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Abstract: Pathological speech such as Oesophageal Speech (OS) is difficult to understand due to
the presence of undesired artefacts and lack of normal healthy speech characteristics. Modern
speech technologies and machine learning enable us to transform pathological speech to improve
intelligibility and quality. We have used a neural network based voice conversion method with the
aim of improving the intelligibility and reducing the listening effort (LE) of four OS speakers of
varying speaking proficiency. The novelty of this method is the use of synthetic speech matched in
duration with the source OS as the target, instead of parallel aligned healthy speech. We evaluated
the converted samples from this system using a collection of Automatic Speech Recognition systems
(ASR), an objective intelligibility metric (STOI) and a subjective test. ASR evaluation shows that the
proposed system had significantly better word recognition accuracy compared to unprocessed OS,
and baseline systems which used aligned healthy speech as the target. There was an improvement of
at least 15% on STOI scores indicating a higher intelligibility for the proposed system compared to
unprocessed OS, and a higher target similarity in the proposed system compared to baseline systems.
The subjective test reveals a significant preference for the proposed system compared to unprocessed
OS for all OS speakers, except one who was the least proficient OS speaker in the data set.

Keywords: pathological speech; voice conversion; intelligibility; speech recognition

1. Introduction

Laryngectomy is the surgical procedure of removing the larynx [1]. In addition to
several functional disorders and lifestyle changes [2], this results in the loss of vocal folds
and the patient’s pre-surgery speech [3]. One of the several alternative ways that a laryngec-
tomee can communicate [3,4] is to speak using the vibrations of the pharyngoesophageal
segment [5], known as Oesophageal Speech (OS). Generating OS introduces acoustic arte-
facts [6] and makes OS less intelligible [7,8], which affects communication, social activities
and quality of life [2,9].

OS is less intelligible and more effortful to listen to compared to healthy speech (HS).
This is evident from previous listening experiments [10,11] as well as acoustic character-
istics and challenges of OS [12]. Prolonged exposure to effortful speech causes fatigue in
listeners [13]. Therefore, there is a strong motivation to make OS more intelligible and
pleasant to listen to. We aim to enrich OS by closing the OS-HS gaps in intelligibility,
quality and listening effort (LE).

Modern speech technologies and machine learning have great potential for use in the
healthcare sector, be it for improvement of healthcare services [14] or to aid patients with
speech impairments [15]. One such application is transforming pathological speech with
the aim of making it more intelligible, pleasant and easier to process. This can reduce the
load on the listeners and improve communication for people with speech pathologies.

One of the possible approaches to enrich OS is to use a voice conversion (VC) system.
The goal of a VC system is to convert the utterances of a source speaker to sound like those

Appl. Sci. 2021, 11, 5940. https://doi.org/10.3390/app11135940 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11135940
https://doi.org/10.3390/app11135940
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11135940
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11135940?type=check_update&version=1


Appl. Sci. 2021, 11, 5940 2 of 13

of a target speaker [16]. In the OS enrichment context, utterances of an OS speaker can be
mapped to those of a healthy speaker, thereby having OS acquire characteristics of HS.

Some OS enrichment has been done using statistical VC methods such as Gaussian
Mixture models (GMMs) [17–19]. In these methods, OS and HS are modelled by a linear
combination of Gaussian distributions. In the training process, the Gaussian distributions
of OS are mapped to those of HS. The output of such a training session is a conversion
function mapping OS to HS. This conversion function can then be used to convert new
OS samples, thereby getting OS speech that has characteristics of HS. In recent times,
Deep Neural Networks (DNN) are more popular and effective compared to GMM based
methods for enhancement of alaryngeal speech [20–23] and other types of pathological
speech [24,25]. Another attempt to enrich OS was by using the eigenvoices concept [26],
which was inspired by the eigenfaces concept [27]. Some studies have used filtering
approaches [28], formant synthesis [29] and increasing the harmonics to noise ratio of
OS [30].

Like our previous approaches [31,32], the proposed method is also based on VC.
The bidirectional long short-term memory (BLSTM) based transformation [31] had bet-
ter Automatic Speech Recognition (ASR) scores compared to OS. The method used by
Serrano et al. [32] was inspired by a Phonetic Posteriorgrams (PPG) based system [33]
which had good results for HS-HS VC. When applied for OS-HS VC, there was no improve-
ment in ASR. Mel Cepstral Distortion (MCD) was reduced by both systems. Unprocessed
OS was preferred over both of the systems in preference tests.

VC systems may be parallel (requires temporally aligned source–target utterance
pairs) or non-parallel (requires many hours of speech data). Due to data limitations (100
sentences per speaker), parallel VC is best suited for our purposes. A parallel VC requires
the parallel source and target sentences to be aligned for training. This is primarily done
by Dynamic Time Warping (DTW) alignment which finds an optimal match based on
similarities in the two sequences.

Helander et al. [34] describe some challenges of DTW in the context of VC. One of
them is the presence of silences or extra sounds in the source and not in the target. Another
one is the poor estimation of end points of silences and phonemes. A third case is the
many-to-one and one-to-many nature of the DTW mapping. For example, if the source
contains a phoneme with a longer duration compared to the target, then a single frame
of the target may be mapped to several frames of the source. OS has undesired silences
and artefacts and longer and varying durations of phonemes. These qualities make DTW
challenging in the OS-HS VC task.

As a workaround, in our previous attempt [31], we performed alignment at two stages:
first aligning the phone boundaries and then applying DTW, anchoring the phone bound-
aries. In this paper, we took advantage of the available phone labels and the possibility
of generating synthetic speech (SS) with explicit phone durations. This resulted in SS
that matches in duration with the source OS utterances, and would be a perfectly aligned
target. This eliminated the need for DTW and its limitations. We hypothesise that this
DTW-free VC would improve the intelligibility and quality of the enriched OS compared
to our previous methods which required source–target alignment.

A robust enrichment system should ideally work with OS speakers of varying speak-
ing proficiency. Therefore, we performed enrichments for OS speakers ranging from very
low to very high intelligibility. As the enrichment system is built to improve communi-
cations for the OS speaker, it is important that the output of the enrichment system is
preferred by listeners over the unprocessed OS. Moreover, given that voice interactions
with machines are becoming more and more common, the enriched outputs should be
intelligible to machines. Taking these points into consideration, we evaluated the sub-
jective preference of the enriched system amongst human listeners as well as objective
intelligibility and ASR performance.
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To sum up, we present a novel, DTW-free, parallel VC system for OS enrichment
which includes an SS target. We evaluate its outputs for ASR performance, an objective
intelligibility metric and a preference test in comparison with unprocessed OS.

2. Data

We chose four OS speakers (3 male, 1 female) with a wide range of intelligibility from
an OS database that contains over 30 OS speakers [12]. In the original database, the four
speakers were identified as ‘02M3’, ‘04M3’, ‘16M3’ and ‘25F3’, and we continue to use these
IDs. Some details of the four speakers such as age, sex, time passed since the laryngectomy
operation, stimulus duration and speaking rates are presented in Table 1 [35]. The age and
the time since laryngectomy were collected on the day of the recording. Speakers 04M3
and 16M3 are relatively recent laryngectomees and hence, are less proficient than the other
two speakers.

For each speaker, we used a parallel dataset of 100 phonetically-balanced Spanish
sentences (described in detail in [12]). The sentences were syntactically and semantically
predictable but had some low frequency words. The number of words in each sentence
ranged between 9 and 18 words (mean = 13.19, SD = 3.66).

Table 1. Speaker characteristics.

Speaker IDs Sex Age Time since
Laryngectomy

Duration per Stimulus
Mean ± SD (Seconds)

Speaking Rate Mean ± SD
(Syllables per Second)

02M3 Male 75 years 5 months 8 years 1 month 7.48 ± 1.67 4.32 ± 1.80
04M3 Male 59 years 4 months 1 year 7 months 9.27 ± 2.36 3.84 ± 1.71
16M3 Male 66 years 4 months 1 year 10 months 12.52 ± 3.61 2.59 ± 1.19
25F3 Female 59 years 3 months 11 years 11 months 7.85 ± 2.02 4.24 ± 1.86

3. Proposed VC System

The proposed VC system, BLSTM with SS as target (BLSTMSS), is a DNN based
system with OS as source and SS with matching durations as target (see Figure 1). The
procedure is described in detail in the following steps.

Figure 1. The proposed OS-HS VC system: BLSTMSS.

3.1. Labelling of Oesophageal Speech

Segmentation and labelling of OS is a tricky process owing to undesired artefacts, in-
correct pronunciations of some consonants and unstable fundamental frequency. The forced
alignment feature built into generic Spanish ASR systems such as Kaldi [36] was unsuitable
for OS. Therefore, using the Montreal Forced Alignment tool [37], and with the aid of a
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manually labelled set for one speaker (speaker 02M3), new models were created by using
OS as the training material. Performing segmentation with this forced aligner gave us the
phone labels and their durations for the source OS utterances.

3.2. Generating Target Synthetic Speech

Using the labels, their durations and the utterance text, SS was generated by explicitly
assigning these durations to the phones. We used an HMM based text-to-speech system [38]
which was originally developed for the Basque language. The Spanish version is described
in [39]. This process gave us equal-sized frame-by-frame aligned pairs of OS and SS.

Due to constant swallowing of air to produce speech, OS contains several pauses
with artefacts within utterances. During the SS generation, these pauses were replaced
with silences.

3.3. Voice Conversion Neural Network

Voice conversion was performed with the VC recipe of the Merlin toolkit [40]. Parame-
trisation and resynthesis was done using the WORLD Vocoder [41]. The extracted parame-
ters included 60 Mel Cepstral Coefficients (MCCs), 1 excitation parameter (log F0), 1 Band
Aperiodicity Parameter (BAP), the deltas and the delta deltas of the MCCs, log F0 and BAP
and a voiced/unvoiced binary parameter. In all, there were 187 parameters extracted every
5 milliseconds.

A matrix of size 187 × (number of 5 ms frames) of OS and SS utterances were the
source and target inputs, respectively. We split the 100 source–target pairs into 90 train and
10 test pairs. As the source and the target had the same number of frames, we skipped the
alignment step in the training process. The train parameters were normalised to 0 mean
and unit variance and then fed into a 4 layered BLSTM (4 × 1024) training network. After
training, the source test utterance parameters were converted using the trained model.
A denormalisation of the mean and the variance was applied to the output parameters,
followed by a Maximum Likelihood Parameter Generation using the variances from the
training data. The resulting converted parameters were fed into the vocoder to synthe-
sise the converted speech. A cross validation was performed 10 times, so that all the
100 sentences were available as test sentences.

4. Evaluations and Results

Evaluations involved comparing BLSTMSS outputs to unprocessed OS using three
ASR systems, STOI scores and a preference test. In addition, we compared ASR and STOI
scores of BLSTMSS with those of our previous systems.

4.1. ASR

We evaluated the outputs of our proposed enrichment system using three ASR systems:
the speech-to-text system from Microsoft Azure using the python azure-cognitiveservices-
speech library (ASR 1) [42], the Elhuyar speech recognition system (ASR 2) [43] and
a Kaldi [36] based system (ASR 3) developed in our laboratory and described in [44].
The input files to these ASR systems were the 100 single channel wav files sampled at
16,000 Hz. The outputs were text files containing the transcriptions.

The reason for using three ASR systems was to have a diverse set of evaluations.
ASR 1 is a well known commercial ASR system used world wide and therefore easier for
comparisons in future studies elsewhere. ASR 2 is a commercial system built locally in
Spain, and therefore, better adapted to the speech style and vocabulary of the speakers
involved in this study. ASR 3 is a customised Kaldi based ASR with full control of all the
components such as the language model, dictionary etc. We presume that the amount of
audio used to train ASR 3 (approximately 5 h of audio) was smaller in comparison to the
other two commercial systems. It uses a lexicon limited to the vocabulary of the corpus
used in this study. It also uses a unigram language model and was used in our previous
studies [31,32]. The advantage of ASR 3 is that it is not prone to updates as is the case of
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commercial ASRs. This allows us to make fair and accurate comparisons of our ongoing
work with our previous work.

We calculated two metrics from the ASR transcriptions: Word Error Rates (WER) and
Percentage Words Correct (PWC). For WER, we calculated the Levenshtein distance [45]
between the reference sentence (original recording utterance text) and the hypothesis sen-
tence (ASR transcription output) using the Word Error Rate Matlab toolbox [46]. The WER
formula is shown in Equation (1). The Levenshtein distance WER takes into account the
insertions, deletions, and substitutions that are observed in the transcribed output. Please
note that the WER can be more than 100% if the total insertions, substitutions and deletions
exceed the total number of words in the reference sentence.

WER =
Substitutions + Insertions + Deletions

Total number of words in reference sentence
× 100. (1)

PWC is the percentage of words from the reference sentence correctly identified in the
transcribed sentence. The PWC formula is shown in Equation (2).

PWC =
Words correctly identified in transcription

Total number of words in reference sentence
× 100. (2)

Figures 2–4 show mean WER and PWC scores for the 100 sentences obtained from
the transcriptions of ASR 1, 2 and 3, respectively. WER scores were lower (i.e., higher
intelligibility) for BLSTMSS compared to unprocessed OS for all ASRs and speakers with
2 exceptions—speaker 04M3 in ASR 1 and speaker 16M3 in ASR 2. In the case of PWC
scores, a higher PWC score (i.e., higher intelligibility) was observed for the BLSTMSS
samples compared to unprocessed OS samples for all speakers and ASRs.

When comparing the different ASR systems, the best WER and PWC scores for
unprocessed OS were obtained by ASR 1, followed by ASR 3 and ASR 2. In addition, there
were fewer differences between OS and enriched OS in ASR 1 compared to the other two
systems. Amongst all the ASRs, ASR 3 had the best WER and PWC scores for enriched OS.

We did correlation analysis of WERs and PWCs of OS obtained from ASR 1. There
was a significant negative correlation (Pearson’s r = −0.959, p = 0.041) between WER and
the number of months since laryngectomy and a significant positive correlation (Pearson’s
r = 0.952, p = 0.048) between PWC and the number of months since laryngectomy.
A similar correlation was observed with speaking rate, but it did not reach significance.

In our previous studies [31,32], we worked with speaker 02M3 and ASR 3. Figure 5
shows the WER scores of BLSTMSS in comparison to our previous methods, PPG [32]
and BLSTMHS [31]. It can be observed that the proposed system was able to significantly
reduce ASR errors in comparison to previous methods.

(a) Word Error Rates (b) Percentage Words Correct

Figure 2. ASR 1 WER and PWC scores for unprocessed OS (source), the BLSTMSS converted outputs and target SS (target).
Error bars show standard errors.
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(a) Word Error Rates (b) Percentage Words Correct

Figure 3. ASR 2 WER and PWC scores for unprocessed OS (source), the BLSTMSS converted outputs and target SS (target).
Error bars show standard errors.

(a) Word Error Rates (b) Percentage Words Correct

Figure 4. ASR 3 WER and PWC scores for unprocessed OS (source), the BLSTMSS converted outputs and target SS (target).
Error bars show standard errors.

Figure 5. WER scores for Unprocessed OS, previous systems (PPG and BLSTMHS) and the proposed
BLSTMSS system as calculated by ASR 3 for speaker 02M3. Error bars show standard errors.

4.2. STOI Scores

STOI [47] is an intrusive objective intelligibility measure which is known to be cor-
related with subjective intelligibility scores for noisy speech. An intrusive intelligibility
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measurement requires a degraded signal and an aligned reference signal. We calculated
STOI for unprocessed OS samples and converted BLSTMSS samples for the four OS speak-
ers using the already aligned duration–matched SS (target signal) as the reference signal.
We used the SS as reference because they were the best possible clean aligned signals
available. Calculating STOI with aligned healthy laryngeal speech would have resulted
in alignment errors and hence, in an inaccurate STOI measurement. The STOI results are
shown in Figure 6.

Figure 6. STOI scores for the four OS speakers and the enriched versions. Reference signal for STOI
is duration–matched SS. Error bars show standard errors.

We can observe that the STOI scores have improved considerably (at least 15 percent-
age points) from OS to BLSTMSS for all four speakers. A high STOI score of over 60%
was observed for all the BLSTMSS samples with intelligible synthetic speech (>70% ASR
accuracy) as reference.

Like the ASR, we compared the STOI scores of the proposed system with those of
our previous methods (see Figure 7). The references used to calculate STOI were the same
duration–matched SS signals. The proposed system has higher STOI scores (about 5%)
compared to previous systems and unprocessed OS.

Figure 7. STOI scores for Unprocessed OS, previous systems (PPG and BLSTMHS) and proposed
BLSTMSS system for speaker 02M3. Reference signal for STOI is duration–matched SS. Error bars
show standard errors.
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5. Subjective Test

While unprocessed OS has several undesired artefacts and lacks a natural fundamental
frequency, it is natural speech. On the other hand, although the BLSTMSS outputs are
much clearer sounding, they are synthetically produced and may have some limitations
because of that. The success of the enrichment depends majorly on whether listeners prefer
to listen to the enriched version more than the unprocessed OS. Therefore, we performed a
preference test to collect listeners’ opinion on whether they prefer listening to the outputs
of the proposed system or the unprocessed OS.

The preference test was a 5-point Comparison Mean Opinion Scores (CMOS) test
conducted using a web-based interface (https://aholab.ehu.eus/users/sneha/BLSTMSS_
evaluation/preference_test.php (accessed on 25 June 2021)). A web-based test was consid-
ered more appropriate owing to COVID restrictions. Participants were sourced by sending
emails to speech technology networks in Spain and other local networks. The participants
were instructed to perform the test with headphones. They were informed that there are
no correct or incorrect answers in the test and that they should state their opinions with
full liberty.

The participants listened to 10 pairs of sentences from each of the four speakers—
a total of 40 pairs of sentences. Each pair contained one unprocessed OS sentence and the
corresponding BLSTMSS output of the same sentence. The chosen 10 pairs were the shortest
sentences in the set, as that allowed us to have the maximum number of evaluations while
keeping the test under 20 min. The presentation order of all the pairs, as well as the order of
the BLSTMSS and OS sentences within each pair was randomised to avoid order bias. After
listening to the two stimuli in each pair, the participants were asked to mark the preferred
stimulus. To do so, they were given the following options: ‘Prefiero claramente la primera’
(I clearly prefer the first one), ‘Prefiero la primera’ (I prefer the first one), ‘No percibo
diferencia/Ninguna suena mejor’ (I do not perceive any difference/Neither one sounds
better), ‘Prefiero la segunda’ (I prefer the second one), ‘Prefiero claramente la segunda’
(I clearly prefer the second one).

Apart from the 40 test pairs, there were 4 pairs (presented at regular intervals)
where both the samples were the same file, which was a sentence spoken by a healthy
speaker. As both the files in these 4 control pairs were the same exact file, we expected
the participants to mark the third option (‘I do not perceive any difference/Neither one
sounds better’). Only those participants who correctly marked this option for at least
3 of these 4 control pairs, were included in the analysis. This ensured reliability of the
participants’ responses.

We asked the participants to describe the audio equipment they used during the
test. This was to ensure that they were not using any bad equipment. The options were:
good headphones, normal headphones, good loudspeakers, normal loudspeakers and
bad equipment. We also asked whether the participants had any experience with using
speech technologies. The options were: no experience, experts, sporadic users and through
perception tests. This was not to study the effect of speech expertise on the evaluations,
but to ensure a good mix of all kinds of listeners.

A total of 32 native Spanish participants performed the listening test. Two of them
were rejected because they failed the control test. One other participant described their
audio equipment as ‘bad equipment’ and was excluded too. 16 out of the chosen 29 listeners
had no experience with using speech technologies. Five of them were speech technology
experts, 4 were sporadic users of speech technology and 4 stated that their experience of
speech technologies was through perception tests.

Overall, the most chosen option was ‘Preference for BLSTMSS’ as can be observed in
Figure 8c. There were more responses in the ‘Clear preference for BLSTMSS’ and ‘Preference
for BLSTMSS’ categories compared to ‘Clear preference for OS’ and ‘Preference for OS’
categories, respectively. ‘Clear preference for OS’ was the least chosen option.

When looking at speakers separately we observed that speaker 16M3 (Figure 8d) has a
different trend compared to other speakers. For speakers 02M3 (Figure 8a), 04M3 (Figure 8b)

https://aholab.ehu.eus/users/sneha/BLSTMSS_evaluation/preference_test.php
https://aholab.ehu.eus/users/sneha/BLSTMSS_evaluation/preference_test.php
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and 25F3 (Figure 8e), the most preferred option was ‘Preference for BLSTMSS’. However
for speaker 16M3, the least intelligible speaker in the dataset, most responses were in
the ‘No preference for either’ or the undecided category. The next most preferred option
was ‘Preference for BLSTMSS’. Additionally, for the more proficient speakers (25F3 and
02M3), there were less instances of the ‘No preference for either’ category compared to the
non-proficient speakers.

(a) Speaker 02M3 (b) Speaker 04M3 (c) All Speakers

(d) Speaker 16M3 (e) Speaker 25F3 (f) Categories

Figure 8. Histogram plots for the preference scores of the four speakers separately and all together.

6. Discussion

In this study, we have employed and evaluated a novel DNN-based voice conversion
system aimed at enriching OS. The evaluations involved subjective (preference test) as
well as objective (STOI, ASR) aspects. The evaluations were performed on unprocessed-
enriched pairs of samples from four OS speakers. Additionally, objective results of the
proposed system were compared with those of our previous experiments.

In the ASR evaluations, the results of WER improvement for the proposed system
was not unanimous. However, for all the 3 ASR systems and all 4 speakers, our proposed
system had better PWC scores compared to unprocessed OS. This means that our enrich-
ment resulted in the ASR systems recognising more number of words in comparison to
unprocessed OS. Correlation analysis suggests that more errors were found in speakers
who underwent the laryngectomy more recently. This is expected, as these speakers have
had less time to train and practice the techniques of OS production. This explains the
higher WER and lower PWC for speakers 04M3 and 16M3 compared to the other two more
proficient speakers.

STOI as an objective intelligibility measure is usually applied in cases where already
available clean signals are degraded with noise. In the case of OS, the original signal itself is
degraded. Although the duration–matched SS is clean and aligns with the original OS and
the enriched outputs, it cannot be considered as a clean reference in the true sense. More-
over, the reference SS signal was also the target of the VC process. Therefore, STOI scores
in this case may be interpreted as a measure of similarity with the target SS (which is the
goal of a VC task) rather than objective intelligibility. Nonetheless, for all the four speakers,
a higher STOI value for the proposed system (over 62% to 73%) compared to unprocessed
OS (45% to 55%) indicates that there was an improvement in intelligibility. Comparisons
with previous methods also revealed improved intelligibility with the proposed method.
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The preference test revealed a preference for the proposed method for three of the
four OS speakers. For the remaining fourth and the least proficient speaker, there was no
preference for the proposed system, but no preference for unprocessed OS either. The lis-
teners were mostly undecided. This is possibly because the speaker’s intelligibility is poor,
and although the conversion system helped in improving some spectral characteristics,
some other characteristics of the speaker such as the long duration of the stimuli, phones
and silences, and the resulting slow and unnatural rhythm, were present in the converted
version too.

In a previous experiment of enriching OS using a DNN-based VC system [31], there
was an improvement in ASR scores. However, the listeners preferred a system that per-
formed a simple fundamental frequency transformation, which did not improve ASR or
intelligibility scores. Similarly, in another experiment [32], we did not achieve intelligibility
improvement or a preference for the proposed method. Both the above experiments in-
volved only one OS speaker (02M3), who also was one of the most intelligible speakers of
the dataset. In the current study, with a novel strategy and more speakers, we have shown
that our OS enrichment method improves intelligibility in addition to being preferred by
listeners. The source–target alignment process is particularly problematic for OS and that
was a limitation in the aforementioned previous systems. Using a duration–matched target
and skipping the error–prone alignment process helped in overcoming that limitation and
improving results.

The proposed system can possibly be improved by using newer DNN VC technologies
and newer speech synthesis systems. The speech synthesis method used in this study is
relatively old and was specifically chosen for its ability to generate speech with forced
durations. Although newer DNN based speech synthesis systems are of better quality,
they do not have this ability. If a speech synthesis system in the future can generate forced-
duration SS of better quality, it can possibly improve results. Using a more modern vocoder,
increasing the amount of training data or including more diverse training data (utterances
in noise, more OS speakers) are also possible ways of improving the results.

7. Conclusions and Future Work

Due to the anatomical alteration post-laryngectomy, it is difficult for OS speakers to
produce intelligible speech. Our study was an attempt to enhance OS with the aim of
making it more intelligible. We performed voice conversion using a BLSTM network and
a novel training data selection approach (using a target that is matched in duration with
source) which eliminated the need for the source–target alignment process.

The proposed system showed significant improvements in objective evaluations of
intelligibility in comparison to our previous systems. Compared to the unprocessed OS
utterances, the proposed system’s outputs were recognised with more accuracy by three
different ASR systems. In recent times, communication with digital assistants and other
devices is on the rise. Therefore, an improvement in this direction is desirable for efficient
communication with digital devices and dialogue systems. Additionally, for the three most
intelligible OS speakers out of the four, the proposed system was preferred by listeners
over unprocessed OS. While this is encouraging, more effort is needed to have similar
results for the low intelligibility OS speaker.

An extension of the system described in this paper is under development: a multi-
speaker system with many OS speakers’ utterances as source and corresponding duration–
matched SS as target. This will be a generic OS enrichment system and will enable the
enrichment of more OS speakers. In addition to ASR scores, STOI scores and preference
tests, we are interested in investigating subjective and physiological listening effort for
unprocessed OS, enriched OS and HS. This is because, while intelligibility reveals what
percentage of the speech was understood correctly, it does not tell us how difficult it was
to understand it. Listening effort provides useful additional information about whether
enriched OS is easier to perceive and process compared to unprocessed OS. Therefore,
our future studies will focus on LE in addition to intelligibility and listener preferences.
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Our aim for the future is to install this enrichment system as a face-to-face communi-
cation aid in a stand-alone device or a smartphone. The device will take the unprocessed
OS input and play out the enriched version in real time or with negligible delay. Another
possible practical application of the proposed system could be in the form of a software
plugin coupled with the microphone of the devices used by an OS speaker. This would
convert any microphone input (Unprocessed OS) to an enriched version of the speech in
real time or with minimum delay. Any app which requires a microphone input will use
this modified speech instead. In this way, the OS speaker would be able to use the benefits
of the enriched speech for telephonic conversations, zoom calls, voice commands to digital
assistants and other voice based apps. Generating real time outputs will require solving
latency problems when generating BLSTM outputs (see [48] for example). Once we tackle
the problems of making the enrichment system work in real time and embedding it into a
device, our research efforts will be able to translate into real world applications.
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