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Abstract: This article presents an automatic system for modeling clinical knowledge to follow
a physician’s reasoning in medical consultation. Instance-based learning is applied to provide
suggestions when recording electronic medical records. The system was validated on a real case
study involving advanced medical students. The proposed system is accurate and efficient: 2.5×
more efficient than a baseline empirical tool for suggestions and two orders of magnitude faster than a
Bayesian learning method, when processing a testbed of 250 clinical case types. The research provides
a framework to implement a real-time system to assist physicians during medical consultations.

Keywords: computational intelligence; medical assistance; instance-based learning; healthcare;
clinical decision support systems

1. Introduction

The search for better medical practices is a perpetual challenge for modern medicine.
In this regard, computational intelligence has emerged as a promising subject for de-
veloping smart systems in healthcare practice [1]. Computational intelligence allows
implementing automatic tools, enabling physicians to provide patients with a better quality
of attention by performing early and accurate diagnosis and improving treatment. Fur-
thermore, automatic systems and technologies based on computational intelligence have
proven to be useful solutions to be applied in clinical practice. Some important advantages
of intelligent automatic methods over traditional ones include better efficiency, accuracy,
consistency, more time available for face-to-face consultation, and more time for critical
tasks and critical cases, among others [2].

A specific subject where the learning capabilities of computational intelligence meth-
ods is very helpful to improve medical practice is analyzing and processing electronic
medical records (EMRs). EMRs refer to digital records, collected by the individual medical
practice, that contain the general health information of patients [3]. They usually consist of
several types of health data, including, but not limited to, demographics, medical family
history, medication, allergies, test results, and radiology images.

Currently, the majority of medical history recording products are based on prede-
fined templates, which provide very limited freedom for writing patients medical records.
Structured data entry is a hindrance to the usability of medical record applications, and
is frowned upon by physicians who usually prefer to document using free text [4]. In
addition, structured data entry systems do not take into account the particularities of the
annotations of each physician, failing to effectively record the singularities of medical
consultations. Alerts and suggestions offered by conventional products are generally based
on previously defined rules, or according to mechanisms whose behavior remains the
same throughout its operational life. The dissatisfaction of physicians with actual medical
history recording products is increasing as they gain knowledge about automatic assistant
tools. Consequently, physicians are increasingly aspiring to have sophisticated tools that
help facilitate their clinical practice during medical consultations.
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The research reported in this article is motivated by the need to further explore new
ways of capturing, storing, and fostering medical reasoning. Thus, a formal proposal
must be conceived to provide an accurate tool capable of following medical reasoning,
aiming at helping physicians during medical consultations. In this line of work, this
article presents a novel approach to represent clinical knowledge, which supports an
appropriate methodology to follow reasoning in medical consultation. Likewise, the
proposed representation does not pose formal restrictions to physicians, as they usually
find when using common clinical data entry systems. An instance-based learning method
is also introduced to provide suggestions in order to help during the process of registering
a medical consultation. The developed system extends Praxis [5], a software used to follow
medical reasoning with no templates, based on the accumulation of case types used to
provide suggestions for subsequent cases.

The proposed approach was evaluated for a case study in which more than 50 ad-
vanced medical students had collaborated. Students tested the feasibility of the approach
by using a proof-of-concept prototype. The performance of the proposed learning method
was found to be satisfactory after being evaluated on 250 real instances constructed by the
students. Results showed that the learning method was able to produce suggestions in a
reasonable time frame, even when processing large volumes of data. The results suggest
that the proposed approach was useful to accelerate the process of taking notes, since a
convergence towards a high speed of completed medical records was observed. A high
potential impact on clinical care may be projected, considering that the results showed that
the proposed approach was appropriate to follow physician reasoning, especially during
medical consultations. As a benchmark, 62% of the students were able to speed up writing
time during medical consultations.

The main contributions of the research reported in this article include: (i) a formal
structure to accurately represent clinical knowledge, and support the main flows of medical
consultations; (ii) an instance-based learning method able to help reduce the time it takes to
write notes; and (iii) a novel tool to help meet healthcare goals, which reminds physicians
to record essential data to fulfilling care goals.

The article is structured as follows. Section 2 introduces learning models for assis-
tance in medical consultation. A review of related work on learning models for assisting
medical professionals is presented in Section 3. Section 4 describes a model proposed for
representing clinical knowledge and patient history. Several flows to address relevant
scenarios of medical consultations are presented in Section 5. The main implementation
details of the proposed instance-based learning method are described in Section 6. Sample
results from the evaluation are presented in Section 7. Section 8 discusses the usability of
the proposed method and main strategies to improve the results and reduce uncertainties.
Finally, Section 9 presents the main conclusions of the research.

2. Learning Models for Assistance in Medical Consultation

Despite the fact that physicians are becoming increasingly familiar with electronic
medical records, they continue to have difficulties in dealing with long lists of pre-conceived
variables, usually included in EMR systems. Although conventional EMR systems are
useful to achieve legible, accessible, and complete documentation of medical consultations,
they are causing several difficulties for physicians who adopt them. In many cases, physi-
cians spend a lot of time searching for an option that allows them to record what they really
want to write. Unfortunately, conventional EMR systems are template-based products that
generate poor quality data, due to long search mechanisms and excessive mandatory fields,
which often add noise to the relevant patient information [4]. Worse, the time required to
enter clinical information sometimes exceeds the time required to write it on paper. The
rigid structure of the templates to be filled-in during medical consultations does not fit the
reasoning of physicians, nor their way of thinking.

Improvements in medical consultation assistance could be achieved by taking advan-
tage of systems that allow better management of clinical information. To achieve better
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assistance, physicians should be provided with new healthcare tools, considering that
healthcare assistance during medical consultations is improved when the physician is
able to:

(i) Efficiently record all the information of a medical consultation, by reducing the time
spent on mere data entry in order to gain more time to interact with the patient.

(ii) Use automatic clinical suggestions to reach an accurate diagnostics, or an appropriate
indication of treatments.

(iii) Reduce medical errors, resulting from the human condition of the professional.
(iv) Record each medical consultation considering the special relevance of the interoper-

ability of clinical information.
(v) Reuse recorded information for statistical and research purposes.

Computational intelligence can be applied to solve the deficiencies of current EMRs.
Machine learning methods can be used to learn features from previous registered health-
care data sets, in order to provide suggestions for diagnoses and treatments based on
information previously registered. By applying computational intelligence, systems can
automatically identify solutions of similar clinical cases and can subsequently incorporate
the knowledge gained to assist physicians during medical consultations. Learning methods
can also contribute to reduce error-prone steps during the sequence of clinical tasks and
decisions. Inevitable errors of human-based clinical practice may be reduced, such as drug
contraindications, medication allergies, adverse drug reactions, and forgetting recurrent
aspects of chronic patients. Furthermore, machine learning methods can progressively
enhance their accuracy based on feedback provided by their own use.

An effective medical informatics support system must be adapted to the real health
environment. In addition, a clinical evaluation of the usefulness of the system in real
clinical work should be considered to determine its real capacity during clinical practice.

3. Related Works

This section reviews related works regarding learning models that assist medical
professionals during their clinical activities.

Decision support systems can detect patterns, provide recommendations, and predict
future behaviors for clinical practice. Wang et al. [6] proposed an Intelligent Self-Learning
EMR (ISLEMR) system used to generate treatment recommendations based on learning
and patient similarity. ISLEMR considers a group of ad hoc similarity metrics, consid-
ering patient diagnoses, demographic data, vital signs, structured lab test results, and
information from external systems. The patient information is used to present an ordered
menu with inferred recommendations for treatment plans. The system was validated
on a real case study in Beijing, China in 2014, considering data from twelve-thousand
patients. Precision results up to 80% were achieved for the first 10 items of the recom-
mended menu; however, the applied learning algorithm only considered structured data,
which implies less precision in determining similarities of clinical cases. Klann et al. [7]
proposed a learning approach based on Bayesian networks (BN) to generate adaptive and
context-specific treatment menus from past clinical information of patients. Each menu
recommends a starting point for physicians, suggesting an initial draft to treat a specific
situation. The BN models the probabilistic relationships among orders and diagnoses,
covering typical scenarios from different aspects of medicine. The system was evaluated on
a hospital simulation, demonstrating accurate predictive capabilities and outperforming
a similar association rule mining approach, especially over less frequent cases. Support
vector machines (SVM) have also been applied as learning models for medical assistance.
Nakai et al. [8] applied SVM to predict clinical practices to be prescribed by using the
information from previous practices of the same patient. The validation over real data from
the Japanese system for medical billing proved the high precision of the model when facing
frequent clinical cases; however, low precision results were obtained when dealing with
less common cases. Barbantan et al. [9] proposed a medical decision support system using
SVM and natural language processing to discover relations between medical concepts.
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The model was successfully used to identify relations between medical concepts to help
diagnoses, medication predictions, and to detect health patterns in Boston, USA. Shen
et al. [10] proposed a multi-agent case-based reasoning approach for clinical decisions. The
system searches clinical cases by identifying important words and terminologies, whereas
medication allergies, adverse drug reactions, coexisting diseases, and other complications
are evaluated to discard candidate cases. The system achieved a 78% matching rate for
illnesses with simple syndromes. Installé et al. [11] developed a clinical data miner software
framework for supporting clinical diagnostic using electronic case report forms (eCRF)
based on templates and spreadsheets. Machine learning techniques are applied over the
information gathered by the eCRF. A survey indicated that the system was considered user-
friendly, and all physicians approved the possibility of using it in their own future works.
Zieba [12] proposed a service-oriented support decision system for the diagnose of medical
problems using web services with learning capabilities applying SVM. The system was
evaluated using ontological datasets and it was able to predict a diagnosis by generating
decision rules with acceptable accuracy values. Benmimoune et al. [13] designed a hybrid
medical platform to assist physicians during their clinical reasoning process using rule-
based reasoning (RBR) for general clinical cases and case-based reasoning (CBR) for clinical
experiences. The proposed platform gathers relevant information about the patient status
using an adaptive questionnaire and searches for the most similar stored case, following the
CBR approach. If no similar case is found, the platform applies an RBR approach to deduce
a solution according to rules defined by medical experts. Neither the implementation nor
the prototype of the proposed system was described. Wilk et al. [14] proposed a framework
to assist patients with multi-morbidity conditions, considering patient preferences for
suggesting customized clinical practice guidelines. Clinical guidelines are modeled using
actionable graphs and first-order logic, and a secondary medical knowledge component
is used to identify adverse interactions resulting from conflicting therapies. A high-level
proof of concept implementation was presented to show the feasibility of the proposed
framework but no real evaluation was proposed.

Praxis is an electronic medical records application, developed to streamline the entry
of clinical data and improve medical practice [5]. It emulates the processes that physicians
follow when they are recording clinical information. The software uses previously entered
information to offer recommendations for registering a new consultation, according to the
past practice of the physician user (i.e., suggesting a set of cases similar to the one being
evaluated). Praxis applies an empirical approach and has been gradually improved over
more than twenty-five years, to fit the North American medical system. Praxis does not
apply computational intelligence to build an expert system for the recommendation of
diagnoses and treatments.

A summary of related works reviewed in this section is presented in Table 1, reporting
for each article the methods applied, the most relevant features of each research, and any
identified weaknesses.

The analysis of related works allowed identifying several proposals applying compu-
tational intelligence and other learning-based methods for diverse health scenarios. Most
existing systems focuses on providing suggestions for treatments and diagnoses, based on
similarity metrics regarding relevant information from past medical assistance. Reviewed
works are able to identify similar clinical cases in order to provide suggestions for diag-
noses, prognosis, and treatments. Furthermore, they contribute to reducing error-prone
steps during the clinical process. The system presented in this article contributes to this
line of research, including specific differences with existing related works: it supports
non-structured free text information to be used in the learning process, instead of just struc-
tured information [6]; a more effective learning approach is applied, which outperforms a
Bayesian learning method such as the ones that have been previously used in the related
literature [7]; suggestions are generated considering all similar case types (of different
patients), instead of just previous information of the same patient [8]; and it does not rely
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on complex rules based on natural language processing, which limits the applicability of
other suggestion systems [9].

Table 1. Summary of reviewed works.

Work Method(s) Relevant Features Weaknesses

Wang et al. [6] Ad hoc patient similarity
algorithm.

Menu of inferred
recommendations, real-time
feedback.

Only considers structured
data.

Klann et al. [7] Bayesian networks. Suggest initial drafts, reduce
workload of physicians.

Relies on a small set of orders
and diagnoses.

Nakai et al. [8] Linear support vector
machine.

Use information from previous
practices, high precision for
common cases.

Low precision when dealing
with less common cases.

Barbantan et al. [9]
Natural language processing,
support vector machine
classifier.

Medical structured-related
concept model, detect patterns
about patient health.

Only evaluated on clinical
phrases with more than one
medical concept.

Shen et al. [10] Language analysis, ad hoc
matching.

Suggest diagnoses, prognosis and
treatments.

Knowledge representation
fails to analyze evolutionary
contexts.

Installé et al. [11] Preprocessing, machine
learning techniques.

Reduce error-prone steps during
diagnostics, user-friendliness.

Variable length array types
not supported, not useful for
longitudinal data capture.

Zieba [12] Cost-sensitive support vector
machine.

Web services with learning
capabilities, generate decision
rules.

Only acceptable accuracy
values of decision rules.

Benmimoune et al. [13]
Rules for generic cases,
case-based reasoning
component.

Adaptive questionnaire according
to patient profile.

No prototype was
implemented.

Wilk et al. [14] Actionable graphs.
first-order logic.

Clinical guidelines for
multi-morbidity conditions,
considers patient preferences.

No real evaluation.

4. Clinical Knowledge Model to Follow Physician Reasoning

A formal model is proposed for representing clinical knowledge and patient history,
including medical records.

4.1. Clinical Knowledge Base

A bottom-up modeling approach is used to present the proposed clinical knowledge
model. Several entities are defined in order to specify a clinical knowledge base that de-
scribes information of real medical case types. All entities included in a clinical knowledge
base are described in the following subsections.

4.1.1. Unit of Thought

As defined by Low [15], a unit of thought is a statement that describes a basic clinical
idea. Let UTM be a unit of thought registered by physician M. UTM is denoted as UTM =
<ptext, uqcn, uqpt, exph, terms, inuse, ctSchedule, M>, where ptext denotes a string capable of
containing structured or random data, uqcn indicates if the unit refers to information to be
used only in a unique consultation, uqpt indicates if the unit refers to unique information of
a specific patient, exph indicates if the unit contains exclusive data for physician use, terms
detail associations with health terminological standards, inuse denotes if the unit is in use
during a consultation, and ctSchedule indicates the frequency that a unit appears in a case
type. A unit of thought used in a case type will reappear each time the case type is used,
unless a specific frequency is defined by its ctSchedule attribute.
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The set of all units of thought registered by physician M is denoted as UTM
T . Let UTM

1
= <ptext1, uqcn1, uqpt1, exph1, terms1, inuse1, ctSchedule1, M> and UTM

2 = <ptext2, uqcn2,
uqpt2, exph2, terms2, inuse2, ctSchedule2, M> be units of thought registered by physician M.
A constraint on units of thought is defined in Equation (1), implying that each basic clinical
idea is represented by a unique unit of thought.

Considering that text variations do not change the meaning of a basic clinical idea,
an ad hoc function equal (defined in Equation (2)) is necessary to identify if two phrases
represent the same clinical idea. The same clinical idea can be instanced containing both
structured information and random data, which implies that two different text strings can
represent the same clinical idea.

UTM
1 ∈ UTM

T

UTM
2 ∈ UTM

T

equal(ptext1, ptext2)

⇒ UTM
1 = UTM

2 (1)

equal(t1, t2) =


true if t1 and t2 describe

the same clinical idea.
f alse, otherwise.

(2)

4.1.2. Conceptual Element

A conceptual element is composed of a set of units of thought grouped to represent a
broader concept. Several attributes are used to model all possible features of a conceptual
element. Let CEM be a conceptual element registered by physician M. CEM is denoted
as CEM = <name, display, chron, setDesc>, where name denotes the name of the element,
display indicates the default display mode of its units of thought, chron indicates if the
element refers to a chronic condition, and setDesc denotes a set of possible descriptors of
the conceptual element. The set setDesc = {[desc1, subset1(UTM

T )], ..., [desck, subsetk(UTM
T )]} is

composed of several pairs, each one is used to model a possible option to describe a real
condition of a conceptual element.

Two constraints are defined on conceptual elements. The constraint presented in
Equation (3) implies that a conceptual element is identified by its name.

CEM
1 =< name1, display1, chron1, setDesc1 >

CEM
2 =< name2, display2, chron2, setDesc2 >

name1 = name2

⇒ CEM
1 = CEM

2 (3)

The constraint presented in Equation (4) implies the uniqueness of each descriptor into
a conceptual element. Several units of thought can be labeled under the same descriptor to
define an identified sub set, describing a real condition of an element.

[desc1, subset1(UTM
T )] ∈ setDesc

[desc2, subset2(UTM
T )] ∈ setDesc

desc1 = desc2

⇒ subset1(UTM
T ) = subset2(UTM

T ) (4)

4.1.3. Conceptual Component

A conceptual component is composed of a set of conceptual element references,
grouped to define sections of clinical information. Each conceptual component represents
a typical clinical data section, in which a physician generally groups the information of a
medical consultation.

Let CCM = <id, secType, activeElems> be a conceptual component defined by physician
M, identified by its id attribute. The secType attribute is used to represent the type of data
section, such as physical examination, medicines, and laboratory indications. Each secType
must belong to the ALL-SECTION-TYPES set, which models all possible sections of the
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patient medical records. The set activeElems = {[elemName1, activeDesc1], ..., [elemNamek,
activeDesck]} indicates which descriptor is used for each conceptual element referenced in a
conceptual component.

Two constraints are defined on the conceptual components domain. The constraint
presented in Equation (5) implies that a conceptual component is identified by its id
attribute.

CCM
1 =< id1, secType1, activeElems1 >

CCM
2 =< id2, secType2, activeElems2 >

id1 = id2

⇒ CCM
1 = CCM

2 (5)

A second constraint presented in Equation (6) ensures the referential integrity of
names and descriptors of the active elements, referenced from a conceptual component.

CCM =< id, secType, activeElems >

[elemName, activeDesc] ∈ activeElems

}
⇒
∃ conceptual element e =< name, ..., setDesc > �

e.name = elemName ∧ ∃ d ∈ setDesc,

d.desc = activeDesc

(6)

4.1.4. Case Type

Several conceptual components can be grouped by a unique name to label a complex
scenario, representing a real case type that can occur during a physician’s workday. Let
CTM be a case type registered by physician M. CTM is denoted as CTM=<name,{CCM

1 , ...,
CCM

n }, chron, chronicComponents>, where name indicates the name of the case type, the set
{CCM

1 , ..., CCM
n } describes a specific group of conceptual components, chron indicates if

the case type is marked as chronic, and chronComponents denotes all components used to
monitor chronic conditions.

Three constraints are defined on case types domain. The constraint presented in
Equation (7) implies that a case type is identified by its name.

CTM
1 =< name1, chron1, comps1, chronComponents1 >

CTM
2 =< name2, chron2, comps2, chronComponents2 >

name1 = name2

⇒ CTM
1 = CTM

2 (7)

The second constraint presented in Equation (8) implies that each conceptual compo-
nent of a case type models a different section of the clinical information.

CTM =< nc, {CCM
1 , ..., CCM

n }, chron, chComps >

CCM
i =< idi, secTypei, subseti) >

CCM
j =< idj, secTypej, subsetj) >

⇒
secTypei = secTypej

⇔

i=j ∀i, j ∈ {1, n}
(8)

The third constraint presented in Equation (9) implies that each chronic conceptual
component models a different section of chronic clinical information.

CTM =< nc, comps, true, {CCM
chron1

, ..., CCM
chronm

} >

CCM
chroni

=< idi, secTypei, subseti) >

CCM
chronj

=< idj, secTypej, subsetj) >

⇒
secTypei = secTypej

⇔

i=j ∀i, j ∈ {1, m}
(9)

Finally, the clinical knowledge base (CKB) of a physician M is defined as CKBM =
n⋃

i=1
CTM

i . i.e., the union of all case types registered by physician M.
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4.2. Patient Representation

A data structure is used to organize the information of each patient, considering
the most relevant groups of personal data sets. The proposed structure includes medical
records of a patient’s history, and it also considers the chronic information of each patient.

4.2.1. Patient Structure

Each patient is modeled as P = <personalData, MRP, chronicElems, chronicCaseTypes>
where personalData denotes personal data (sush as patient and family background), MRP

denotes all medical records of the patient P, chronicElems indicates associations with chronic
conceptual elements, and chronicCaseTypes indicates associations with chronic case types.
The chronicElems set is defined as chronicElems = {[elemName1, chronDesc1], ..., [elemNamej,
chronDescj]}, and it is used to remember the descriptors of the elements that describe the
chronic conditions of a patient. Additionally, the set chronicCaseTypes = {caseTypeName1,
..., caseTypeNamek} is used to remember all chronic case types associated with a specific
patient P.

4.2.2. Patient Medical Records

The set of medical records of a patient P is denoted by MRP and contains all records
included in the medical history of the patient. A medical record of patient P created
at time t is denoted as mrP

t and it is defined as mrP
t = <content,p,t>, where content is a

set of [phrase, unit] pairs, each one includes a unit of thought associated with a clinical
phrase. Consequently, MRP= {mrP

t1
, mrP

t2
, mrP

tk
} describes the history of a patient, containing

k medical records.
Let mrP

t = <content,p,t> be a specific patient medical record, where content = {[phrase1,
unit1], ..., [phrasen, unitn]} is composed by one or more pairs of clinical information. A
function showRecord is used to print the content of a medical record, taking into account
all phrases included in the content of a medical record. Function showRecord only prints
clinical phrases, no unit of thought is shown.

4.2.3. New Medical Record

Let CKBM
t = {CTM

1 , CTM
2 , ..., CTM

n } be the composition of the clinical knowledge base
of physician M at time t. A medical record mrP

t is generated as a result of the interaction of
physician M and patient P, during a consultation at time t.

Since a physician usually takes a case type CTM
x as basis to record a specific consulta-

tion, a transformation T∗ can be applied to generate a new medical record. Consequently, a
record mrP

t = T∗(CTM
x ) is created, taking into account the active information of a selected

case type. The active information of a case type is defined by the units of thought with
inuse attribute in true. Transformation T∗: CKBM →MRP is defined as T∗(CT) = mr, where
mr is generated by applying Algorithm 1.
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Algorithm 1 New medical record of patient P
1: units← getAllUnitsIncludedIn(CT)

2: content← ∅

3: for unit in units do

4: if unit.inuse then

5: if not (unit.uqpt or unit.exph) then

6: itemCont← [copyCurrentText(unit.ptext), unit]

7: content← content
⋃

{itemCont}

8: end if

9: end if

10: end for

11: mrP
t ← <content,P,t>

Algorithm 1 starts by getting all units of thought referenced in a case type CT (line 1).
The algorithm iterates over all referenced units to identify units of thought marked with
inuse attribute (lines 3–4). Further, units marked with uqpt or exph attributes are not taken
into account for creating a new medical record (line 5). A new data pair is created for
each identified unit (line 6), each pair includes the identified unit of thought, and a copy
of its current text presentation. All new pairs are joined to build the full content of the
consultation record (line 7). Finally, mrP

t is created as a new medical record, containing the
full description of the consultation of patient P at time t.

5. Medical Consultation Flows

Different flows for address the most relevant scenarios that arise during medical
consultations are presented. These scenarios describe usual situations of physician workday,
including multiple diagnoses, and the attention of chronic patients.

5.1. Starting Attention of a Patient

Algorithm 2 details the first steps which occur during a medical consultations.

Algorithm 2 Start attention of patient P
1: showPersonalInfo(P.personalData)

2: showChronicElementDescriptors(P.chronicElems)

3: chronicCTs← getCaseTypesByNames(P.chronicCaseTypes)

4: if chronicCTs 6= ∅ then

5: All case types included in chronicCTs are suggested to physician

6: Physician select CTM
chron1

, ..., CTM
chronk

to be used as basis

7: CTM
merge is build by merging CTM

chron1
, ..., CTM

chronk
(Algorithm 8)

8: applyCaseType(P, CTM
merge) is called (Algorithm 3)

9: end if

10: Show message agents according its trigger conditions

11: Physician continues with patient attention

The physician starts the attention of patient P by opening a registry editor to record
the information of the new medical consultation. Personal information is loaded (line 1) to
introduce the patient. All descriptors of chronic elements (line 2) and all chronic case types
(line 3) associated with the patient are presented and suggested to the physician, who can
select the chronic case types that are appropriate to being applied into the consultation
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(lines 4–9). Before the physician continues with patient attention, all message agents are
evaluated and shown according to its trigger conditions (line 10).

5.2. Selecting an Already Defined Case Type

The selection of an already defined case type allows the physician to efficiently reuse
previously registered information. Algorithm 3 details how to apply a case type during a
medical consultation.

Algorithm 3 starts by evaluating the chronic attribute of a case type CTM (lines 1–2). If
the case type is identified as chronic, a specific method for applying a chronic case is called
(line 3). Otherwise, all elements referenced in the components attribute are determined,
and its units of thought are marked as in use according setUnitsInUse auxiliary procedure.
The auxiliary procedure encapsulates the logic of how units of thought are activated. The
algorithm continues by showing all units marked as in use, and highlighting the units that
are exclusive for physician use (lines 8–9). Finally, each message agent that has CTM as a
trigger condition is presented to the physician (line 10).

Procedure setUnitsInUse iterates over all conceptual elements of a case type (line 12).
All units included in each conceptual element are identified (line 13), and each unit of
thought is marked as in use according the values of its attributes (lines 14–25).

Algorithm 3 applyCaseType(P, CTM)

1: CTM = <name, components, chronic, chronicComponents> is selected

2: if chronic then

3: applyChronicCaseType(P, CTM) (Algorithm 4)

4: else

5: elements← getAllElementsIncludedIn(components)

6: setUnitsInUse(elements,CTM)

7: end if

8: Show all units with isuse attribute in true

9: Highlight all units with exph attribute in true

10: Show message agents that have CTM as a trigger condition

11: procedure setUnitsInUse(elements,CTM)

12: for element in elements do

13: units← getAllUnitsIncludedIn(elements)

14: for unit in units do

15: switch ()

16: case unit.exph:

17: unit.inuse = true

18: case isTime(unit.ctSchedule, CTM):

19: unit.inuse = true

20: case element.display ∧ isEmpty(unit.ctSchedule):

21: unit.inuse = true

22: case otherwise:

23: unit.inuse = false

24: end switch

25: end for

26: end for
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5.3. Chronic Patients Flow

A case type CTM can be marked as a chronic case type CTM
chron at any time. When

a CTM
chron is marked as chronic, its chron attribute is activated and its chronicComponents

attribute is initialized with an empty set. The chronic components are defined the first time
that the case type is used to monitor a chronic patient. Algorithm 4 details how a physician
can apply a chronic case type CTM

chron.
Algorithm 4 analyzes if it is the first time that a chronic case type CTM

chron is used with
a patient being evaluated (lines 1–2). In that case, elements referenced in usual conceptual
components are determined, and its units of thought are activated by calling setUnitsInUse
procedure (lines 3–4). If CTM

chron was used in any previous consultation of the same patient
(line 6), then its chronic components are taken into account each time the physician decides
to apply the case type, since chronic components are used to monitor the evolution of a
chronic condition. However, the first time that CTM

chron is used to monitor the evolution
of a patient, the physician needs to define all entities that they want to use as monitoring
items (lines 7–12). In addition, it is mandatory that the physician specify the frequency of
each new unit of thought, included in an element of a chronic component (lines 13–16).
All entities defined in new chronic components are used to monitor the patient’s chronic
condition in subsequent consultations (line 17). Finally, the units of thought of the elements
referenced in chronic components are marked as in use by applying setUnitsInUse procedure
(lines 19–20).

Algorithm 4 applyChronicCaseType(P, CTM
chron)

1: A chronic case type CTM
chron = <name, components, true, chronicComponents> is selected

2: if name /∈ P.chronicCaseTypes then

3: elements← getAllElementsIncludedIn(components) . First time of case type for patient P

4: setUnitsInUse(elements,CTM
chron)

5: else

6: if chronicComponents = ∅ then

7: Evolution component CCEvolution emerges . Chronic components defined by physician

8: Physician defines all conceptual elements included in CCEvolution

9: CCothers can be defined to better monitor the chronic condition

10: CCsnew = CCEvolution
⋃

CCothers

11: newMonitorElems← getAllElementsIncludedIn(CCsnew)

12: newChronUnits← getAllUnitsIncludedIn(newMonitorElems)

13: for newChronUnit in newChronUnits do

14: Physician needs to specify the frequency of newChronUnit

15: newChronUnit.ctSchedule is updated

16: end for

17: chronicComponents← CCsnew the chronic case type is updated

18: end if

19: elements← getAllElementsIncludedIn(chronicComponents)

20: setUnitsInUse(elements,CTM
chron)

21: end if

5.4. Usual Attention Flow

During an attention flow, a physician can take advantage of an already registered
case type. Algorithm 5 shows how a case type can be used to record a frequent medical
consultation scenario.
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In Algorithm 5, a procedure waits until the physician selects a case type and applies
it to the current consultation (lines 1–2). After a case type is applied, the physician can
also make modifications in order to describe the accurate information of the entire clinical
meeting (line 3). Each unit of thought marked as unique to the patient being evaluated
is stored as personal data, and is removed from the current case type (lines 4–6). The
algorithm continues by applying T∗ transformation, which generates a new medical record
for the patient’s history (lines 7–8). All chronic conceptual elements used in the case type
are associated with the patient. Furthermore, if the case type is chronic, it is associated as
permanent patient data (lines 9–13). Each unit of thought marked as unique to the current
consultation is removed before updating the CKBM of the physician (line 14). To update
CKBM, the physician needs to specify if the current case type refers to a new workday
scenario, or it is only an improvement over the previously selected case type (lines 14–21).
Two data sets are modified after the usual attention flow: physician CKBM and patient
history, including an MRP increment.

Algorithm 5 Usual attention flow of a patient P

1: CTM ← selectSimilarCT()

2: applyCaseType(P, CTM) is called

3: Physician M define CT′M by modifying the selected CTM

4: personalInfo← getUqptUnits(CT′M)

5: P.personalData.add(personalInfo)

6: CT′M ← removeUqptUnits(CT′M) units marked with uqpt are removed

7: mrP
t ← T∗(CT′M)

8: MRP ←MRP ⋃
{mrP

t }

9: chronElemts← getAllActiveChonicElementsInludedIn(CT′M)

10: P.chronicElems.add(chronElemts)

11: if isChronic(CT′M) then

12: P.chronicCaseTypes.add(CT′M.name)

13: end if

14: CT′M ← removeUqcnUnits(CT′M) units marked with uqcn are removed

15: if CT′M is saved as an improvement then

16: CTM ← CT′M

17: CKBM is updated with the new version of CTM

18: else

19: CTM
new ← CT′M is saved as a new case type

20: CKBM ← CKBM ⋃
{CTM

new} the base is incremented

21: end if

5.5. New Case Type Flow

Algorithm 6 details the flow followed by the physician when they need to address a
new case type that is not included in their CKB.

Since there is no case type to be re-used, Algorithm 6 needs to create an empty
case type in which the new workday scenario can be detailed (lines 1–2). To define a
new case type CTM

new, the physician can re-use any predefined unit of thought, and can
also create units of thought specifying new clinical phrases. Furthermore, predefined
conceptual elements can be re-used and new elements can be created (lines 3–4). Each
element defined by the physician is referenced from one clinical section. Therefore, new
conceptual components are created in order to group elements sharing the same section
type (lines 5–11). It is mandatory that the physician assigns a name to the new clinical
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case type. The case type can also be marked as chronic, and in that case, the physician
needs to specify the chronic attribute of each new element, created while defining the new
case type (lines 12–21). All units of thought marked as unique to the patient are stored
as personal data, and are removed from CTM

new (lines 22–24). Then, T∗ transformation is
applied to generate a new medical record in the patient’s history (lines 25–26). All chronic
conceptual elements of CTM

new are associated with the patient, and if the case type is chronic
it is associated as permanent patient data (lines 27–31). Finally, all units of thought marked
as unique to current consultation are removed from the case type, and the clinical data base
of the physician is enriched by including the new case type.

Algorithm 6 New case type flow for the attention of patient P

1: There is no CTM selected by physician

2: CTM
new ← <“new-name”, ∅, false, ∅ > is created automatically

3: Physician creates new units UTsnew and new elements CEsnew

4: Physician defines sections, by using UTsnew and CEsnew or pre-defined

5: secTypes← ALL-SECTION-TYPES

6: newComponents← ∅

7: for secTypei in secTypes do

8: activeElemsi ← [elementName, activeDescriptor] pairs in sectioni

9: CCnewi ← < maxCCId() + 1, secTypei, activeElemsi >

10: newComponents← newComponents
⋃

{CCnewi }

11: end for

12: Physician assigns a unique name to attribute name of CTM
new

13: Physician can mark CTM
new as chronic

14: if CTM
new is marked as chronic then

15: for elem in CEsnew do

16: Physician needs to specify the value of elem.chron

17: end for

18: CTM
new ← <name, newComponents, true, ∅ >

19: else

20: CTM
new ← <name, newComponents, false, ∅ >

21: end if

22: personalInfo← getUqptUnits(CTM
new)

23: P.personalData.add(personalInfo)

24: CTM
new ← removeUqptUnits(CTM

new)

25: mrP
t ← T∗(CTM

new)

26: MRP ←MRP ⋃
{mrP

t }

27: chronElemts← getAllActiveChonicElementsInludedIn(CTM
new)

28: P.chronicElems.add(chronElemts)

29: if isChronic(CTM
new) then

30: P.chronicCaseTypes.add(CTM
new.name)

31: end if

32: CTM
new ← removeUqcnUnits(CTM

new)

33: CKBM ← CKBM ⋃
{CTM

new} the base is incremented
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5.6. Temporal Case Type Flow

By applying a temporal case type, the history of patient P is updated, and the MRP

set is incremented with a new patient medical record. However, there is no change in
physician CKBM. Algorithm 7 details the use of a temporal case type.

Algorithm 7 Temporal case type flow for the attention of patient P

1: CTM ← selectSimilarCT()

2: applyCaseType(P, CTM) is called

3: Physician M define CT′M by modifying the selected CTM

4: Physician M marks CT′M as a temporal case type

5: personalInfo← getUqptUnits(CT′M)

6: P.personalData.add(personalInfo)

7: CT′M ← removeUqptUnits(CT′M)

8: mrP
t ← T∗(CT′M)

9: MRP ←MRP ⋃
{mrP

t }

10: chronElemts← getAllActiveChonicElementsInludedIn(CT′M)

11: P.chronicElems.add(chronElemts)

12: CT′M is deleted

Algorithm 7 is triggered after the physician assigns a temporal mark over an applied
and modified case type (lines 1–4). As any other case type, all units marked as unique
to the patient are stored as personal data, and are removed from the temporal case type
(lines 5–7). T∗ transformation is also applied to create a new medical record (lines 8–9).
Each chronic conceptual element referenced in the temporal case is permanently associated
with the patient being evaluated (lines 10–11). The temporal case type is finally removed,
since it is marked to be not re-used (line 12).

5.7. Multiple Case Types Flow

A physician can use more than one case type as the basis during the same medical
consultation. Several rules are used to combine all conceptual components of each case
type involved. To combine conceptual components, their active conceptual elements are
accurately merged. The merge process takes into account the active elements described in
the usual components, and active elements described in chronic components. Algorithm 8
details the method used to merge different case types.

Algorithm 8 starts by identifying the conceptual components included in each case
type (lines 1–4). An ad hoc merge function is used to combine all identified components
(line 5). Function merge is also applied over chronic conceptual components (lines 6–8). The
algorithm continues by creating a case type CTM

merge, which includes all merged components
(lines 9–14). Then, the case type is applied and can be modified by the physician (lines 15–
17). Each unit of thought marked as unique to the patient is taken into account as usual,
it is stored as personal data and removed from the case type (lines 18–20). Likewise, a
new medical record is created by applying T∗ transformation (lines 21–22). Each chronic
conceptual element referenced in CTM

merge is permanently associated with the patient being
evaluated, as well as any original chronic case type (lines 23–30). Finally, the used case
type is deleted after concluding the consultation (line 31).
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Algorithm 8 Multiple case types flow for the attention of patient P

1: CTM
1 ← selectSimilarCT()

2: CTM
2 ← selectSimilarCT()

3: comps1 ← getAllComponents(CTM
1 )

4: comps2 ← getAllComponents(CTM
2 )

5: compsmerge ←merge(comps1, comps2)

6: chronComps1 ← getAllChronicComponents(CTM
1 )

7: chronComps2 ← getAllChronicComponents(CTM
2 )

8: chronCompsmerge ←merge(chronComps1, chronComps1)

9: namemerge ← concat(CT1.name,CT2.name)

10: if chronCompsmerge 6= ∅ then

11: CTM
merge = <namemerge,compsmerge, true, chronCompsmerge >

12: else

13: CTM
merge = <namemerge,compsmerge, false, ∅ >

14: end if

15: CTM
merge is auto-selected

16: applyCaseType(P, CTM
merge) is called

17: Physician M define CT′Mmerge by modifying CTM
merge.

18: personalInfo← getUqptUnits(CT′Mmerge)

19: P.personalData.add(personalInfo)

20: CT′Mmerge ← removeUqptUnits(CT′Mmerge)

21: mrP
t ← T∗(CT′Mmerge)

22: MRP ←MRP ⋃
{mrP

t }

23: chronElemts← getAllActiveChonicElementsInludedIn(CT′Mmerge)

24: P.chronicElems.add(chronElemts)

25: if isChronic(CTM
1 ) then

26: P.chronicCaseTypes.add(CTM
1 .name)

27: end if

28: if isChronic(CTM
2 ) then

29: P.chronicCaseTypes.add(CTM
2 .name)

30: end if

31: CT′Mmerge is deleted

6. Instance-Based Learning

A learning method is proposed in order to generate suggestions for physicians. The
proposed method is based on an ad hoc similarity metric, designed to compare the similarity
between clinical case types.

6.1. Instance-Based Learning Method

An instance-based learning method is designed with the aim to provide suggestions
for physicians. The proposed method takes into account the clinical knowledge base
of a physician, in order to present suggestions based on previously defined case types.
A register editor where a physician can take advantage of the proposed instance-based
learning method is also introduced.



Appl. Sci. 2021, 11, 5886 16 of 30

6.1.1. Register Editor

The register editor is an interface in which a physician can register a consultation ap-
pointment. The register editor presents personal information of the patient being evaluated,
and includes an area for writing all details of a medical consultation. The main features of
the register editor are illustrated in Figure 1, including a list of case type suggestions.

Figure 1. Main features of register editor.

The input area of the register editor is designed with the aim of registering a consul-
tation in an organized structure, grouping information by clinical section types. When a
physician writes in the input area, a case type CTcurrent is automatically created, based on
the information included in each section type. As a relevant feature, a list of similar case
types is included in the register editor as suggestions for the physician. The suggested list
is based on the top best values of a similarity metric, applied to compare the information of
CTcurrent against all case types previously registered.

6.1.2. Learning Method

A learning method is applied to determine the case types that best match with the
clinical scenario of the patient being evaluated, according to an ad hoc similarity metric. A
list of similar case types is suggested each time the physician modifies the information of
the patient being evaluated. The list of similar case types is updated when introducing or
removing any clinical phase during a medical consultation.

The proposed learning method implements a lazy approach [16], since the training
stage of learning is delayed until a new case type draft must be evaluated. To evaluate a
new case type draft, all previously defined case types are processed as training examples,
and a similarity metric is applied to determine the most similar candidates. Algorithm 9
details how the instance-based learning method is implemented, seeking to suggest similar
case types.

The learning method described in Algorithm 9 is triggered each time the physician
modifies any aspect of the consultation being evaluated. An auxiliary case type CTcurrent is
created based on the information detailed by the physician in their register editor (line 1).
Sentences without any meaningful word are not taken into account by the learning method
(line 2). A step to remove duplicate units of thought is applied, since a physician could
write duplicate clinical phrases in their register editor (line 3). Moreover, an array used to
identify top best similarity metrics is initialized with empty values (line 4). The algorithm
continues by iterating over all case types included in the physician clinical knowledge
base (line 5). For each iteration, the similarity between CTcurrent and any other case type
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is calculated in order to update the array of top best metrics (lines 6–9). Finally, the case
types with top best metrics are returned as suggestions to the physician (lines 11–12).

Algorithm 9 Instance-based learning method

1: CTcurrent ← new CT(registerEditor.content)

2: CTcurrent ← removeNonMeaningfulUnits(CTcurrent)

3: CTcurrent ← removeDuplicateUnits(CTcurrent)

4: topBest← Initialize array with t empty values

5: for CTi in CKBM do

6: similarityMetric← similarity(CTcurrent,CTi)

7: if similarityMetric is better that worstSimilarity(topBest) then

8: topBest← replaceWorst(topBest,CTi)

9: end if

10: end for

11: topBest← removeEmptyValues(topBest)

12: return topBest

6.1.3. Using Suggested Case Types

A physician can select a suggested case type as a basis of writing a medical consulta-
tion. After a case type is applied, the input area of the register editor is updated by using
the information defined in the selected case type. By using suggested case types, previously
registered phases are re-used and the time spent writing the details of a consultation is
reduced. Suggested case types can also remind physicians to verify important clinical
aspects of their patients. Moreover, taking advantage of previously written sentences is
useful when physicians need to address recurrent aspects of chronic patients.

6.2. Similarity Metric

A similarity metric is introduced in order to compare two case types of a clinical
knowledge base. The proposed metric takes into account the similarity between conceptual
components of different case types. Consequently, the similarity value between two case
types is determined by the weighted similarities of their conceptual components.

6.2.1. Similarity Metric Definition

Sadegh-Zadeh [17] introduced the concept of diagnostic relevance, which applies fuzzy
logic to evaluate the relevance of causal events associated with a clinical diagnosis. The
proposed method is based on a similar idea, where the concept of medical relevance is
considered to evaluate the relevance of conceptual components associated with a clinical
case type.

Let compi,sec be a conceptual component of case type CTi defined with sec section type,
where sec belongs to ALL-SECTION-TYPES. The set ALL-SECTION-TYPES is introduced in
Section 4 as a set that defines all possible clinical sections of the patient medical records. The
similarity between two case types is denoted as similarity, and is defined by Equation (10).

similarity(CT1, CT2) = ∑
sec

wsec × similarityCCsec(comp1,sec, comp2,sec) (10)

In Equation (10), each wsec defines the weight of a component with sec section type.
Consequently, the conceptual components of case types influence the similarity metric
according to their sec section type. The similarity weight of a clinical section type is
determined by its medical relevance. The medical relevance is used to define the weight
of each section type belonging to ALL-SECTION-TYPES = {sec1, ..., secn}, as Wsec =
medRelevance(sec)/ ∑secn

sec1
medRelevance(seci).
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The medical relevance of clinical section types must be defined based on background
knowledge of the health area. Accurate weights of conceptual components provide a
mechanism for reducing the impact of irrelevant features in the similarity metric [16].
As an example, health background knowledge suggests that the section for excuse notes
should weigh less than the diagnosis section.

The following subsection presents the similarityCC function, introduced in Equation (10)
for comparing two conceptual components of different case types.

6.2.2. Similarity between Components

To compare conceptual components, the similarity metric takes into account the units
of thought included in all elements of conceptual components. The similarity between con-
ceptual components is defined by Equation (11), which is aimed at comparing components
sharing the same section type sec.

similarityCCsec(cc1, cc2) =

{
0, if cc1.secType 6= sec ∨ cc2.secType 6= sec

includedUTs(units(cc1), units(cc2)), otherwise
(11)

Function includedUTs: UT×UT→ [−1,1] is applied to compare two sets of units of
thought. Equation (12) presents includedUTs by considering different scenarios.

includedUTs(units1, units2) =


0, if units1 = ∅
−1, if units1 6= ∅ ∧ units2 = ∅

max{ ∑
u1∈units1

belongs(u1,units2)
|units2|

, −1}, otherwise
(12)

If the first parameter units1 of function includedUTs is an empty set, there is no unit
of thought that can contribute as similarity data, then zero value is returned. Another
exceptional case occurs when units2 does not describe any information. If the second
parameter is an empty set, the worst value of similarity must be returned because units1
details clinical data not considered by units2. A complex scenario arises when function
includedUTs evaluates non-empty parameters. In that case, each unit of units1 is analyzed
in order to evaluate its inclusion into units2, and a positive weight is determined for units
that belong to both sets. In addition, a limit of maximum deference could be applied if
units1 and units2 are significantly different and units1 is bigger than units2.

An auxiliary function belongs(unit, units) presented by Equation (13) is required to
determine if a specific unit of thought belongs to a set of units. A unit that contradict the
ideas represented by the units set is negatively weighted.

belongs(unit, units) =

{
1, if ∃ usame ∈ units �equal(unit, usame)

−1, otherwise.
(13)

6.2.3. Similarity Metric Algorithm

The metric detailed in Algorithm 10 calculates the similarity of a case type CTcurrent re-
garding any other case type. To achieve the final value of the similarity metric, Algorithm 10
needs to calculate similarity values of several conceptual components.

Algorithm 10 starts by initializing the similarity metric with a neutral value (line 2).
Then, all section types of conceptual components included in analyzed case types are
identified (line 3). After identifying the section types that influence the similarity metric,
a relative weight factor is determined in order to accurately weigh the influence of each
identified section type (line 4). Each section type with a positive weight of similarity is
taken into account to calculate the value of the metric (lines 5–6).
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Algorithm 10 Similarity metric

1: function similarity(CTcurrent, CTi)

2: similarity← 0

3: involvedSecTypes← sectionTypesOf(CTcurrent)
⋃

sectionTypesOf(CTi)

4: relativeWeight← relativeWeightFactor(involvedSecTypes)

5: for sec in involvedSecTypes do

6: if sec.weight 6= 0 then

7: cachedSimilarityCC← getSimilarityCCValueFromCache(sec, CTi)

8: if cachedSimilarityCC is hitted then

9: similarityCC← cachedSimilarityCC

10: else

11: unitscurrent ← getUnitsBySectionType(sec,CTcurrent)

12: unitsi ← getUnitsBySectionType(sec,CTi)

13: if unitscurrent 6= ∅ then

14: if unitsi 6= ∅ then

15: includedUTs← 0

16: for unitcurrent in unitscurrent do

17: belongs← belongs(unitcurrent, unitsi)

18: if belongs then

19: includedUTs← includedUTs + 1
|unitsi |

20: else

21: includedUTs← includedUTs − 1
|unitsi |

22: end if

23: end for

24: similarityCC←max{includedUTs, −1}

25: else

26: similarityCC←−1

27: end if

28: else

29: similarityCC← 0

30: end if

31: putSimilarityCCValueInCache(similarityCC,sec,CTi)

32: end if

33: similarity← similarity + (relativeWeight * similarityCC)

34: bestRemain← upperBound(sec, involvedSecTypes)

35: if similarity + bestRemain < worstSimilarity(topBest) then

36: invalidateSimilarityCCValuesOnCache(CTi)

37: throw discard-low-similarity

38: end if

39: end if

40: end for

41: return similarity
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For each identified section type, the similarity of components sharing the same section
type must be calculated. A cache containing values of similarity between conceptual
components is used to improve the performance of the proposed metric (lines 7–9). To cal-
culate the similarity between conceptual components, the sets of units of thought included
in each component are determined. Algorithm 10 implements the rules introduced by
Equation (12) for calculating the similarity between two sets of units of thought, including
the general scenario (lines 15–24) for non-empty sets, and exceptional scenarios (line 26
and line 29) to address singular situations of empty sets. Moreover, the calculated value of
component similarity is cached, to be used in the future (line 31). The partial value of the
similarity metric is updated after calculating the similarity between each pair of conceptual
components. For each pair of components, the partial similarity is affected by the similarity
of the components according to a relative weight factor (line 33).

To detect low values of similarity, an upper bound is calculated in order to determine
a maximum possible value of similarity (line 34). If the similarity between two case types
is detected early as low, it is not required to calculate its exact value. All case types with
low similarity are discarded early, and their partial values of component similarity are
removed from the cache as they are not fully calculated (lines 35–37). At last, a final value
of similarity is returned after iterating over all involved section types (line 41).

6.3. Implementation of Similarity Metric

The similarity metric is an essential feature of the proposed learning method. The
metric must be able to accurately compare the similarity between clinical case types, and
it also needs to execute as quickly as possible. The similarity metric is highly demanded
in virtue of the lazy approach of the learning method. Therefore, several techniques of
indexing and cache are applied for reducing the metric execution time. All optimizations
implemented to reduce the execution time of the similarity metric are presented in the
following paragraphs.

Compare units by canonical form. The operator equal for units of thought is used to
determine if two different sentences represent the same clinical idea. To implement the
equal operator, a canonical transformation is applied over the units being compared. Two
transformations are applied by comparing a pair of units of thought. For each unit of
thought, structured information and random data are removed, in order to achieve the
canonical form. Finally, a raw string comparison between both canonical forms is evaluated.
Original units of thought are identified as equal only if they coincide in their canonical form.

Zero similarity value. Function similarity(CT1, CT2) is called to calculate the similarity
between a case type CT1 and another case type CT2. Both case types are composed by
conceptual components that influence the similarity metric according to its section type
weights. However, an empty component of CT1 cannot provide similarity information
since it does not have associations with units of thought. If a conceptual component of
CT1 is empty, its similarity in regard to any other component is zero. No calculation is
performed over the empty components of CT1, rather all computational effort is performed
over its non-empty components.

Comparing with empty components. All components of a case type CT1 are analyzed
when calculating the similarity of CT1 in regard to another case type CT2. Each conceptual
component of CT1 should be compared against a component of CT2 with the same section
type. If CT2 does not include a conceptual component with the same section type, then
a value representing the biggest difference of similarity is returned without performing
additional calculations.

Cache of previous similarity values. The proposed similarity metric provides a mecha-
nism for comparing different case types. However, the metric is not based on case types
themselves, but on their conceptual components. Due to the high need of obtaining simi-
larities between conceptual components, a cache is designed for containing pre-calculated
values of component similarities. Figure 2 shows the structure used to maintain recent
values of similarities, and how similarity values are cached for each case type included in
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the clinical knowledge base of a physician. The proposed structure is able to cache the last
value of similarity of all conceptual components of each case type.

Figure 2. Cache structure for similarity between components. The clinical knowledge base is
composed of case types, each one containing similarity cached values of its conceptual components.

After evaluating the similarity between a specific case type in regard to any other case
type, all values of component similarities are stored in the cache. Figure 3 introduces a
scenario in which a “Case type A” is slightly modified, by only changing the information
described in one of its conceptual components. Several highlighted values of component
similarities are obtained from the cache. Furthermore, a high cache hit ratio should be
achieved after re-using any other case type and applying a few modifications.

(a) First similarity evaluation (b) Similarity evaluation with cache

Figure 3. Use of similarity cache values.

Discard non-promising candidates. The proposed learning method is designed to suggest
the best case types that can be applied during a medical consultation. Top best case types
are identified according to best similarity metric values, and only t best case types are
presented to the physician.

The similarity function separates the first k section types from the rest of the ALL-
SECTION-TYPES set, as described in Equation (14).
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similarity(CT1, CT2) =
secN

∑
sec=sec1

wsec × similarityCCsec

=
seck

∑
sec=sec1

wsec × similarityCCsec +
secN

∑
sec=seck+1

wsec × similarityCCsec

≤
seck

∑
sec=sec1

wsec × similarityCCsec +
secN

∑
sec=seck+1

wsec =
seck

∑
sec=sec1

wsec × similarityCCsec + Rk+1
constant

(14)

Equation (15) presents an upper bound inferred by simplifying (14), which can be
used for discarding case types with low similarity values.

similarity(CT1, CT2) ≤
seck

∑
sec=sec1

wsec × similarityCCsec + Rk+1
constant (15)

Several component similarity values (similarityCCs) need to be computed to obtain
the final value of similarity(CT1, CT2). An upper bound is identified after determining the
value of similarityCCseck . After calculating the similarity of the kth conceptual component,
it is possible to use an upper bound to discard a case type with a low similarity value.
Each case type whose upper bound of similarity is lower than the worst element of the top
best metrics is considered a non-promising candidate, and no more computational effort is
expended to calculate its final similarity value.

7. Experimental Validation

This section presents the experimental validation of the proposed approach on a real
case study, which served as a basis for evaluating the practical aspect of this research.

7.1. Problem Instances

The source Clinical cases in primary care [18] was used for evaluating the proposed
approach. The source is a multi-authored publication that covers a wide range of clinical
scenarios of primary care.

7.1.1. Prerequisites for Building Case Type Instances

The collaboration of advanced medical students was requested with the intention of
registering as many clinical scenarios as possible. Students were instructed to record the
primary care scenarios described in Clinical cases in primary care as new clinical CTs. In
order to group all the information recorded, it was necessary to implement procedures
for exchanging clinical CTs. The export and import procedures were used to exchange
different CTs.

A procedure to export a given CT was implemented. The procedure extracts a CT
from a specific clinical knowledge base CKB, and it also anonymizes any information that
refers to the person who wrote (owner) the CT. The import procedure consolidates the
information of a specific CT into a target CKB. A new CT is inserted into the target CKB,
replacing any anonymized reference of the original owner with the person who owns the
target CKB. Importing a CT is a complex procedure, which must avoid the generation of
duplicate units of thought, and has to merge the conceptual elements of the new CT with
those existing in the target CKB.

7.1.2. Building Case Type Instances

The set of clinical cases specified in the publication Clinical cases in primary care was
distributed to be evaluated by 50 advanced medical students. Each student had to evaluate
three different cases, and each clinical case was assigned to at least one student. Further-
more, each student was instructed to contribute two additional clinical cases, defined as
variants of those presented in the clinical source.
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All scenarios of primary care detailed in the clinical source were successfully registered
by the group of students, including variants of repeated clinical scenarios. Algorithm 11 de-
tails how a single CKB was loaded with 250 scenarios of primary care, based on information
registered by students.

Algorithm 11 Building case types

1: for i = 1 to length(STUDENT-LIST) do

2: studenti ← STUDENT-LIST[i]

3: CKBstudenti
← ∅

4: for j = 1 to 3 do

5: k-index←mod(3(i − 1) + j, length(CASE-SOURCE))

6: CTij ← studenti records case number k-index of CASE-SOURCE

7: CKBstudenti
← CKBstudenti

⋃
{CTij }

8: end for

9: CTiv1
← first variant of case type included in CKBstudenti

10: CKBstudenti
← CKBstudenti

⋃
{CTiv1

}

11: CTiv2
← second variant of case type included in CKBstudenti

12: CKBstudenti
← CKBstudenti

⋃
{CTiv2

}

13: end for

14: CKBall ← ∅

15: for i = 1 to length(STUDENT-LIST) do

16: studenti ← STUDENT-LIST[i]

17: for j = 1 to 5 do

18: CTijexported ← export(j,CKBstudenti
)

19: import(CTijexported, CKBall)

20: end for

21: end for

22: return CKBall

Algorithm 11 starts by initializing all CKBs of the students (STUDENT-LIST) selected
for recording new CTs (lines 1–3). Each student is expected to treat three fictitious patients
suffering from one of the specific conditions of the clinical source (lines 5–6). Moreover,
two variants contributed by each student are also registered (line 9 and line 11). Therefore,
the CKB of each student is enriched with five new CTs (line 7, line 10, and line 12). The
algorithm continues by initializing a single CKBall that groups all information recorded by
all students (line 14). Each registered CT is exported using the export procedure, and the
import procedure is applied to consolidate the exported CT into the CKBall (lines 15–21).
Finally, the CKBall which contains all the 250 registered CTs (five contributed by each of
the 50 students) is returned (line 22).

7.2. Parameter Settings of Similarity Weight

For the purposes of the experimental evaluation, the set of clinical section types was
defined following the Uruguayan health model. The set of clinical section types was
defined as ALL-SECTION-TYPES = {Diagnosis, Consultation reason, Current illness, Physical
examination, Medication, Studies, Procedures, Referral, Message agents, Advisors, Excuse notes,
Observations}.

The similarity weight of a clinical section type is given by its medical relevance. A
simple medical relevance criteria was applied to give greater weight to the most important
section types. Four levels of importance were defined in order to consider qualitative
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ranges of medical relevance. The level scale used to define medical relevance was: very
important, fairly important, important, and slightly important. Table 2 presents the weight
values of the clinical section types used in the experimental evaluation, grouped by level of
medical relevance. Table 2 shows that the weight of the diagnosis section was defined with
a high value of WDiagnosis = 0.16. On contrary, the excuse notes section was defined with a
lower weight of WExcuses = 0.04.

Table 2. Weight of conceptual component types.

Very Important Fairly Important Important Slightly Important
(Weight 0.16) (Weight 0.12) (Weight 0.08) (Weight 0.04)

Diagnosis Consultation reason Medication Message agents
Current illness Studies Advisors
Physical examination Procedures Excuse notes

Referral Observations

All weights presented in Table 2 influence the calculation of the similarity metric of
the learning method. Equation (16) shows the consistency of presented weights used for
the similarity metric.

secn

∑
sec1

Wsec = ∑
very important

Wsecv + ∑
fairly important

Wsec f + ∑
Important

Wseci + ∑
slightly important

Wsecs

secn

∑
sec1

Wsec = 0.16 + 3 · 0.12 + 4 · 0.08 + 4 · 0.04 = 1

(16)

7.3. Performance Evaluation

An experimental evaluation was conducted in order to analyze the lazy nature of the
proposed learning method. In the learning approach, a similarity metric between clinical
CTs is calculated by using all previously recorded CTs as training examples. Since the
problem-solving ability of the proposed method is increased with each newly defined CT,
it is important to analyze the performance of the proposed learning method when faced
with CKBs with a great number of CTs.

7.3.1. Execution Platform of Performance Evaluation

The execution time analysis was performed on an Intel(R) Core(TM) i7-4700MQ CPU
@ 2.40 GHz, 16 GB RAM, and running 64-bit Windows 10 Pro.

7.3.2. Execution Time

The efficiency of the learning method was evaluated when faced with CKBs of different
sizes. To make a realistic evaluation, the 250 CTs registered by students were considered as
input data, and the average time of 50 executions was measured for each CKB analyzed.

Figure 4 presents the average execution time of the proposed method when using
different CKB sizes. The algorithm was executed on CKBs containing from 25 to 250 CTs.

Figure 4 shows how the size of a CKB has a direct influence on the execution time of
the proposed method. Results also demonstrate that the proposed learning method is able
to process 250 CTs in less than 90 milliseconds.
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Figure 4. Average execution time of the proposed learning method regarding different CKB sizes.

7.3.3. Execution Time Projection

In order to estimate the efficiency of the learning method when facing larger CKBs,
auxiliary CTs were generated based on the information recorded by the students. Although
the auxiliary CTs were artificially built and do not reflect real clinical scenarios, they can
be used to evaluate the performance of the learning method as they have the same data
dimension as the CTs written by the students. The graphic in Figure 5 reports the average
time of the proposed method regarding CKB sizes.

Figure 5. Average execution time of the proposed learning method when facing larger CKBs.

Figure 5 shows that the learning method generated suggestions in less than 1.25 s,
even when facing larger CKBs with a great number of CTs. Given that 3000 represents a
suitable bound for the number of CTs included in a physician CKB, the proposed method
is able to produce suggestions in reasonable execution times, even when processing real
CKBs with several workday scenarios.

7.3.4. Comparison with a Bayesian Learning Approach

To further analyze the applicability of the proposed approach, this subsection presents
a comparison of the proposed instance-based learning method with a Bayesian learning
method, which is based on a classical algorithm described by Mitchell [16] for classifying
text documents.

The implemented Bayesian learning method works under the assumption that the
occurrence probability of a word is independent of its position within a document. During
the learning task, all medical records are examined as training examples, aiming at extract-
ing the vocabulary of all words appearing in patient histories. After that, the frequency of
each word is computed on all case types, to obtain the probability estimates of the Bayesian
approach. Finally, to classify a new draft of the register editor, the probability estimates are
used to determine the most likely case type to be applied.
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Figure 6 reports the average execution time of both the Bayesian method and the
instance-based method, regarding different CKB sizes, when processing the testbed of
250 CTs registered by students.

The graphic in Figure 6 uses a logarithmic scale to highlight the difference of two
orders of magnitude between the execution times of both learning methods. The efficiency
results reveal that the Bayesian learning method is difficult to apply due to high execution
times, even when processing small volumes of data. Execution time results also reaffirm
the benefits of the instance-based learning method, which significantly outperforms the
Bayesian approach in terms of efficiency.

Figure 6. Average execution time comparison: instance-based learning vs. Bayesian learning method.

7.4. Testing the Applicability of the Instance-Based Learning Approach

In order to test the applicability of the proposed approach, a prototype was developed
and deployed on Google Compute Engine, the Infrastructure as a Service component of
the Google Cloud Platform. The prototype was evaluated by advanced medical students in
their last year of training at Universidad de la República, Uruguay.

7.4.1. Comparison with Praxis

Praxis reports the average time required to write a CT starting from an empty CKB [15].
In order to compare the proposed approach with the original implementation of Praxis, the
average time to write a CT using the prototype was measured. Figure 7 illustrates both
average writing times starting from an empty CKB, by considering the medical attendance
of the first 50 patients.

Figure 7. Average time of 50 medical students to write the notes of a case type (continuous line).
Average time according to Praxis reports (dotted line). Both evaluations start with an empty CKB.
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Although Praxis presents shorter registering times for the first two medical consulta-
tions, more than 50 evaluations are needed to achieve a convergence point. The proposed
approach significantly reduces registration times from the third case registered onwards,
converging quickly to less than three minutes of writing consultations. The proposed learn-
ing method demanded 210 min to register 50 consultations (i.e., 4.2 min per consultation),
while using Praxis requires 519 min (10.4 min per consultation). The overall time reduction
factor is 2.5×.

7.4.2. Improvement Using a Pre-Loaded CBK

The time needed to register a medical consultation can be reduced by using previously
registered information. The average time to record a CT was measured in a context in
which medical students could use a pre-loaded CKB. Figure 8 shows the average time to
write a CT taking advantage of a pre-loaded CKB containing typical workday scenarios.
As a relevant result, the use of a pre-loaded CKB implied a reduction of up to five minutes
for recording the notes of the first six medical consultations. Furthermore, a pre-loaded
CKB also accelerated the convergence to three minutes of writing consultations.

Figure 8. Average time of 50 medical students starting with an empty CKB (continuous line). Average
time of 50 medical students taking advantage of a pre-loaded CKB (dotted line).

Regarding the scalability of the incremental processing of new case types, results
suggest a convergence towards a short writing time for medical consultations, even when
processing large volumes of data.

7.4.3. Survey about the Proposed Approach

More than 50 medical students from different editions of the Medical Informatics
course were surveyed after using the prototype of the proposed approach. The advanced
medical students have tested the prototype during course editions from 2016 to 2020.
Figure 9 summarizes the best features identified by students.

Results show that 43% of the surveyed students mentioned that the learning curve
was steep before they could benefit from the proposed learning method. As a relevant
result, more than 73% of the students considered the prototype as an appropriate tool for
medical practice, especially at medical consultations. Moreover, 62% of the students were
able to speed up writing time during medical consultations.
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Figure 9. Best features of the proposed approach, according to the survey performed on students.

7.5. Interoperability of Health Information

Health terminological standards were taken into account due to the relevance of the
interoperability of information in the Medical Informatics area. In particular, the national
drug dictionary of Uruguay and a terminology server provided by the Hospital Italiano de
Buenos Aires (HIBA) were integrated into the proposed approach.

7.5.1. Integrating the National Drug Dictionary of Uruguay

A National Drug Dictionary (DNMA) is defined by Salud.uy in order to standardize
the information and vocabulary for clinical and logistical use applied to pharmaceutical
and related products. DNMA acts as a standard of drug reference terminology for the
network of healthcare service providers in Uruguay. Access permissions were requested
from the DNMA in order to import the national dictionary of medicines into the proposed
approach. Importing the national drug dictionary helped build a functional model, in
which physicians can make pharmacological indications using a wide range of drugs.

7.5.2. Using the Terminology Server of Hospital Italiano de Buenos Aires

A terminology server allows linking the free text entered by a physician in a medical
record to different health classifications, such as ICD9-CM, ICD10, or LOINC [4]. The use
of a terminology server allows clinical information to be recorded in a structured form,
using clinical terminology standards. Terminology standards enable interoperability of
clinical information, and also allow information to be re-used for other purposes, such as
clinical decision support, data analysis, and research.

The proposed system is able to use the terminology server supported by HIBA. The
terminology server publishes its terminological terms grouped in different domains. This
work has been successful in using terminology services for the domains that cover: reasons
for consultation, diagnoses, procedures, and studies, which are required for the Uruguayan
medical records model.

8. Discussion

The experimental evaluation of the proposed instance-based learning method focused
on the practical aspect of the research. Thus, the evaluation was performed on a real
use scenario, where the proposed approach demonstrated advantages over the original
implementation of Praxis. Additionally, results were better in terms of writing times when
using a pre-loaded CKB, containing typical workday clinical scenarios. Regarding the
usability of the proposed system, a survey performed on a group of advanced medical
students showed a high rate of approval. The implemented prototype was highlighted as
an appropriate tool for medical practice and useful at medical consultations. Furthermore,
and despite the lazy nature of the proposed method, the results showed that the learning
approach was able to produce suggestions in reasonable execution times, even when
dealing with large volumes of data.

Specific strategies can be applied to reduce uncertainties, including using expert
knowledge to design and generate useful realistic instances for learning, and expanding
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the similarity metrics considered for the comparison of clinical information. In this regard,
a recommendation for the practical aspect of the research is gathering and organizing
as much information as possible about clinical practice in a systematic way, in order to
help the automatic system to expand its base of knowledge to generate more accurate
suggestions. In turn, a physician should be properly trained to register all the relevant data
for the proposed learning-based system, without omitting any important information.

In this context, the main research lines for future work are related to evaluate the
proposed system in a professional work environment of healthcare attention, with the aim
of improving the accuracy of the learning method based on professional feedback. Thus, a
future work line includes studying the proposed approach with the help of professional
physicians. Another possibility for future work is related to enhance the accuracy of the
learning method by improving the comparison between units of thought (clinical phrases).
The weights of the clinical sections of case types used in the experimental analysis were
defined simply, according to qualitative ranges of medical relevance. Consequently, a
future work is to enhance the results by considering more accurate weights of medical
relevance.

9. Conclusions

This work presented a novel approach to represent clinical knowledge, which sup-
ports an appropriate methodology for recording medical consultations. An instance-based
learning method was also proposed, aiming at providing pertinent suggestions for physi-
cians. Different scenarios of medical consultations were modeled to address the diversity
of situations of physician workday, including multiple diagnoses and the attention of
chronic patient. The proposed formal structure was also designed to use standard health
terminology and codification. The approach was validated on a real case study involving
250 real instances constructed by advanced medical students. The proposed instance-based
learning method was able to generate suggestions in reasonable execution times, even
faced with large volumes of data. A total of 62% of the participants reduced the writing
time of their medical consultations, which demonstrated that the approach was useful to
accelerate the clinical registration process. Furthermore, results indicated it was appropri-
ate to follow physician reasoning, especially during medical consultations. More than 73%
of the participants approved a prototype following the proposed approach for assistance
during consultations.

The proposed clinical representation supported by the learning method contributed
to generate medical records faster than when using mainstream EMR systems. Overall,
the proposed approach is a first step to explore new ways to foster physician thinking,
overcoming difficulties of template-based clinical systems that are not designed from the
medical point of view.
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