
the finite element meshes are completely re-meshed, and the mixed-mode SIFs, KI and KII,
are estimated.
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The predicted crack growth path for the three different angles and three different
thicknesses are shown in Figure 9 through the Von-Mises stress distribution. The effects
of loading angles on the crack growth trajectory were demonstrated clearly. Three differ-
ent thicknesses, 3, 6, and 12, were used to investigate the effect of thickness on fatigue
crack propagation for this geometry. The crack growth trajectory was unaffected by the
geometrical thickness, whether the thickness increased or decreased. However, there was a
significant impact on the stress and strain distribution, as seen in Figure 10 for the corre-
sponding equivalent Von-Mises stress, which decreased with approximately the same ratio
as the specimen thicknesses were increased.

Comparisons were made for the predicted crack growth trajectories with different
loading angles, as illustrated in Figure 11 with the experimental results obtained by [42]
for a 30◦ loading angle, in Figure 12 with the experimental data reported by [44] for a 45◦

loading angle, and finally in Figure 13 with the experimental results obtained by [42] for
a 60◦ loading angle. As illustrated in these three figures, the predicted crack extension
trajectories were similar to the experimental pathways.
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The number of cycles estimated in this investigation for different loading angles of
30◦, 45◦, and 60◦ is compared to experimental data reported by [42,44] under mixed-mode
loading (I/II), resulting in significant agreements, as shown in Figures 14–16.
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4. Conclusions

In this study, mixed-mode (I/II) fatigue crack growth investigations were performed
on a single edge cracked plate with three holes and different thicknesses as well as for a CTS
specimen for different thicknesses and loading angles. It was observed that the geometry
thickness did not affect the crack growth trajectory. In contrast, when the thickness of the
specimen increased or decreased, it had a more significant impact on the stress and strain
distribution. As a result, the stress–strain field at the crack tip tended to move from the
plane stress state to the plane strain state as thickness increases, asserting that the crack
tip is under tension in all three dimensions and the plastic zone will be constrained in a
small scope. Accordingly, as the geometry thickness is increased, the equivalent Von-Mises
stress and the maximum principal stress were decreased with approximately the same ratio
of increasing the thickness. The fatigue crack grew toward the hole, as predicted, due to
unbalanced stresses at the crack tip induced by the hole. In these simulation sequences,
holes act as a crack stopper and attract a crack trajectory to grow. These results confirm
the algorithm’s ability to identify crack-stopping holes in damage tolerance designs. The
predicted fatigue crack propagation paths, stress intensity factors, and fatigue life cycles
were validated by other researchers’ experimental and numerical results.
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