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Abstract: The present work analyses a hybrid free electron laser (FEL) scheme where the oscillator is
based on a radiation source operating with a slow-wave guiding structure as, for instance, a Cerenkov
FEL or a Smith–Purcell FEL. Such devices, often running in transverse magnetic (TM) modes, present
a longitudinal electric field which can easily affect the longitudinal electrons’ velocities, inducing
an energy modulation on the beam. Such a modulation, properly controlled, can induce a strong
radiation emission in a magnetic undulator properly designed to operate as a radiator. General
considerations will be exposed together with a practical numerical example in the far infrared region
of the spectrum.
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1. Introduction

Free electron lasers (FELs) are widely acknowledged as the most versatile generators
of coherent electromagnetic radiation. Since the first studies in the late 1960s [1] and their
“official” invention in 1977 [2], it has been clear that FELs are capable of bridging the gap
between conventional electron-based sources (such as klystrons, magnetrons, travelling
wave tubes) that are limited to the high frequency direction, and the lasers that, with some
exceptions, generate single frequency radiation with a power that is limited by the nature
of the active medium. FELs can be designed, in principle, to operate at any frequency
and with a time structure and related power suitable for any kind of experiment. This
kind of flexibility comes from the fact that many of the parameters involved, such as the
electron energy and the magnetic field, can be adjusted with continuity. Moreover, many
dynamical regimes can be exploited for FEL design; from the low-gain regime, suitable
for oscillator devices [3], to the high gain regime ideal for the self-amplified spontaneous
emission (SASE) scheme [4]. Furthermore, FEL offers significant potential options to
combine different schemes in sequence in order to increase the performances of some
specific features without overly stressing the project parameters. One of the most relevant
FEL structures arrangements, among others, is a modulator at a synchronous frequency
followed by a frequency multiplier that exploits the harmonic content in the modulated
beam [5,6]. Such an arrangement may be reproduced several times, creating a kind of
cascade [7] that results in final beam degradation.

This study presents one of the possible arrangements based on a Cerenkov FEL
oscillator as a modulator and a magnetic undulator as a radiator: this solution can be
considered a hybrid FEL scheme device [8]. The reason why the term hybrid can be
ascribed to such a scheme is not only due to the fact that the modulator and radiator
present two different mechanisms of radiation generation, but mainly because in Cerenkov-
like FEL devices [9] (as is the case for Smith–Purcell gratings [10]), the coupling between
electrons and field is longitudinal, while the magnetic undulator induces a transverse
motion to the electrons and accordingly, to the coupling. This circumstance, combined
with the fact that Cerenkov (and Smith–Purcell) FELs operate with slow-wave guiding
structures, has a relevant effect on the differences, for “synchronism condition” [9,11],
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that links the spontaneous emission wavelength with the most relevant parameters of the
experiment, between Cerenkov and undulator FELs.

The paper is arranged in four sections: after the present Introduction, Section 2 is
dedicated to the study of the Cerenkov-based modulator. Section 3 will introduce the
hybrid system as a whole, highlighting the value of the main parameters. Section 4 will
describe the effects of the modulation on the emission from a magnetic undulator exploited
as a radiator; this analysis includes the ballistic effects of a variable drift space. Section 5 is
devoted to final conclusions.

2. The Hybrid System

The hybrid FEL system can be assumed to be composed of three main elements: (1) an
electron beam accelerator; (2) a Cerenkov slow-wave guiding structure, with an adequate
radiation resonator for the saturation regime accomplishment; and lastly, (3) a magnetic
undulator acting as a radiator after the velocity modulation induced by an electric field
associated with the radiation stored in the Cerenkov oscillator (see Figure 1).
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Figure 1. Schematic drawing of the hybrid FEL under study. The accelerated electron beam generates radiation interacting
with the Cerenkov resonator. The electric beam associated with the stored radiation modulates the electrons’ velocities in
order to obtain the most efficient emission in the magnetic undulator radiator.

The first problem to face is related to the energy of the electron beam that will be
common to both generating structures. As discussed in the introduction, the synchronism
conditions for Cerenkov and undulator FELs are rather different and can be summarised
as follows (see Refs. [9,11]), where the subscript U and C indicate the undulator and
Cerenkov, respectively:

λU =
λw

2γ2

(
1 + K2

)
; λC = 2πγd

(
ε− 1

ε

)
(1)

where λw indicates the undulator period, K is the undulator parameter, d is the dielectric
thickness of the Cerenkov guiding structure, ε is its dielectric constant and γ is the Lorentz
parameter of the electrons. All these parameters will be more deeply described in the
following sections.

In order to obtain an efficient modulation of the electron beam, it is required that
the radiation generated from the Cerenkov oscillator and from the Undulator radiator be
“correlated”; a way to achieve this target is to obtain the condition: λU = λC/n where n = 1, 2,
. . . specifies the harmonic number. Such a relation, with the use of Equation (1), becomes:

λw

2γ2

(
1 + K2

)
=

2πγ

n
d
(

ε− 1
ε

)
⇔ γ3 =

λw

4π
n
(

1 + K2
) ε

d(ε− 1)
(2)

Equation (2) gives the value of the electron energy as a function of all the parameters
involved in both the Cerenkov and undulator FELs. In order to have an idea about the
numbers, we can assign some reasonable values for the involved parameters in Equation (2)
such as: λw = 2.5 cm, K = 1, d = 5 µm, n = 1, ε = 5 (dielectric constant of quartz [12]) from
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which we obtain a result, for the electron energy, γ~10, that corresponds to a moderate
relativistic energy. By inserting these values into Equation (1), we conclude that such
a source would operate in the so-called far-infrared (FIR) spectral region (also called
TeraHertz (THz)-region) because λU~λC~250 µm.

Another approach can be obtained by rearranging Equation (2) as follows:

d
(

ε− 1
ε

)
=

λw

4πγ3

(
1 + K2

)
n (3)

from which it is possible to obtain the Cerenkov parameters values starting from the
undulator FEL ones. Let us suppose we have an FEL source with λw = 2.5 cm, K = 1,
γ = 20 and again working on the fundamental harmonic n = 1, Equation (3) gives:
[d(ε − 1)/ε]~5·10−7 µm. Such a value may be obtained in several ways since, for instance,
ε = 2 and d = 1 µm. Using all these values for the hybrid FEL parameters, we eventually
obtain from Equation (1) the value for the emitted wavelength from both the elements of
the hybrid FEL: λU~λC~60 µm.

3. The Cerenkov FEL Oscillator

A well-known class of waveguides is characterised by having open boundaries and
the possible presence of an electromagnetic (e.m.) field outside the boundary; these guides
support propagating modes called “surface waves” [13]. Dielectric films deposited over
conducting plates are devices that fall into the aforementioned category; the surface waves,
in this case, present an exponential behaviour, normal to the dielectric surface, that decays
when moving away. Such a waveguide category is the relevant one for the realisation of
the Cerenkov FEL device because the field–particle interaction occurs in the region of the
space where the “evanescent” e.m. field is present.

These propagating devices present field distributions associable with transverse elec-
tric (TE) or transverse magnetic (TM) modes. The case of TM modes is more favourable
for the FEL use due to the presence of a longitudinal electric field component related to
them. The vector potential for the TM modes of a single slab geometry waveguide is
expressed by [9,13] 

Ax = A0
ck
ωq e−qx sin(kz)e−iωt

Ay = 0
Az = A0

c
iω e−qx sin(kz)e−iωt

(4)

where k indicates the longitudinal momentum, while q is the transverse momentum in
vacuum and p is the transverse momentum in the dielectric of thickness d. All these
parameters are linked by two coupled “dispersion relations” that can be deduced by the
field continuity along the vacuum–dielectric interface and dielectric–conductor interface:{

qd = pd
ε tan(pd)

(pd)2 + (qd)2 = d2(ω
c
)2
(ε− 1)

and

 p =
√

ε
(

ω
c
)2 − k2

q =
√

k2 −
(

ω
c
)2

(5)

In order to obtain the electric and magnetic fields from Equation (4), we can adopt the
Coulomb gauge (E = −∂A/∂t; B = ∇×A) which is useful for evaluating the fields in
absence of charges and currents, as for the free modes in a guiding structure. Neglecting
the coupling between the electrons and the transverse electric field Ex (due to the small
values of the electrons’ velocities in the x direction), we obtain for the longitudinal field:

Ez = −cA0e−qx sin(kz)e−iωt (6)

In order to achieve the maximum field intensity, it is necessary to reach the saturation
regime inside the Cerenkov waveguide resonator. The dynamics of the emission process
in Cerenkov FEL has been established in the past as far as the spontaneous emission
process [9,14] is concerned and with regard to the stimulated emission mechanism and
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the gain coefficient calculation [14,15]. Let us, therefore, consider the case discussed in
Section 2 while discussing Equation (2); the relevant parameters are summarised in Table 1.

Table 1. Cerenkov FEL Parameters @ λ = 250 µm.

Cerenkov FEL Parameters @ λ = 250 µm

Electron
Energy

Dielectric
Thickness

Dielectric
Constant

Resonator
Length

Resonator
Width

Double Slab
Height

γ = 10.0 d = 50 µm ε = 5.0 L = 35.0 cm W = 1.0 cm D = 2 cm

Table 1 reports the parameters for both a single slab geometry device [9] and for the
double slab one [16] adequate for an operation around λC = 250 µm. The behaviour of
the spontaneous emission for a single-electron beam with a transverse size of σx = 1 mm
(r.m.s.), as a function of frequency and beam centroid distance from the dielectric surface,
is reported in Figure 2a). The same analysis for the double slab geometry and a beam size
of σx = 1 cm (r.m.s.) is reported in Figure 2b):
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Figure 2. Spontaneous emission spectra as a function of the beam centroid distance from the dielectric surface: (a) single
slab waveguide geometry; and (b) double slab waveguide geometry.

The one-dimensional stimulated emission process, until saturation, can be studied by
means of semi-analytical techniques [17] (three-dimensional theory can be found in [18]).
The saturation mechanism in free electron devices is quite similar to that occurring in
conventional lasers, as has been derived by Rigrod approximately sixty years ago [19] and
is also present in the theory of passive saturable absorber for laser mode-locking [20]. Two
different but similar approaches can be applied; the first technique starts from the applica-
tion of the Ginzburg–Landau equation to FEL systems [21] and leads to the GI(I) expression
in Equation (7). The second method is based on the logistic equation approach [22] and
ends up the GII(I) expression in Equation (7):


GI(In) = 0.849 · g0MAX

1−exp
(
− π

2
In

ISAT

)
π
2

In
ISAT

ISAT = γI0 IAV
4g0MAX Neqc

In+1 = [In + GI(In)In](1− Γ)

;


GI I(n) = I(n)−I(n−1)

I(n−1)

I(n) = ISP
exp{[g0MAX(1−Γ)−Γ]n}

1+(ISP/Ie,i)[exp{[g0MAX(1−Γ)−Γ]n}−1]

Ie,i = 2
π

1−Γ
Γ g0MAX

{
1− exp

[
− 1.8

1+g0MAX

g0MAX(1−Γ)−Γ
Γ

]}
ISAT

(7)

where Neq = L/(2γ2λC) ~ 7.3 represents the equivalent value of the number of undulator
periods in Cerenkov FELs; ISAT~7.4·106 [W] expresses the saturation power value related
to the gain of the device (conventionally, the intensity is used instead of power, however,



Appl. Sci. 2021, 11, 5948 5 of 12

in this case, the radiation transverse cross-section is a constant due to the presence of
a waveguide, making power and intensity interchangeable); n indicates the round-trip
number; IAV~17,000 A indicates the Alfven current; Γ represent the total losses in the
radiation resonator; ISP expresses the spontaneous emission power of all the electrons in
the bunch and integrated over the bandwidth; Ie,i refers to the intracavity equilibrium
power, and finally, g0MAX indicates the maximum value of the small-gain, small-signal gain
coefficient as a function of frequency [15]. The relevant parameters for the gain calculation
are reported in Table 2.

Table 2. Cerenkov FEL Gain Parameters @ λ = 250 µm.

Cerenkov FEL Gain Parameters @ λ = 250 µm

Electron
Bunch

Current

Angular
Distribution

Transverse
Distribution

Peak Gain
Coefficient

Total
Resonator

Losses

Intracavity
Equilibrium Power

I0 = 20.0 σ′ = 5 × 10−4

(r.m.s.)
σx = 1 mm

(r.m.s.) g0MAX = 0.4 Γ = 0.042 Ie,i = 7.22 × 107 W

The behaviour of Equation (7) is reported in Figure 3a) for the gain expressions, GI
and GII, as a function of the round trip number n, and in Figure 3b) for the ongoing
power radiation, In and I(n), again with respect to the round trip. The main result, as can
be deduced from Figure 3, is that saturation is reached after about n = 100 round trips
considering both methods reported in Equation (7). Considering the resonator length, as
indicated in Table 1, we can deduce that saturation is gained in about TSAT~200 ns, which
is quite a short time with respect to the conventional macro-bunch duration of electron
pulses generated by RF accelerators in the S-band (~3 GHz), which of the order of several
microseconds. This will be relevant for the analysis of the velocity modulation induced on
the remaining part of the macro-bunch itself.
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the round-trip number.

The peak intra-cavity peak power, as deduced by Figure 3b), is about PSAT~4.2× 107 W;
considering an average transverse radiation dimensions, obtained from the data reported
in Table 1, of about ΣL = 1 cm2, the electric field associated to the intracavity radiation at
saturation is:

ESAT =
√

2ISAT/(ε0cΣL) ≈ 1.782 · 107[V/m]
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Before analysing the dynamical process, it is worth briefly addressing the question of
the longitudinal modes in the Cerenkov FEL resonator. The wavenumber mode separation,
as evident from Equation (6), is (∆ω/c) = π/L. The relative gain bandwidth is [11,15]:

∆ωG
ω
≈ 1

4Neq
=

γ2λC
2L

⇒ ∆ωG
c

=
ωC
c

γ2λC
2L

≈ πγ2

L

The number of modes contained in the gain bandwidth is therefore: ∆ωG/∆ω = γ2.
It is well known [11] that any FEL based on the RF accelerator locks all the longitudinal
modes in a natural way. The result of such mode-locking is that a single short pulse of
radiation travels back and forth inside the tuned resonator with a group velocity that is
slightly smaller than that of the electron beam, causing a kind of anti-lethargic effect [23],
unlike what happens for undulator FELs.

4. Electron Beam Modulation and Undulator Emission

At the end of the previous section, we saw how an intense electromagnetic pulse,
that can be generated inside an optical resonator in about 200 nanoseconds, needs to
be saturated. For electron macro-bunches, as long as few microseconds we will have
thousands of micro-bunches available interacting with the electromagnetic field. If we
analyse each of these electron micro-bunches, we recognise that, at the resonator entrance,
each of them superimposes with a correspondent radiation micro-pulse as illustrated in
Figure 4a). In such a situation, the electrons of the bunch, generally equally spaced in phase,
will experience the oscillating longitudinal electric field Ez (Equation (6)) with a spatial
periodicity of λC, as showed in Figure 4b). The situation represented in Figure 4 is quite
similar to that of an electron beam accelerated by a series of RF cavities such as those of a
standing-wave Linac [11,24]. The number of cavities can be estimated by calculating the
number of the electric field oscillations “contained” within the electron micro-bunch length
(δz~τeβec) divided by the wavelength λC: Nc~(δz/λC). The most widely used accelerators
for FELs operate in the so-called S-band (νRF~3 GHz) and generate micro-bunches of a
typical duration of τe~15 ps, which corresponds to a bunch length of about δz~5 mm.
Considering a radiation wavelength of λC~250 µm, as for the example discussed in the
previous sessions, we obtain Nc~20.

It is possible, therefore, to imagine any optical cycle acting on the electrons in a way
similar to that of the accelerating cavities of a Linac. We know, in fact, that electrons
undergo to an energy variation that is connected to the particle-radiation relative phase.
Such an energy variation will be positive for electrons close to the so-called accelerating
phase and negative for those with an opposite phase. The result is a bunching of the
electrons into Nc “slices”.
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To properly evaluate the energy variation of a single electron, let us consider that
the energy exchange occurs along the time needed for the electron, to cross the resonator
length L. The particle, during this time T = L/(cβe), experiences a quasi-static electric
field due to the fact that, even with small differences, its speed is almost synchronous
with the electromagnetic pulse that travels with its group velocity βg = d(ω/c)/dk (see
Equation (5)), and therefore, βg~βe. The energy variation, for each electron, is consequently:

∆γ =
∆E

m0c2 =
F · s
m0c2 =

T∫
0

eE(t)
m0c2 · vedt =

eE0z

m0c2 cβe

T∫
0

cos(ωt + φ)dt (8)

where the longitudinal electric field has been derived from Equation (6) and the con-
stant term E0z contains the transverse coupling between the electron and the evanescent
field in the x direction. Before getting an explicit form for Equation (8), it is worth un-
derlining that the phase ϕ usually refers to the RF field, at an angular frequency ωRF,
that accelerates the electron beam in the accelerator (Linac, for instance). In the present
case, the phase ϕ should be referred to as the Cerenkov radiation field in the optical res-
onator, and therefore, ought to be “normalised” by means of the frequency ratio ωC/ωRF:
φ⇒ φ(ωC/ωRF) = φ(λRF/λC) . After some algebra, we obtain:

∆γ =
eE0z

m0c2 L

 sin
(

ω
c

L
βe

)
(

ω
c

L
βe

) cos
(

φ
λRF
λC

)
+

cos
(

ω
c

L
βe

)
(

ω
c

L
βe

) sin
(

φ
λRF
λC

) (9)

The result of what has been discussed is that the energy modulation expressed by
Equation (9) can be exploited to generate powerful radiation inside a magnetic undulator
utilised as a radiator. The discussion after Equation (2) in Section 2 leads to a set of
parameters, summarised in Table 3, for an undulator synchronous with the fundamental
Cerenkov emission.

Table 3. Undulator–Radiator FEL Parameters @ λU = 250 µm.

Undulator–Radiator FEL Parameters @ λU = 250 µm

Electron
Energy

Undulator
Period

Undulator
Parameter

Number of
Periods

Waveguide
Width

Waveguide
Height

γ = 10.0 λw = 2.5 cm =1.0 NU = 50 W = 0.5 cm H = 0.5 cm
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The emission of radiation from a radiator by means of an ensemble of charged particles
distributed in the phase space has been faced in the recent past [25,26]. To summarise some
concepts, we can say that the electron beam, after the interaction, carries a modulation of

the current
→
J that can be expressed as a Fourier expansion in terms of the harmonics l of

the RF. Moreover, the electromagnetic field can be expanded in terms of the transverse
modes, expressed by the aggregate index λ, of the waveguide that is needed to confine
the radiation in the far infrared spectral range, and expressing the expansion coefficients
as Al,λ. Finally, the power Pl,λ, emitted due to the energy exchange between the electron
beam and the radiation field in the magnetic field of the undulator, can be evaluated by
means of the flux of the Poynting vector. Equation (10) summarises all the above in an
extensive demonstration which can be found in [25] and the references therein:

→
J =

∞
∑

l = 1

→
J l exp(−iωlt) ; ωl = 2π l

TRF

Al,λ = − Z0
2βg

e
TRF

KL√
Σλ

Ne
∑

j = 1

1
βz,jγj

sin(θl,λ,j/2)
θl,λ,j/2 i exp

(
θl,λ,j

2 + lψj

)
; θl,λ,j =

(
ωl

cβz,j
− 2π

λw
− kλ

)
Pl,λ =

βg
2Z0

∣∣Al,λ
∣∣2

(10)

where e is the electron charge, Z0 is the vacuum impedance, Σλ is the radiation transverse
mode size, Ne is the number of electrons contained in the bunch, βz,j is the longitudinal
velocity of the j-th electron, βg is the radiation group velocity and kλ is the transverse
mode momentum.

A brief analysis of Equation (10) tells us that the expansion coefficient Al,λ plays a
significant function in the determination of the radiation formation. It is, in fact, the role of
each electron in the bunch is relevant because it carries a specific energy γj and a specific
phase ψj. In particular, the electron phase ψj, together with the interaction phase θl,λ,j enter
in a more general phase term in Al,λ that, when summing up all of the contributions of
the Ne electrons of the bunch, may generate constructive or destructive interactions. The
maximum radiated power in the undulator is obtained when all the electrons contribute
to the radiation formation with the same phase term (only depending on the harmonic
number l), therefore, with an adequate distribution of the electrons in the phase-space.

What has been discussed, so far, about Equation (10), refers to the longitudinal proper-
ties of the particle–wave interaction, which concur with the undulator parameter K and
period λw and the electron longitudinal velocities βz,j. The transverse characteristics of the
radiation emission are summarised by the mode aggregate index λ. It is evident, however,
that the transverse space can play a role when the electron beam emittance values could be
relevant for the radiation wavelength to be generated. A deeper and exhaustive analysis
can be found in [27].

With such a mathematical background, an appropriate computational code was set up
for the evaluation of the coherent generation of radiation in the undulator–radiator. The
code is capable of evaluating the impact of an electron bunch, with a specific distribution in
the phase-space, for the radiation generation, calculating the contribution of any electron,
integrated along the interaction length. The code, at the moment, does not take into
account saturation effects. The effect of the energy modulation introduced by the electron–
field interaction inside the Cerenkov FEL optical resonator can be assessed by comparing
the emission from an electron distribution D

(
γj, ψj

)
and the same distribution to which

an energy modulation is added D
(

γj + ∆γ
(
ψj
)

j, ψj

)
, where the contribution ∆γ

(
ψj
)

j is
calculated from Equation (9) for each electron. To this aim, an ad hoc electron distribution
was generated in the phase-space having a uniform partitioning in energy with a total
∆γ = 0.2 around γ = 10 (see Table 3) corresponding to a σγ ≈ 5 · 10−3 r.m.s. The phase
partitioning is again uniform, with an added Poissonian component, with a total ∆ψ = 20◦

corresponding to the actual micro-bunch duration expressed as phase interval for Linac [11].
In Figure 5, we report the aforementioned electron distribution (Figure 5a) together with
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the corresponding power spectrum (Figure 5b) calculated with Equation (10). The total
power, integrated over the whole bandwidth, results in PTOT~55 W.
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As anticipated, a similar calculation can be performed for the electron distribution
of Figure 5a), to which the energy modulation ∆γj of Equation (9) is added for each
electron of the distribution with its actual phase ψj and energy (through the velocity βe,j).
The amplitude of the electric field is the one evaluated at the end of Section 3 from the
saturated intracavity radiation power E0z~1.8 × 107 [V/m]. In Figure 6, we report the
energy modulated electron distribution (Figure 6a) together with the corresponding power
spectrum (Figure 6b), again calculated by means of Equation (10). As can be clearly seen,
the emission is strongly increased by orders of magnitude due to the modulation introduced
which, moreover, is not clearly distinguishable when looking at Figures 5a and 6a. It is
further worth underlining how the total bandwidth is slightly reduced with respect to the
unmodulated case. The total power, integrated over the whole bandwidth, now results as
PTOT~1.28 × 107 W.
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We may now ask whether there is any optimisation procedure to further increase
the power radiated by the undulator. The most relevant tool is the distance between the
Cerenkov electromagnetic resonator and the entrance of the magnetic undulator. This is
because the energy modulation acquired by the electrons in the cavity transforms into a
velocity modulation, and consequently bunches before entering the undulator interaction
region. This “drift space” allows a ballistic process that correlates the velocity variation of
each electron, with its position, and therefore phase, in the bunch. In Equation (11), we
report the phase term that should be inserted in the set of Equation (10) that takes into
account the phase variation, after the velocity modulation expressed by (vz)j and for a
specific drift space LDrift. The index “j” indicates the specific electron and vref is the velocity
of the “reference electron”:(

ΨDri f t

)
j
= ωRFLDri f t

(
1

(vz)j
− 1

vre f

)
+ ψj (11)

Considering a series of values for LDrift ranging from 0 to 3.5 metres, the power
spectrum was calculated and reported in Figure 7. As can be appreciated, the peak power,
starting from a specific value, tends to reduce, while increasing LDrift, and the spectrum itself
tends to broaden with a couple of peaks appearing. A further increase in the modulator
radiator distance produces a spectral band reduction and a peak power increase up to the
final value.
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5. Conclusions

The example reported to date indicates how a hybrid scheme for free electron devices
can be effective for the power enhancement of the electromagnetic radiation generated.
This two-elements scheme, based on an oscillator, in which intracavity radiation acts as
an energy modulator, and a magnetic undulator as a radiator, is a versatile arrangement
because the oscillator section can be chosen among a series of different devices. As an-
ticipated, together with the Cerenkov device, other sources can be taken into account;
among which the Smith–Purcell is an interesting choice because it offers characteristics
that lay between that of a Cerenkov FEL (being a slow-wave device) and an undulator FEL
(wavelength scales inversely with the electron energy, as can be seen in Equation (12)). The
synchronic condition, in fact, results to be [10,28]:

λSP =
Λ
|nso|

(
1
βe
− cos θ

)
(12)

where Λ represents the grating period, nso indicates the grating spectral order and θ is
the angle between the electron beam direction (parallel to the grating surface) and the
observer. A new parameter, in the Smith–Purcell-based FEL, is evident from Equation (12)
and is the angle θ that offers a wide and continuous range of spectral tunability [28] that
can be exploited, keeping fixed other parameters like the electron energy and the grating
geometry. This characteristic increases the flexibility of the hybrid scheme FEL because it
easily allows to obtaining the condition λU = λSP/n, where n = 1, 2, . . . , because the cos θ
term can be used to obtain the maximum wavelength extension:

λ
(+)
SP =

Λ
|nso|

1
βe
⇒ λ

(−)
SP =

Λ
|nso|

(
1− βe

βe

)
.

The harmonic number n is, therefore, a pivotal parameter for extending the spectral
emission of such a coherent source [5–7], that with a proper combination of all the parame-
ters involved, for both the oscillator and the radiator, prove to be a promising and versatile
device, with the additional feature of compactness.
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