
applied  
sciences

Article

Digital Twin for Supply Chain Coordination in
Modular Construction

Dongmin Lee and SangHyun Lee *

����������
�������

Citation: Lee, D.; Lee, S. Digital Twin

for Supply Chain Coordination in

Modular Construction. Appl. Sci.

2021, 11, 5909. https://doi.org/

10.3390/app11135909

Academic Editor: Jürgen Reichardt

Received: 13 May 2021

Accepted: 23 June 2021

Published: 25 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Tishman Construction Management Program, Department of Civil and Environmental Engineering, University of
Michigan, 2350 Hayward St., G.G. Brown Bldg., Ann Arbor, MI 48109, USA; dongminl@umich.edu
* Correspondence: shdpm@umich.edu

Abstract: Over the past decades, the construction industry has been attracted to modular construction
because of its benefits for reduced project scheduling and costs. However, schedule deviation risks
in the logistics process of modular construction can derail its benefits and thus interfere with its
widespread application. To address this issue, we aim to develop a digital twin framework for
real-time logistics simulation, which can predict potential logistics risks and accurate module arrival
time. The digital twin, a virtual replica of the physical module, updates its virtual asset based on
building information modeling (BIM) in near real-time using internet of thing (IoT) sensors. Then,
the virtual asset is transferred and exploited for logistics simulation in a geographic information
system (GIS)-based routing application. We tested this framework in a case project where modules
are manufactured at a factory, delivered to the site via a truck, and assembled onsite. The results show
that potential logistical risks and accurate module arrival time can be detected via the suggested
digital twin framework. This paper’s primary contribution is the development of a framework that
mediates IoT, BIM, and GIS for reliable simulation which predicts potential logistics risks and accurate
module delivery time. Such reliable risk prediction enables effective supply chain coordination,
which can improve project performance and the widespread application of modular construction.

Keywords: modular construction; digital twin; building information modeling (BIM); geographic
information system (GIS); logistics simulation

1. Introduction

Recently, modular construction has emerged as a promising construction method in
the construction industry because of its potential to reduce project scheduling and costs [1].
The benefits of modular construction come from prefabricating a building module at an
offsite factory while onsite foundations and assemblies are simultaneously performed [2].
To achieve maximum benefits (e.g., avoiding idle time for concurrent work), the module
should be manufactured and delivered to the construction site on time. Thus, modular
construction requires effective supply chain coordination among offsite manufacturing, lo-
gistics, and the onsite construction process [3–5]. However, modular construction typically
involves complicated, volumetric, and large building components which can cause sched-
ule deviation risks in the supply chain process [5,6]. Furthermore, since many modular
construction projects take place in dense urban areas with limited space for module storage,
such deviations exacerbate idle time [7]. For example, if a module arrives at the site earlier
than planned, idle time occurs for the transporter; if it arrives late, idle time occurs for
field workers and equipment. Therefore, it is essential that supply chain scheduling among
project participants be certain in order to maximize the benefits of modular construction.

Recent studies have noted that digital twin technology can be an effective team coor-
dination tool for supply chain management [8–11]. A digital twin can be described as a
real-time digital replica of a physical asset that contains its current condition, properties,
and dynamic behaviors [12]. In the supply chain process, a digital twin can represent man-
ufacturing machines, module components, transportation, warehouses, delivery trucks,
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assembly workers, and cranes to visually monitor the project’s current condition and
progress. Also, a digital twin simulates diverse “what-if” real-world scenarios to accu-
rately predict potential supply chain risks such as schedule deviation [8,9]. If the digital
twin collects real-time sensor (e.g., global positioning system (GPS)) data, analyzes them
accordingly, and provides all the useful insights (e.g., optimal delivery route, accurate
delivery time, and optimal module order time) along the supply chain in modular con-
struction, project participants may have effective coordination and subsequently, better
project performance.

Despite its promising potential for supply chain management, existing digital twin
research is mainly found in the contexts of product operation and shop floor manage-
ment [13,14]. There is thus untapped potential for using a digital twin for logistics, the
process in which modules are produced in a factory, stored in a warehouse, and then
delivered—one key component of supply chain management in modular construction. Re-
cently, studies have indicated that a digital twin could enable efficient logistics management,
but their application has been limited to logistics in factories and warehouses [9,15,16].
There is still a lack of knowledge about the digital twin’s practical application in logistics
for construction projects where materials are delivered from offsite to onsite through trans-
portation. Many logistical uncertainties and risks have thus not been addressed, posing a
major barrier to the widespread application of modular construction.

To address this issue, we aim to develop and test a digital twin framework that
enables real-time logistics simulation in modular construction. The digital twin uses
building information modeling (BIM) and geographic information system (GIS) as its
backbone because BIM can include detailed geometry, scheduling, quantities, and module
properties while GIS provides geospatial data with transportation information (e.g., traffic
and regulation), all of which are important for logistics simulation. Then, the digital twin
collects real-time IoT sensor data (e.g., GPS) from its physical asset (e.g., module), simulates
and analyzes the data to predict potential logistics risks, and finds alternative delivery
routes with accurate estimated times of arrival (ETA). Such proactive risk detection and
accurate delivery estimation minimizes logistical uncertainties, thus facilitating effective
supply chain coordination for more productive modular projects.

2. Literature Review
2.1. Supply Chain in Modular Construction

The supply chain of modular construction involves many interdependent parties (e.g.,
manufacturer, retailer, and assembler) thus supply chain coordination is essential for a
successful modular project [3]. Such coordination requires efficient information sharing
among project participants to achieve a project goal (e.g., schedule reduction). Over the
last decades, BIM has been widely applied in construction supply chain management.
Aram et al. [17] suggested a BIM-based information flow process model for a reinforced
concrete supply chain. Magill et al. [18] suggested a 4D BIM-based supply chain model to
optimize logistics and on-site production. They stated that 4D BIM, which includes 3D BIM
geometry and project schedule information, can help communication among stakeholders
with better visualization. Lu et al. [19] provided a BIM- and discrete event simulation-based
supply chain management model for effective team coordination. Nissila et al. [20] and
Getuli et al. [21] suggested a cloud-based BIM data sharing service to exchange project
schedule and status information among project participants. Ocheoha et al. [22] argued
that BIM helps supply chain integration and may enable ‘just-in-time’ delivery that reduces
cost and waste in modular construction. Fitriawijaya et al. [23] suggested an integrated
blockchain technology and BIM for more traceable and immutable data communication in
supply chain process. These studies show that BIM facilitates information (e.g., schedule
and cost) sharing for design, fabrication, transportation, and onsite work; thus it has good
potential to improve overall supply chain coordination in modular construction.

However, BIM-based supply chain management is limited in the logistics stage. BIM
barely supports the logistics process because it does not have geospatial data. For example,
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to find logistics risks (e.g., road accessibility, accident zone, and curfew) or to find the
optimal module delivery route, external geographic information is needed together with
BIM. Recent studies have thus tried to combine BIM and GIS for more accurate and effective
logistics monitoring and management. Deng et al. used BIM and GIS to select optimal sup-
pliers considering their transportation distance and material unit price. Irizarry et al. [24]
and Wang et al. [25] integrated BIM and GIS to visually track logistic statuses together
with spatial data for material delivery time estimation. Despite the potential of integrated
BIM and GIS for logistics management, existing approaches do not often take into account
dynamic transportation conditions (e.g., traffic and regulations), which makes it hard to
estimate accurate module delivery time. Furthermore, modules leaving the factory are
often large and heavy which are more vulnerable to real-time transportation conditions.
For example, when an accident occurs on a highway and an alternative route needs to be
taken, a more elaborate plan is required because the routes a modular truck can enter are
limited in terms of size. Also, there is often not enough space to store a large module on site,
so ‘just-in-time’ delivery is particularly important in modular construction. Wuni et al. [26]
have noted that module delivery delay is still one of the most critical risk factors that derails
the benefits of modular construction in practice. Therefore, modular construction logistics
require more sophisticated schedule management than previous stick-built construction
methods; more accurate and reliable logistics monitoring and simulation techniques are
thus necessary for more effective supply chain coordination.

2.2. Digital Twin for Real-Time Monitoring and ‘What-If’ Analysis

A digital twin is a virtual representation of a physical object or system used to under-
stand and predict potential issues across its lifecycle. A digital twin consists of three main
components: the physical object, the virtual object, and the linkage between them [27].
Together, these components allow real-time object monitoring, data visualization, data
analysis, and ‘what-if’ simulation to head off potential issues before they occur, deducing
useful insights and opportunities. The digital twin was first proposed in the context of
product lifecycle management [12] and has been applied most prominently by aircraft and
aerospace industries to mirror vehicle conditions, systems, or processes for simulation
analytics [13,14]. Since then, the digital twin has been applied in many different areas such
as robotics [28], health monitoring [29], and manufacturing [15].

One important potential benefit of the digital twin in construction is to complement
BIM and GIS for more ‘live’ information sharing. Digital twins can use BIM and GIS as a
backbone, but also includes entire assets such as workers, materials, equipment, systems,
and processes. For example, a more detailed and interactive construction process can
be visually simulated using 4D BIM, human, and equipment twins. Digital twins allow
for real-time asset visualization, behavior and performance monitoring, and operation
simulation and optimization—all of which are important pieces of information to be
shared among project participants. Particularly, the IoT sensor, a device that detects
one or more physical asset conditions, converts these conditions into human and/or
machine-readable signals, connects to the internet to communicate with others [30,31],
and enables digital twins to be synchronized with the status of physical assets. There are
many different types of IoT sensors: GPS [32], image sensor [33], proximity sensor [34],
radio frequency identification sensors [35], motion sensors [36], and biosensors [37]—all
of which are widely used in construction. On the other hand, the digital twin can exploit
artificial intelligence (AI) for rich data analytics—challenges of previous BIM and GIS
applications [38,39]. Recently, digital twins have been applied widely in construction for
different purposes such as information sharing among project participants [11], smart city
level infrastructure management through linkage with GIS [40], sustainability (i.e., plan,
design, operation, and maintenance) evaluation of railway station buildings [41], bridge
construction management [42], collapse assessment [43], and real-time monitoring and
anomaly detection for built assets [44]. These studies have shown that the digital twin can
effectively monitor assets in near real-time and test ‘what-if’ scenarios to detect risks and
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optimize operation in a dynamic construction environment. If the digital twin is applied in
logistics together with BIM and GIS in modular construction, it can monitor and simulate
different logistics scenarios in real-time to predict any potential logistics risks and to
estimate more accurate delivery routes and arrival times for true ‘just-in-time’ delivery. In
addition, the whole supply chain process (i.e., manufacturing, logistics, and assembly) can
be simulated and integrated through the digital twin to find optimal operation strategies
(e.g., optimal module ordering).

Despite this potential, digital twins have mainly been used in the construction research
domain for the operation management of individual products (e.g., equipment, robots,
and buildings), leaving untapped areas for logistics monitoring [16]. One critical reason
for this untapped potential is that BIM and GIS should be combined on one platform for
logistics simulation, but they are created by different tools with different data formats.
Although recent research has integrated BIM and GIS with interoperable data formats such
as industry foundation classes (IFC) and city geography markup language (CityGML),
information loss during data transformation often occurs and has not yet been thoroughly
addressed. If any important information (e.g., module delivery and ordering schedule,
geometry, traffic condition, and weather condition) needed for logistics simulation is lost
through data transformation in the digital twin, the data may not be reliable enough for
logistics simulation. Therefore, a method is needed to do logistics simulation in a digital
twin using BIM and GIS without worrying about information loss.

3. Digital Twin Framework for Logistics Simulation in Modular Construction

The objective of this study is to develop and test a digital twin framework that
integrates BIM and GIS in the application level for real-time logistics monitoring and
simulation in modular construction. The digital twin can represent modular construction
assets (e.g., module, delivery truck, workers, and other transportation objects) in real
time. The digital twin subscribes to real-time IoT (e.g., GPS) data from physical assets
and updates its virtual assets in virtual space based on BIM. Then, the digital twin can
test different ‘what-if’ logistics scenarios with the virtual assets to find potential risks and
optimal delivery paths based on GIS. The proposed digital twin avoids the information loss
issue because it does not integrate BIM and GIS at the data level, but selectively exchanges
only the information necessary for logistics monitoring and simulation in the application
level. We test if the suggested digital twin can predict logistics risks in near real-time
and how it affects predicted ETAs (estimated times of arrivals) and subsequent project
scheduling in modular construction.

3.1. Framework Overview

The digital twin framework consists of three components as shown in Figure 1. This
framework shows how real-time sensory data (e.g., GPS) is collected from the module and
updates the virtual asset in the virtual space. This synchronized virtual asset shows the
current project’s progress (e.g., location of module and assembly status). Then, the asset
can be used for what-if analysis to predict potential logistics risks and find alternative
plans. This framework’s core idea is to create a virtual asset based on BIM to monitor
current progress and to selectively request the analytics needed for logistics simulation in
an application outside the digital twin.

3.2. System Architecture

The suggested digital twin framework’s system architecture is shown in Figure 2. The
system architecture shows the overall outline of the system and its data transaction flow in
detail; it also shows how data analytics for logistics simulation can be performed without
combining BIM and GIS in one data format.
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Figure 2. System architecture of the digital twin platform for logistics simulation.

The digital twin is composed of a web front end and a back-end. The back-end
contains a Unity (Unity; Unity Technologies, San Francisco, CA, USA) engine. Unity is a
game engine that helps create interactive 3D content in real-time. Unity also supports BIM
plug-ins, connecting all project members on one collaborative and immersive platform for
real-time information sharing with visualization. Also, Unity is designed to test different
‘what-if’ scenarios, by running millions of physical simulations in parallel. Thus, many
function modules needed for real-time logistics monitoring and simulation in modular
construction can be made on Unity. First, the project manager inputs BIM data required
for a modular project (e.g., module geometry, color, material properties, delivery, and
assembly schedule) and simulation parameters (e.g., production rate, assembly speed,
and transportation speed) into the back-end’s system. Meanwhile, IoT sensors collect
real-time sensory data (e.g., GPS) from the modules while they are in the logistics stage.
The Unity engine creates a virtual asset in a virtual space by combining the BIM and IoT
sensor data. The virtual asset includes all information (e.g., geometry, current location,
and material properties) from the physical module. The virtual asset itself can be used to
monitor conditions or test the performance of logistics. Information required for logistics
route searches (e.g., weight, geometry, factory and site location, and location of modules)
can be selectively extracted via JSON format, a standard text-based data format that can be
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read in any programming language. The information is then transferred Bing Maps (Bing;
Microsoft, Seattle, Washington, DC, USA), an application that exists outside of the digital
twin, through the application gateway in real-time. Bing Maps provides a cloud-based web
mapping service for tasks such as finding locations, vehicle routing, and route visualization.
Bing also includes an application programming interface (API) which allows users to create
different types of map-based applications on their own platforms. For example, when a
digital twin requests Bing Maps to search for a delivery route that excludes highways, it
returns coordinates for every turning point of the truck based on recently updated GIS. In
addition, Bing Maps provides a key benefit to modular truck routing in being capable of
incorporating search constraints such as maximum slope, minimum turning radius, height
and width restrictions, and maximum load restrictions [45].

There are two simulators in the back-end. One simulator is for the module’s offsite
production and onsite assembly simulation in the Unity Engine. Unity allows detailed 3D
simulation and data analytics (e.g., performance test) [46]. For example, module production
time, assembly time, cost, and equipment idle time can be simulated in Unity with a
3D model in real-time. The other simulator is for logistics simulation that is connected
to Bing Maps in real-time and is responsible for finding the optimal logistics scenario
with alternative routes. For example, the logistics simulator sends the current location
and geometry of the module to Bing Maps and requests a route which does not require
any permissions or tolls for transit. Alternatively, the simulator can request the fastest
route regardless of tolls to deliver the module as soon as possible if onsite teams are
finished with prior work and waiting for the next module. Also, the module’s ETA is
calculated by performing logistics simulation according to the route provided by Bing
Maps. By using these two simulators, it is possible to simulate all key modular construction
supply chain processes, such as module production, logistics, and onsite assembly, at
once. Such integrated supply chain simulation can provide important information for
effective coordination and collaboration among interdependent project participants. For
example, it is possible to plan a ‘just-in-time’ delivery by adjusting the production and
delivery schedule of a new module based on the current location of the module and its
accurate ETA. Then, various logistics scenarios derived through simulation can be reviewed
quantitatively in the Alternative Evaluator module. Finally, the optimal scenario can be
visualized through the web front end and delivered to the project’s participants.

4. Case Study

To test the proposed digital twin framework that integrates BIM and GIS for real-time
logistics simulation in modular construction, we conducted a case study with a virtual
modular construction project. In this project, physical assets’ (i.e., truck and module)
locations and sizes were synchronized with virtual assets in the digital twin based on BIM
and hypothetical IoT sensor data. Then, the virtual assets were used for predicting logistics
risks and for finding alternative routes in real-time with ETA.

In this case study, the authors intended to validate that real-time logistics simulation
for modular construction would be possible without worrying about data conversion
between BIM and GIS based on the proposed digital twin framework. This validation
would also confirm that a digital twin can help find potential logistics risks and more
accurate routes in real-time with ETA than existing vehicle routing applications.

4.1. Project Description

The case project was a 6-story apartment modular construction project that was erected
over 8 calendar days with 80 modules [47]. The modules were manufactured and delivered
from the factory to the construction site located near downtown Seattle area (Washington
state, USA) by truck in 90% completed condition. The distance between the factory and
the site was 156 miles. Trucks did not go through an intermediate warehouse or separate
retailer. The Department of Transportation required pilot vehicles, which escort trucks
with oversized loads, along its journey and requested limited speed. It took 80 trips to
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transport 80 modules and single-trip permits were required every time a module left the
factory. Delivery trucks with modules were 14 feet wide, 50 feet long, 13 feet 6 inches
high, and weighed about 20 tons. All of this information was stored in the building
information model. The shortest delivery routes were searched for based on a vehicle
routing application. Once a module was delivered on-site, it was assembled by a mobile
crane and plumbing, electrical, HVAC, and mechanical systems were completed by the
assembly crews. Since the site was in an urban area without enough stockyard space, the
modules had to be delivered ‘just-in-time’ via consideration of previous history data on
assembly and delivery times. Moreover, in the urban area, there were various logistics risks
that imposed constraints on the routes heavy trucks could take, so it was a good project to
achieve the purpose of the case study.

4.2. Test Scenarios

To find logistics risks and alternative routes based on the proposed digital twin
framework, the authors performed a logistics simulation with the case project. First,
we created a digital twin that represents the case project. The project’s BIM data (e.g.,
module geometry, weight, and assembly schedule) was input to the back-end system
in the digital twin. GIS data (e.g., traffic, geographic data, road accessibility, regulation,
curfew, and accident area) was updated in real-time in the Bing Maps application. One
important point to note is that BIM and GIS are stored in different platforms and they
do not communicate at the data level. This scenario was thus intended to demonstrate
logistics simulation without data conversion between BIM and GIS. IoT sensor data should
be collected from the truck and module to create a virtual asset, but such a sensor has
not yet been implemented. Thus, we created a virtual server that generates hypothetical
IoT sensor data including the location of modules in real-time. The IoT sensor data was
delivered to the digital twin platform which created a virtual asset in a virtual space based
on BIM. The necessary information for logistics simulation in a virtual asset is the geometry
and weight of the truck loading a module. These data were selected by Unity and delivered
to the Bing Maps API through the application gateway in JSON format. Bing Maps then
used input data and GIS to find an appropriate route requested by the simulator. The
simulator requested two routes for the case project: one was the route used in the actual
case project (baseline-route)—explored without considering logistics risks—and the other
was accurately calculated by considering all logistics risks (DT-route). Then, the alternative
route provided by the digital twin was found by comparing these two routes. The loss
(idle) time that would have occurred in the actual logistics process for 80 modules was
quantitatively estimated by comparing the ETA values of the baseline-route and DT-route.

On the other hand, in the case of DT-route, the module delivery route is continu-
ously re-searched in near real-time until it leaves the factory and arrives at the installation
site. If potential logistics risks occur along the expected route, the digital twin finds and
presents an alternative route and continuously updates the ETA. Such near real-time lo-
gistics simulation is particularly important because unplanned events (e.g., accidents and
road construction) may occur during transportation and, accordingly, the module’s optimal
delivery route and potential logistics risks change over time. It may take significant effort
and time to search for a new route by reviewing module information, traffic conditions,
and road regulations from scratch. In this regard, the digital twin can help to search for
alternative routes and update the ETA in near real-time when such vulnerable transporta-
tion conditions occur. This capability is enabled by data from connected IoT sensors which
collect information such as the real-time status (e.g., quality and location) of the module.
This capability ultimately supports rapid decision-making for project stakeholders if and
when unexpected issues occur during the logistics process. For example, if the digital
twin detects module damage, such information can be shared in near real-time among
stakeholders to set up an onsite repair schedule or to request that the manufacturer ship
the damaged part for quick repair.
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4.3. Results

As shown in Figure 3, 6 risk types and a total of 12 risk points were detected from
logistics simulation in the digital twin. One important fact here is that it is not possible to
show all possible logistics risks because risks vary depending on current traffic conditions
which change over time. The risks shown in the results give examples of possible risks
posed to the case project at a specific time on a particular day. Such hard to predict risks can
occur after planning. These risks should be continuously identified and avoided through
real-time logistics simulation. In order to indicate the moving direction of the truck, the
starting point was marked as ‘S’, and the destination point was marked as ‘D’ in the
Figure 3. The red line shows the baseline-route and the blue line shows the alternative
route (DT-route) found by the digital twin.
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The first risk involved truck height restrictions. The module carrying truck was
designed to be 13 feet 6 inches in height per Washington state’s truck height standards
and regulations, but there were cases where it could not pass due to bridge or tunnel
height limitations. The second risk involved highway width. Because the modules’ widths
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exceed 14 feet and the standard lane width in the US is 12 feet, trucks needed to drive on
two lanes at the same time. Although trucks can drive this way on most highways with
permission from authorities, several ramps have only one lane, making it impossible for
the trucks to enter. The third risk arose from bridge weight limits. A truck loaded with a
module reaches a maximum weight of 20 tons and the maximum load for several bridges
is 17–19 tons, making it impossible for the trucks to enter. The fourth risk was posed by a
steep gradient. A dangerous accident may occur if a 20-ton truck enters a slope of more
than 10 degrees and this road had a 19-degree slope, so an alternative road that bypasses
the slope was searched for. The fifth risk involved the truck’s minimum turning radius and
a sharp curve. Since the length of the truck reaches a maximum of 50 feet, it cannot rotate
unless the curve’s inner radius is longer than 28 feet and the outer radius is longer than
40 feet. The digital twin requested an alternative route in which the truck could rotate. The
sixth and last risk came from the highway’s speed limit. The routing application calculates
ETAs based on average travel speeds along the road from historic data, but modular trucks
must often observe a different speed limit from normal vehicles. For example, several
highways limit the speed of trucks driving in two lanes to 60 mph when it is otherwise
70 mph. Therefore, the digital twin corrected the ETA’s value while the truck was driving
this section of the route.

Both the baseline-route and DT-route were quantitatively compared with a metric of
ETA. In both cases, the ETA calculation was performed within a short time of fewer than
2 s, so no comparison was made for ETA calculation time. Since ETA is affected by traffic,
the ETA value was calculated according to the delivery start time and drawn as shown
in Figure 4a. Since traffic may vary depending on the day of the week, an ETA graph
was drawn based on a seven-day average. For the baseline-route, an average of about
156 miles and an ETA of 2 h and 33 min were estimated. For the DT-route, an average
of about 173 miles and an ETA of 4 h and 8 min were estimated. (Figure 4a). Since the
DT-route ETA was calculated considering potential logistics risks, it can be assumed that
this ETA is close to the actual module delivery time. Thus, approximately 1 h and 36 min
of delivery time error can be expected in the baseline-route compared to DT-route. Another
important implication in Figure 4a is that the predicted ETA value changes over time. A
main reason for ETA changes is that traffic conditions change in real time due to factors
such as rush hour, temporary accidents, curfews, and construction zones. Therefore, to
predict ETA more accurately, it is essential for a digital twin to collect the location of a
module while Bing Maps collects traffic conditions in real-time. Figure 4b shows the total
idle time in logistics simulation for a total of 80 modules. Idle time is a value calculated
by comparing the actual module arrival time (ground truth) in the simulator and ETA.
Since all 80 modules have different delivery start times, traffic conditions vary. Therefore,
idle time was calculated based on the average traffic pressure (i.e., number of vehicles
per hour) during the logistics process. Traffic pressure was set to change randomly from
1 to 1.9 and 100 logistics simulations were performed for both the baseline-route and the
DT-route. A traffic pressure value of 1 means that traffic conditions can change, but their
average traffic is same as normal condition while transporting 80 modules. The normal
condition refers to the average traffic flow for the given route. If traffic flow is greater than
1, the truck’s average speed may decrease depending on road conditions and vice versa.
Since the digital twin updates its route (DT-route) in real time and calculates a new ETA
considering changed traffic, it guarantees less idle time compared to the baseline-route.
As a result, while transporting 80 modules, baseline-route showed an average of total idle
time about 173.2 h (standard deviation: 33.5 h). DT-route showed an average of total idle
time about 15.7 h (standard deviation: 13.0 h). On average, DT-routes showed less idle
time by about 157.5 h compared to baseline-route. In addition, the idle time of DT-route
and baseline-route differed from the standard deviation by about 20.5.
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In addition, one important result to note is that logistics risks were explored in near
real-time and delivery route and ETA were accurately updated accordingly throughout the
logistics process. Also, Figure 4b shows that the DT-route spurs less idle time and standard
deviation than the baseline-route in different traffic conditions, which implicates that idle
time in logistics can be reduced when ETA is updated in real-time even though average
traffic pressure changes.

5. Discussion

Schedule deviation along the supply chain is a critical risk factor in modular construc-
tion. Such deviation often occurs in the logistics process because modules are vulnerable to
transportation uncertainties due to their complexity and large size. To address this issue,
this study suggested a digital twin that connects IoT sensors, BIM, and GIS to predict
various risks that may occur in the logistics process and calculate an accurate ETA based
on different what-if scenarios. One important aspect of the suggested digital twin is that it
does not require any data conversion between different data formats (e.g., BIM and GIS),
rather it mediates them on demand to avoid any information loss in data conversion. This
aspect is particularly important in modular construction where different interdependent
stakeholders use a variety of tools and data formats. For example, a manufacturer may not
know how transportation will be impacted or what logistics risks will occur during the
logistics phase because they normally do not use GIS-implemented vehicle routing tools.
Conversely, it may be difficult for a transporter to know the geometry, schedule, cost, and
weight of the module they carry because they normally do not use BIM in their work. For
such reasons, supply chain simulation across different phases (e.g., production, logistics,
and assembly) has not been thoroughly tried or realized. If multiple stakeholders and their
different work platforms can be integrated at their application level (not the data level)
through a digital twin for project monitoring and information sharing, effective supply
chain simulation can be possible.

Furthermore, Figure 3 shows that a digital twin can predict potential risks and find
alternative routes. Figure 4a indicates that such risk prediction and alternative route
searching can predict a more accurate ETA. Also, Figure 4b shows that a digital twin
guarantees much less idle time and less standard deviation regardless of traffic conditions.
This is because the digital twin uses IoT sensors to update the module’s location in real time
and re-search the route with potential risks, so it can predict the accurate schedule deviation
regardless of traffic uncertainty. Sharing an accurate ETA among all project participants
(e.g., manufacturer and on-site assembly teams) can improve team coordination along a
modular construction supply chain. Specifically, the module production schedule in the
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factory, module shipment schedule, and on-site assembly schedule can be coordinated
based on an accurate ETA. For example, if an unexpected accident occurs along the planned
route during module delivery and the ETA is delayed by 10 h, the manufacturer may adjust
the next module’s production and shipment schedules while the on-site assembly teams
can perform other tasks (e.g., foundation work) first or adjust their assembly schedule
to prevent worker and equipment idle time. Having such ETA information is especially
important if the module’s factory is far from the construction site (e.g., outside the country)
or if the delivery truck has to pass through multiple warehouses or inventory centers
during the logistics process. Meanwhile, based on the updated ETA, the digital twin
can be used to simulate different supply chain scenarios for efficient coordination. For
example, to minimize project schedule delay due to a delayed ETA, various module
production, delivery, and on-site assembly scenarios can be simulated for coordinated
scheduling. Overall, such flexible supply chain coordination based on a digital twin can
help reduce losses from potential logistics risks, consequently maximizing the benefits of
modular construction.

The ability to accurately predict potential risks in a supply chain also can help
widespread applications of modular construction. Presently, many construction play-
ers such as general contractors and sub-contractors may not be willing to participate in
modular construction projects because of uncertain risks issues. Nobody wants to have
liability for the uncertain risks such as schedule deviation and quality degradation in their
supply chain. If such risks can be accurately predicted or detected in real-time, they can be
clarified, allocated, and shared fairly or prevented altogether.

This paper focused only on predicting schedule deviation risks in the logistics process.
Further research should be conducted for predicting overall supply chain risk (e.g., quality
issues and cost overrun) management. First, offsite module manufacturing processes
and onsite module assembly processes should be modeled in detail in a digital twin. For
example, we can allow the digital twin can monitor the module manufacturing progress,
or perform onsite module quality inspections (e.g., alignment checking and surface quality
inspection). Then, such detailed models should be linked to the logistics scenario to enable
overall supply chain simulation. Second, various IoT sensor data should be obtained for
richer risk management. For example, this paper only considered the module’s location
data for logistics simulation. To consider overall supply chain coordination in modular
construction other important data (e.g., module production status, geometrical quality,
surface quality, and equipment schedule) should be obtained with different sensors in the
future study. Lastly, when a risk occurs as predicted, the burden or loss due to the risk must
be shared fairly among related stakeholders. For example, if the delivery of a module is
delayed because of an unexpected weather change, the onsite assembly schedule may also
be delayed, resulting in a large cost overrun. By sharing the loss due to such risk among
related stakeholders, the negative impact of the unexpected event will be absorbed. In a
future study, we will investigate how risks in modular construction can be fairly shared
among stakeholders with aid of the digital twin.

6. Conclusions

We developed a digital twin framework for real-time logistics monitoring and sim-
ulation in modular construction. The digital twin created a virtual asset based on BIM
and simulated different logistics scenarios based on a GIS-enabled routing application. We
tested the suggested framework in a case project and the results indicate that the digital
twin can predict various risks that may occur in the logistics process and calculate an accu-
rate ETA. Accurate ETA prediction reduced a total of 157.5 h in idle time loss. The main
contribution of this study is the development of a new data framework which mediates IoT,
BIM, and GIS without data format integration for reliable logistics simulation. A digital
twin can predict potential logistics risks and accurate ETA based on reliable simulation.
Furthermore, accurate risk prediction and ETA calculation can facilitate effective supply
chain coordination among project participants and enable ‘just-in-time’ module delivery.
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Finally, ‘just-in-time’ delivery can help reduce scheduling and cost in modular construction,
ultimately helping modular construction become more widespread in the industry.
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