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Abstract: The visualization of misfolded Aβ peptides by using fluorescence chemical dyes is very
important in Alzheimer’s disease (AD) diagnosis. Here, we describe the fluorescent substance,
fucoxanthin, which detects Aβ aggregates in the brain of AD transgenic mouse models. We found
that fucoxanthin from the microalgae Phaeodactylum tricornutum has fluorescent excitation and
emission wavelengths without any interference for Aβ interaction. Thus, we applied it to monitor Aβ

aggregation in AD transgenic mouse models. Aβ plaques were visualized using fucoxanthin in the
brain tissue of APP/PS1 and 5×FAD mice by histological staining with different staining methods.
By comparing fucoxanthin-positive and thioflavin S-positive stained regions in the brains, we found
that they are colocalized and that fucoxanthin can detect Aβ aggregates. Our finding suggests that
fucoxanthin from P. tricornutum can be a new Aβ fluorescent imaging reagent in AD diagnosis.
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1. Introduction

Alzheimer’s disease (AD), the most common type of dementia, is characterized by the
accumulation of abnormally folded amyloid-β (Aβ) proteins in the brain. Aβ monomers
are produced from amyloid precursor protein (APP) via β- and γ-secretase activity [1].
Next, they begin to aggregate into oligomers, fibrils, and plaques. These misfolded Aβ

proteins can cause neuronal degeneration in regions of the brain associated with memory
and cognitive functions, eventually leading to symptomatic onset in patients with AD [1,2].
Therefore, confirming the presence of Aβ aggregation has become an important hallmark
for AD diagnosis.

Several histological dyes are used for Aβ detection in postmortem brain sections.
Thioflavin S (ThS) specifically binds to the β-sheet rich structure of Aβ aggregates, leading
to increased fluorescence intensity of its emission spectrum, which enables the visualization
of aggregated Aβ via fluorescence microscopy [3,4]. However, ThS detects other β-sheet
rich protein complexes, including tau [5,6]; therefore, new dyes that specifically validate Aβ

aggregate detection are required. Aβ-specific antibodies, such as 6E10 and A11, are used to
visualize Aβ aggregates via immunohistochemistry; however, these require expensive and
time-consuming methods. New histological staining dyes that use natural substances that
easily label and visualize Aβ aggregates should be studied because they are cost effective
and require a simple process.
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Fucoxanthin is a carotenoid extracted from the microalgae Phaeodactylum tricornu-
tum [7]. It reduces inflammation, decreases oxidative stress, and has an antiobesity effect,
demonstrating its safety for use in animals and humans [8–11]. Moreover, fucoxanthin
reduces Aβ-induced oxidative stress and proinflammatory cytokines in microglial cells and
hippocampal neurons [12,13], inhibits Aβ aggregation, and alleviates cognitive impairment
in vivo [14]. Additionally, the fluorescence spectrum of fucoxanthin has absorption bands
at 448, 476, and 505 nm and emission bands at 630, 685, and 750 nm [15]. Therefore, we
hypothesized that fucoxanthin will directly interact with Aβ aggregates and be a suitable
fluorescent dye to detect Aβ accumulation in the brain.

Here, we report that fucoxanthin extracted from P. tricornutum can be used as a fluo-
rescent dye targeting Aβ aggregates in different AD transgenic mouse models. Histological
analysis was performed on the fixed mouse brain tissue of APP/PS1 and 5×FAD mice,
which exhibit remarkable Aβ production and eventually excessive accumulation of Aβ

in the brain. Brain tissue from aged mice was stained with different concentrations of
fucoxanthin using two types of washing solutions. Fucoxanthin colocalized with ThS
regardless of the type of washing solution, which demonstrated that it can detect Aβ via
fluorescent visualization. This can verify the detection of Aβ with ThS.

2. Materials and Methods
2.1. Animals

Two types of transgenic mouse carrying mutations associated with AD, APP/PS1 (B6;
C3-Tg(APPswe,PSEN1dE9) and 5×FAD (B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V))
were used in this study. Both breeds were obtained from the Jackson Laboratory (Bar
Harbor, ME, USA). Mice genotypes were confirmed via PCR analysis from tail biopsies
following the protocols from Jackson Laboratory (Protocol no. 23370, 004462, 31769). All
mice were housed in a laboratory animal breeding room at Dongguk University and
maintained under a controlled temperature with 12–12 h light-dark phase. Food and water
were available ad libitum. Brain tissue was collected from APP/PS1 and 5×FAD mice
that were older than 6 months of age. All animal experiments were approved by the
Institutional Animal Care and Use Committee at Dongguk University and performed in
accordance with the regulation of institutional guidelines.

2.2. Preparation of Fucoxanthin from P. tricornutum

Fucoxanthin from P. tricornutum was prepared as described previously [10,16]. Freeze-
dried P. tricornutum was supplied from Algaetech (Gangneung, Korea), and ethanol
was purchased Daejung (Korea) for fucoxanthin extraction. Briefly, 100 g freeze-dried
P. tricornutum (100 g) was sonicated with ethanol (1 L) at room temperature for 2 h. Solids
were removed using Whatman No.1 filter paper (Thermo Fisher Scientific, New Zealand).
Fucoxanthin was obtained by using a rotary evaporator at 35 ◦C.

2.3. Measurements of Fucoxanthin Fluorescent Properties

To obtain the excitation point, fucoxanthin stock in DMSO (40 mM) was diluted to
2 mM, 1 mM, 500 µM, and 250 µM. From each solution, 150 µL was loaded into a 96-well
clear bottom plate (Nunc, Denmark), and absorbance was recorded at 2 nm increments from
230 nm to 850 nm. The peak through absorbance scan was specified as a possible excitation
wavelength. Next, 150 µL of each solution was transferred to a 96-well black-bottom
plate (Costar, WA, USA) to acquire an emission wavelength. By applying the excitation
wavelength for fucoxanthin, the emission scans were measured in 2 nm increments up to
850 nm from the maximum absorption scan added 20 nm. The narrowest peak displayed
through emission scans was determined as its emission point. Using the excitation and
emission point, as obtained above, the fluorescence intensities of fucoxanthin when mixed
with Aβ were scanned to monitor whether fucoxanthin shows a fluorescence shift in the
presence of Aβ monomers or aggregates. Aβ (1–40) peptides in this study were synthesized
by Fmoc solid phase peptide synthesis (SPPS) protocols as previously reported [17]. Aβ
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monomers (20 µM) were prepared by diluting Aβ stock (10 mM) in DMSO stored at −80 ◦C.
By incubating the same Aβ (20 µM) at 37 ◦C for 6 days, Aβ aggregates were also prepared.
Fucoxanthin was diluted to the same concentration as above (2 mM, 1 mM, 500 µM, and
250 µM). Then, 25 µL of either Aβ monomers or Aβ aggregates (20 µM) and 75 µL of
each fucoxanthin solutions were mixed in a 96-well black-bottom plate. The fluorescence
spectrum of fucoxanthin in the presence or absence of Aβ was recorded at 2 nm increments
at varying spectra range. Every fluorescent spectral scan was done under the microplate
reader (Infinite 200 PRO, Tecan).

2.4. Histological Staining with Fucoxanthin and ThS

Extracted brain tissue was fixed in 4% paraformaldehyde (pH 7.4) and immersed
in 30% sucrose for cryoprotection. The fixed brain samples were cut into 30 µm thick
slices with a Cryostat Microtome (CM1860, Leica). For tissue staining, fucoxanthin stock in
DMSO (40 mM) was diluted to 2 mM, 1 mM, 500 µM, and 250 µM in PBS and incubated on
the sections for 1 h at room temperature. Next, sections were consecutively rinsed with
100, 90, and 50% ethanol and then PBS (organic solvent-based washing method), or three
times with PBS only (water-based washing method). In addition, 500 µM of ThS (Sigma,
St. Louis, MO, USA) dissolved in 50% ethanol was added to the same slides for 7 min at
room temperature and then rinsed with 100, 90, and 50% ethanol and PBS successively
(Figure 1).
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Figure 1. The histological staining process for fucoxanthin (Fx) in transgenic AD mice brain tissue.
Different washing solutions, water- or organic solvent-based, were applied in the staining process.
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3. Results
3.1. Fucoxanthin Has Fluorescent Properties Regardless of the Presence or Absence of Aβ
Monomers or Aggregates

To specify the fluorescent spectrum of fucoxanthin extracted from microalgae P. tricor-
nutum, we performed a fluorescent spectral scan of fucoxanthin at various concentrations
(2 mM, 1 mM, 500 µM, and 250 µM). First, the absorbance scans were conducted to decide
the excitation wavelength of fucoxanthin. Due to the high concentration, the absorbance
exceeded the measurable range at 2 mM, but the absorbance decreased in a concentration-
dependent manner at the concentrations of 1 mM, 500 µM, and 250 µM, and had maximum
values at 430, 442, and 444 nm, respectively (Figure 2a).
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Figure 2. The fluorescent properties of fucoxanthin. Excitation and emission wavelengths of fucoxanthin at various
concentrations were determined through absorbance (a) and emission scan (b); excitation, 444 nm; emission, 686 nm.
Fluorescent spectra of each fucoxanthin solution with Aβ40 monomers or aggregates in a 3:1 ratio were recorded with
excitation and emission wavelengths as above (c–f). A.U. = arbitrary unit.
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Then, the emission scans of each fucoxanthin solution were measured using the ex-
citation wavelength (444 nm) determined through an absorbance scan. In the emission
spectrum, the fluorescence intensities of fucoxanthin reduced with decreasing concentra-
tion, and it had the narrowest peak at the same wavelength of 686 nm (Figure 2b). These
results show that the fucoxanthin used in this study has fluorescent spectrum with an
excitation point of 430–440 nm and an emission point of 686 nm, and thus can be monitored
using a fluorescence microscope laser corresponding to the range.

It has been previously reported that fucoxanthin directly binds to Aβ peptide through
hydrophobic interaction [14]. We conducted additional experiments to determine whether a
fluorescence shift occurs when fucoxanthin binds to Aβ in brain tissue. Four concentrations
of fucoxanthin, 2 mM, 1 mM, 500 µM, and 250 µM, were added to Aβ monomers (20 µM,
0-day incubation) or aggregates (20 µM, 6-day incubation) respectively. The emission scans
of each mixed solution were measured by applying the wavelength as above. Consequently,
fucoxanthin in the presence of Aβ monomers or aggregates showed a decrease when
compared to the native fluorescence intensity of fucoxanthin itself (Figure 2c–f). However,
it was observed that fucoxanthin has sufficient fluorescence intensity without losing its
fluorescence properties, indicating that fucoxanthin could be applied as a fluorescence
probe targeting Aβ.

3.2. Fucoxanthin Detected Amyloid Aggregates in AD Transgenic Mouse Models Using a
Water-Based Washing Method

The popularly used AD transgenic mouse models, APP/PS1 and 5×FAD, possess
mutations in APP and presenilin (PSEN1) genes, which are known to be associated with Aβ

production. Thus, these mouse models show rapidly increased Aβ production and result in
extensive plaque deposition and behavioral deficits [18]. As APP/PS1 and 5×FAD mouse
models were originally generated only for the development of Aβ deposits, ThS single
staining for Aβ plaque detection is widely used [19,20]. However, in the 5×FAD mouse
model, it was found that ThS-positive tau aggregates make difficult the quantification of
amyloid plaque. This suggests the necessity to develop new fluorescent dyes to support
verification of Aβ plaque detection.

To investigate whether fucoxanthin can detect Aβ aggregates, we examined the
histological staining in brain tissue from APP/PS1 and 5×FAD mice, with water- or organic
solvent-based washing solutions during staining. We applied different concentrations
of fucoxanthin in the brain for optimization during the staining process. Interaction
between fucoxanthin and Aβ aggregates can be monitored by the comparison of ThS- and
fucoxanthin-stained regions in the brains. As a result, we observed that 2 mM, 1 mM,
500 µM, and 250 µM of fucoxanthin was colocalized with ThS-positive staining in the
hippocampus and cortex of both APP/PS1 and 5×FAD AD brain tissue when a water-
based (PBS) washing solution was applied (Figures 3 and 4). Meanwhile, we confirmed
that neither ThS nor fucoxanthin detected anything in wild-type mice (WT), where the
AD phenotype is not observed (Figure S1 in the supplementary material). Our results
indicate that fucoxanthin can detect Aβ aggregates in both APP/PS1 and 5×FAD mice
with amyloid pathology, suggesting that fucoxanthin has an amyloid plaque specificity
while excluding the possibility for ThS-positive tau aggregates observed in 5×FAD.

3.3. Fucoxanthin Staining Using an Organic Solvent-Based Washing Detected ThS-Stained
Amyloid Aggregates in AD Transgenic Mouse

For reducing the nonspecific signal present in the brain sections during staining, the
selection of washing buffer to eliminate fluorescent probes with lower binding affinity is
an important consideration. Basically, the most frequently used buffer without destruction
of cellular structure is phosphate-buffered saline (PBS). In this study, fucoxanthin from
microalgae was extracted using ethanol, so this should take into account for the selection
of buffer in the washing step. Thus, the Aβ staining ability of fucoxanthin needs to be
evaluated by confirming its colocalization with ThS staining when using organic solvent-
based washing solution in the fixed brain sections of AD transgenic mouse models. Similar
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to the water-based washing solution application, Aβ plaques in APP/PS1 and 5×FAD
brain tissues were stained with different concentrations of fucoxanthin (2 mM, 1 mM,
500 µM, and 250 µM) when an organic solvent-based (ethanol) washing solution was
applied. These were colocalized with ThS staining (Figures 5 and 6). Taken together, these
results suggest that fucoxanthin is a promising fluorescent imaging dye that can specifically
detect amyloid aggregates in the AD transgenic mouse models regardless of the washing
solution method.
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tissue. The brains of 10–15-month-old APP/PS1 mice (n = 4) were visualized for Aβ plaques with fucoxanthin (Fx) and ThS.
The images of ThS and Fx are merged to confirm that they are colocalized. Scale bars = 200 µm. The region of brain was
separated with the white dash line on the images; upper region of dash line, cortex; under region of dash line, hippocampus.
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tissue. The brains of 10–15-month-old 5×FAD mice (n = 4) were visualized for Aβ plaques with fucoxanthin (Fx) and ThS.
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brain tissue. The brains of 10–15-month-old APP/PS1 mice (n = 4) were visualized for Aβ plaques with fucoxanthin (Fx)
and ThS. The images of ThS and Fx are merged to confirm that they are colocalized. Scale bars = 200 µm. The region
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line, hippocampus.
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Figure 6. Fucoxanthin staining using organic solvent-based washing method detected ThS-positive Aβ plaques in 5×FAD
brain tissue. The brains of 10–15-month-old 5×FAD mice (n = 4) were visualized for Aβ plaques with fucoxanthin (Fx) and
ThS. The images of ThS and Fx are merged to confirm that they are colocalized. Scale bars = 200 µm. The region of brain was
separated with the white dash line on the images; upper region of dash line, cortex; under region of dash line, hippocampus.

4. Discussion

Here, we report that fucoxanthin, extracted from the microalgae P. tricornutum, has a
fluorescent spectrum with excitation and emission wavelengths (excitation: 430–440 nm,
emission: 686 nm) regardless of the presence or absence of Aβ monomers or aggregates.
When fucoxanthin was utilized as a fluorescent dye, it was colocalized with ThS-positive
amyloid protein aggregates in the fixed brain tissue of AD transgenic mouse models, and
different washing methods did not affect the histological staining of fucoxanthin.

Effective and accurate detection of Aβ, one of the pathological hallmarks of AD, is
very important in its diagnosis and prognosis [21]. It is characterized by the cohesion of
oligomers, fibrils, and plaques from monomers; therefore, specific detection substances
for Aβ aggregates are used in AD diagnosis. ThS is most used to detect Aβ aggregates;
however, recent studies have shown that ThS also detects tau protein aggregates in certain
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AD transgenic mouse brains, such as 5×FAD [6]. Therefore, additional reagents capable of
specific or supportable detection of Aβ aggregates is needed. The use of Aβ-specific
antibodies enables very specific detection of different Aβ forms, but it takes at least
16–24 h [22,23]. Furthermore, the need for additional fluorescent secondary antibodies and
chemicals significantly adds to the total cost for staining (Table 1).

Table 1. Comparison of fluorescent dyes for detecting Aβ in the brain section.

Features Thioflavin S Aβ-Specific Antibody
(6E10, A11, etc.) Fucoxanthin

Duration Less than 4 h ~16–24 h Less than 4 h

Additional chemicals Ethanol Fluorescent secondary antibodies,
horse serum, PBS Ethanol or PBS

Cost ~$5/1 g ~$200–300/one Aβ-specific antibody Need to estimate

Specificity Only fibrils containing β-sheet Depending on the Aβ form, different
specific antibodies are required Need to further study

Stability Stable in alcohol base solution
Depending on the secondary

antibody conjugated with
fluorescent dye

Stable in water base solution

Care after staining Light sensitive Light and temperature sensitive Light sensitive

Fucoxanthin is a carotenoid produced by plants and algae, including P. tricornutum,
and it is already known to have beneficial biological properties such as anticancer, anti-
inflammatory, and antiobesity physiological activities [10,12,16,24]. Recently, fucoxanthin
has been reported to interact through binding to the amyloid protein, suggesting an asso-
ciation with AD [14]; therefore, the detection of Aβ aggregates via fucoxanthin could be
presented as an additional imaging method that confirms Aβ detection via ThS staining.
Like ThS staining, fucoxanthin is an advantageous staining procedure because it takes less
than 4 h without additional chemicals. Furthermore, fucoxanthin can be mass-produced
and has the potential to be applied to living animals as it is a naturally derived carotenoid,
but ThS, which is a chemical material, is difficult to apply to clinical trials or AD pa-
tients since it is not proven yet. In contrast, we confirmed that fucoxanthin stained with
oligomeric tau in the brains of 5×FAD, not in the WT and APP/PS1 brains (Figures S2–S4).
Although fucoxanthin may not overcome all shortcomings of other dyes, it is expected that
it will help to further refine AD diagnosis by reducing false-positive misdiagnosis as much
as possible by at least supplementing the dyes.

A precise analysis of whether fucoxanthin interferes with other hallmarks of AD, such
as tau aggregation, is required. Additional studies should investigate whether fluorescence
imaging with fucoxanthin can be translated into diagnosis and prognosis in AD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11135878/s1, Figure S1: Histochemical analysis of the brains in wild-type (WT) mice
after staining with fucoxanthin (Fx) and thioflavin S (ThS), Figure S2: Histochemical analysis of the
brains in wild-type (WT) mice after staining with fucoxanthin (Fx) and anti-oligomeric tau antibody,
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