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Abstract: In this paper, a novel procedure for optimal design of geometrically nonlinear submerged
arches is proposed. It is based on the Coral Reefs Optimization with Substrate Layers algorithm, a
multi-method ensemble evolutionary approach for solving optimization problems. A novel arch
shape parameterization is combined with the Coral Reefs Optimization with Substrate Layers algo-
rithm. This new parameterization allows considering geometrical parameters in the design process,
in addition to the reduction of the bending moment carried out by the classical design approach.
The importance of considering the second-order behaviour of the arch structure is shown by dif-
ferent numerical experiments. Moreover, it is shown that the use of Coral Reefs Optimization with
Substrate Layers algorithm leads to nearly-optimal solutions, ensuring the stability of the structure,
reducing the maximum absolute bending moment value, and complying with the serviceability
structural restrictions.

Keywords: submerged arches; non-linear analysis; evolutionary algorithms; coral reefs optimiza-
tion algorithms

1. Introduction

Arches are structures that provide strength through their geometry. In particular,
funicular arches can span long distances without significant bending stresses [1]. However,
these stresses may be large when real design conditions are considered, such as irregulari-
ties of the arch shape, support configuration, and load conditions, which implies a high
effort in both design and construction, with a consequent increasing in costs [2].

The term submerged arch is used to denote an arch immersed in a fluid (usually
water). These arches are very important in a number of applications in marine and civil
structures [2] or aquarium tunnels. The design of these submerged structures has been
previously approached from the funicular point of view. However, the funicular shape
does not exist under certain design parameters [3].

The nonlinearity involved when the buckling is considered in the design of arches
has been also widely analyzed in the literature. In this context, it stands out especially
in [4], where the nonlinear buckling and post-buckling of elastic shallow arches via a
nonlinear curved finite element model is studied. Recently, the buckling phenomenon
has been studied for different scenarios, for example, with the aim of showing the elas-
tic and elasto-plastic flexural-torsional buckling and post-buckling analysis in combined
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bending and compression actions [5], the validity of approximations on analytical solu-
tions [6], the influence of non-homogeneous arches [7], or the effect of considering the
shear deformation [8].

The optimal design in the context of elasticity and structural systems usually leads to
very hard optimization problems [9–15], with extremely large search spaces and nonlinear
or black-boxes objective functions [12,16], which in many occasions come from computa-
tional simulations of the potential solutions. Thus, the use of meta-heuristic approaches is
completely justified in the particular case of submerged arches design, where traditional
optimization procedures do not provide results in all the cases, as pointed out above. In
addition, considering nonlinear effects in the problem leads to even harder optimization
problems in the structural design, as specific parameterization and adaptations in the
objective function must be carried out.

Different optimization techniques have been used in the optimal design of submerged
arches problem, such as the reduced gradient method, which was applied in a design
problem that aims to reduce the arch weight with respect to the axial force and different
geometrical arch parameters [17]. It was shown in [18] that many of the arch shapes
proposed in the literature may reach their critical buckling load for service conditions.
Thus, a buckling design of submerged arches was proposed by using a genetic algorithm.
The arch design may be approached as a multi-objective optimization problem [19]. The
optimization of the arch design by reducing the bending moment along the arch curve
and increasing the airspace of the arch is shown in [20]. For that purpose, an evolutionary
algorithm that uses artificial neural networks with extreme learning machine was used.

In this work, the optimization problem is approached by means of the Coral Reefs
Optimization with Substrate Layers (CRO-SL) method [21]. The CRO-SL is a multi-method
ensemble [22,23] based on evolutionary computation, where different search procedures are
applied within a single population of solutions to the problem. The CRO-SL evolves then
possible solutions to a given optimization problem by applying different search operators,
depending on the location of the solutions within the population. This procedure results in
a very effective approach to solve hard optimization problems [24–27].

The optimal design of arch shapes by using the CRO-SL has been previously carried
out in [28], obtaining excellent results for different case studies. However, a complete
linear analysis was considered in that work, thus missing important nonlinear phenomena
which may condition the optimal arch shape. In this paper, the problem of optimal design
of submerged arches considering nonlinear effects is studied. Specifically, the design
cases in [18] (where a parametric shape function is formulated using two conical shapes
involved in the funicular design of submerged arches) have been extended to the context
of the geometrical nonlinear analysis, through the use of a nonlinear finite element model.
Thus, the optimal shape of the arch can be obtained by an iterative strategy [10], based on
minimizing a functional by means of an optimization algorithm or strategy. In this work,
the previous procedure is extended to the simultaneous inclusion of design criteria such as
bending moment, vertical deflection, or the amount of area inside the arch curve, checking
the structural stability for all the scenarios considered.

In this work, a set of search operators are defined, which mix well-known traditional
operators, such as two-point crossover or Differential evolution, with other operators based
on nonlinear processes [29], such as Firefly or Water Wave optimization. The proposed
novel design procedure is integrated with CRO-SL in order to find the optimum arch
geometry in terms of minimum bending moment and maximum airspace in the submerged
arch subjected to maximum deflection and bucking restrictions. Two submerged arches de-
signs are addressed, in order to illustrate the good performance of the proposed procedure
optimized by CRO-SL.

The rest of this article is structured as follows. Section 2 introduces the problem of
nonlinear submerged arches optimization and design. Section 3 presents the CRO-SL
algorithm, its most important characteristics, and a description of the search procedures
implemented in the algorithm. Section 4 presents some simulation results on the optimiza-
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tion of nonlinear submerged arches with the CRO-SL algorithm. Finally, Section 5 outlines
some conclusions, remarks on the research carried out, and some future lines to continue
this work.

2. Problem Statement: Nonlinear Submerged Arches Design

The objective of this section is to explain how geometrical nonlinear analysis is in-
cluded in the optimal arch design methodology, used afterwards for encoding arches in the
CRO-SL algorithm. This section starts with funicular equilibrium of submerged arches. The
buckling phenomenon, as a particular case of the structural stability in submerged arches,
is then explained. The adopted shape parameterization used in the geometrical optimal
design is also presented. Finally, the geometrical nonlinear analysis and the optimal design
methodology are detailed.

2.1. Funicular Equilibrium of Submerged Arches

The funicular equilibrium of a submerged arch is governed by the following set of
differential equations in Cartesian coordinates (x, y) [1]:

dN
dx

=
Nγs

σadm

dy
dx

,

d2y
dx2 = −

γh(Dp − y)
N

+
γs

σadm

(
1 +

(
dy
dx

)2
)−1/2

(1 +
(

dy
dx

)2
)3/2

,

dy
dx
|x = 0; y(0) = H; N(0) = σadmh,

(1)

where Dp is the depth (i.e., the distance from the water surface to the supporting line, see
Figure 1); N is the axial internal compression force; σadm is the compression stress in the arch
cross section under a fully stressed condition; h is the arch thickness at the apex; and, finally,
γh and γs are the unit weights of the water and the arch’s material, respectively. Solutions to
Equation (1) may be obtained by numerical integration until x = B (see Figure 1), at which
y(x) = 0.
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Figure 1. Geometry of a submerged arch.
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The funicular arch shape can be represented in Cartesian coordinates, simplifying
the traditional geometric expressions based on the arch length and the angle of the tan-
gent [30]. From these analytical expressions, the maximum span and height of the funicular
submerged arch, as well as the minimum compression force (and therefore, the minimum
amount of airspace), can be determined. The hydrostatic pressure and self-weight load
were considered in [31] to show the influence of the self-weight in the funicular shape,
resulting in a sufficiently accurate solution for practical applications.

2.2. Structural Stability: Buckling Analysis of Submerged Arches

Structural stability represents a type of structural analysis which explores the be-
haviour of the structures subjected to compression loads. In essence, an equilibrium state
achieved under compression load is considered unstable when the original equilibrium
state is not achieved after removing the compression load.

In case of plastic behaviour, equilibrium state is assumed to be stable, if a structure
even tends to return to the initial equilibrium state [32]. Nevertheless, elastic members
subjected to static loads are only considered in this work.

The minimum force at which the structure no longer returns to the initial state, if
all disturbing factors are removed, is the so-called critical force. If we note as N the
internal axial force due to an external load, then the linear buckling load factor (αcrit) can
be expressed as

αcrit =
Ncrit

N
(2)

in which Ncrit is the critical axial force. Then, for αcrit < 1, the buckling phenomenon
occurs in the arch structure, while for αcrit > 1, the stability is guaranteed, as the axial force
along the structure is lower than the critical axial force. As a general rule, a loss of stability
produces a change in the initial form of equilibrium or buckling, that usually leads to the
structural collapse.

The critical load of the arches may be determined in an analytical way only in the
simplest cases, such as uniform circular arches subjected to uniform pressure normal to the
axis. Thus, Timoshenko [33] only provided analytical solution of the buckling problem for
circular two-hinged arches subjected to a uniform distributed radial pressure. Approximate
methods of solving stability problems for arches consist of approximating the arch by a
framed structure, and proceeding with analysis by the displacements method (also called
the eigenvalue buckling test [34]).

The importance of considering the nonlinear effects in the submerged arch structure
has been shown in [18]. Particularly, the arches corresponding to shallow waters usually
present linear buckling factors lower than 1.0, thus becoming unstable under design
loads. This leads to modify the slenderness of the arch (i.e., augmenting its thickness),
which implies large volume and, consequently, large spans due to self-weight effect in the
funicular equilibrium.

This last problem may be approached in an alternative way through a shape parame-
terization of the submerged arch. This strategy allows searching the optimal shape and,
simultaneously, controlling its second-order behaviour during the optimization process, as
explained below.

2.3. Alternative Approach: Shape Parameterization

In the case of a nonuniform arch of arbitrary shape, it becomes impossible to present
the buckling solution in analytical form [32]. For these cases, the solution may be obtained
using only approximate procedures, such as the variational methods. In the case of arches
in shallow waters, the solution of differential equation of stability may be obtained in
closed form, as previously indicated in the first epigraph of this Section. Many important
solutions related to stability of arches have been obtained by Dinnik [35] or Tadjbakhsh [1].
Likewise, buckling of funicular arches under gravity loading and overburden (the so-called
Inglis problem [36,37]) has been solved numerically by several authors [1,38], under different
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support conditions, reaching in all the cases a good adjustment. The buckling loads were
calculated for an arch with a relatively high slenderness greater than 100. Moreover, an
approximated solution to the buckling load has been also developed for the hinged support
problem [39].

On the other hand, the optimal design of the submerged arches in terms of their second-
order response may be approached using a parameterization of the arch’s centerline. In
this sense, note that, in practice, the submerged arches are not strictly funicular due to
aspects like geometric imperfections, or design load variations (e.g., tidal variation), among
other reasons [31]. For these cases, bending moments cannot be completely eliminated, but
they can be reduced resulting in a well-dimensioned arch with a negligible bending stress.
In this sense, alternative design procedures, based on the arch shape optimization using
parametric functions [40], are feasible. This is the strategy adopted in this work.

The solution of Equation (1) without considering self-weight load lays halfway
between parabolic and elliptical types for intermediate values of ratios Dp/H and/or
H/B [41]. A geometrical parameterization over these two conical forms is proposed in [20].
Thus, the equations of the parabola and the ellipse intersecting at the apex and the support
of the arch (see Figure 2), and having the same pole, may be expressed, respectively, as

rp(θ, B, H, H′) =

B2sec2(θ)

[√
4cos2(θ)

[
1+ H−H′

H′
]

B2 + sin2(θ)
H′2 −

sin(θ)
H′

]
2
[
1 + H−H′

H′

] , (3)

re(θ, B′, H′) =
1√

cos2(θ)
B′2 + sin2(θ)

H′2

, (4)

where r and θ are the radial coordinate and the angular coordinate, respectively, and H′ and
B′ are the lengths of the semi-minor axis and the semi-major axis of the ellipse, respectively.
From the above considerations, the funicular solution is easily approximated using a linear
combination of the two conic types:

rpe(θ, B, H, H′, ta) = (1− ta) · rp
(
θ, B, H, H′

)
+ ta · re

(
θ, B′, H′

)
(5)

where ta ∈ [0, 1] and rpe is the radial coordinate of the intermediate curve corresponding
to the parameter ta and the angular coordinate θ. Equation (5) represents a parametric
family of curves between parabolic (ta = 0) and elliptical (ta = 1) forms, where the shape
parameterization is posed as a function of four parameters: ta, H′, B and B′. However, only
three of them are independent, as the arch support is assumed to be contained in the ellipse
defined in Equation (4), and in this case, H′ and B′ must verify

B′ =
B√

1−
[

H−H′
H′

]2
(6)
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Figure 2. Schematic example of the parametric curve family.

2.4. Geometrical Nonlinear Analysis and Optimal Design

In practice, the arch bending moment cannot be completely suppressed. Therefore, the
real buckling factors (αcrit) may be lower than the ones obtained by the eigenvalue method.

A more accurate stability analysis may be performed taking into account the geo-
metrically nonlinear behaviour of the submerged arch. For this purpose, the updated
Lagrangian formulation [42–44] may be applied, at which all variables are referred to the
current (or updated) configuration of the arch. In this context, the equilibrium of the arch
may be expressed through the principle of virtual displacements in the following terms:∫

V(t)
S(t + ∆t) : δε(t + ∆t)dV(t) = R(t + ∆t) (7)

where S is the 2nd Piola–Kirchhoff stress tensor and ε is the Green–Lagrange strain tensor
from the configuration at time t to the configuration at time t + δt and referred to the
configuration at time t, and R is the external virtual work. Equation (7) is a nonlinear
one in the unknown incremental displacements. Nevertheless, higher-order terms may
be neglected and the previous weak form may be linearized through the corresponding
incremental decomposition of stresses and strains. Moreover, the resulting linearized
expression of Equation (7) may be solved using the iso-parametric finite element method,
where the coordinates of the nodal points and the corresponding nodal displacements are
interpolated in order to evaluate the displacement derivatives, required in the integrals of
the equilibrium equation. Thus, the linearized expression of Equation (7) may be written
in terms of finite element matrices as [43]

t
tKU = F(t + ∆t)−t

t Fr

with
t
tK =

∫
V(t)
[t

tB
T
L C(t)t

tBL +
t
t BT

NLT(t)t
tBNL

]
dV(t)

t
tFr =

∫
V(t)

t
tB

T
L T(t)dV(t)

(8)

where t
tBL and t

tBNL are the incremental linear and nonlinear strain–displacement transfor-
mation matrices, respectively, which are obtained from the finite element evaluation of the
linearized form of Equation (7). t

tK is the incremental tangent stiffness matrix (or Jacobian
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matrix), F is the vector of external nodal loads at time t + ∆t and t
tFr is the vector of nodal

point forces equivalent to the current element stresses (or the vector of restoring forces) at
time t. U is the vector of increments in nodal displacements, T is the Cauchy’s stress tensor
and C is the incremental material property matrix.

The linearization of the equilibrium equations may introduce errors which ultimately
result into solution instability. Due to this reason, an iterative strategy is necessary. To this
aim, the design load may be divided into a set of steps. At each load step the out-of-balance
load vector (i.e., the difference between the loads corresponding to the element stresses and
the applied loads) is evaluated in order to check the convergence criteria. If these criteria
are not satisfied, a new seed is evaluated and a new solution is obtained until the problem
converges. Consequently, obtaining the second-order load–displacement history of the
submerged arch it is a path-dependent problem at which loads must be applied through
several steps in order to get a high accuracy. In the context of the Modified Newton’s
method (where the stiffness relation is only evaluated at the start of the load step: this
method is implemented in the finite element software ANSYS [45]), the previous iterative
process may be formulated as [46]

t
tK∆Uk = F(t + ∆t)−t+∆t

t+∆t Fk−1
r

with

∆Uk(t + ∆t) = ∆Uk−1(t + ∆t) + ∑k
j=1 ∆Uj, k = 1, 2, 3, ...

U0(t + ∆t) = U(t)

(9)

where k is the number of iterations until verifying the convergence criteria.
As was pointed out in the first epigraph of this section, two types of loads have been

considered in this work: self-weight and hydrostatic pressure. The first has been introduced
using the gravitational acceleration, whereas the hydrostatic action over the submerged
arch has been introduced as a pressure load. In a large-deflection analysis, pressure loads
present a singular behaviour (with regard to other load types as accelerations or nodal
forces), as they change their original orientation during their application, acting always
normal to the deflected element surface and “following” the finite element as it undergoes
large rotations. In this case, the load step must be small enough, so that the external virtual
work can be approximated to sufficient accuracy using the load corresponding to the step t+
∆t and integrating over the last area calculated in the corresponding iteration [47]. This is
also the scheme implemented for geometrically nonlinear analysis in the software ANSYS.

A symmetric plane simply-supported arch has been modeled using the BEAM188
element, which is well suited for large displacements analysis [48]. As the discretization into
finite elements of each shape is performed by constant increments of the polar angle, the
finite element size varies depending on the values of the shape parameterization, oscillating
between 0.05 m and 0.3 m. An isotropic and linear elastic stress–strain relationship has been
considered as constitutive model for the submerged arch, where the material properties
have been characterized by the Young’s modulus and the Poisson’s ratio. Moreover, in
order to clarify the proposed methodology, the unfavorable effects of possible deviations in
the geometry of the structure and the position of loads, such imperfections, are neglected.

The weighted functional used in this work can be expressed as

f (Ms, As) = pm ·max |Ms|+ pa ·
1

As
(10)

in which (max |Ms|) is the maximum absolute bending moment value along the arch
structure, while As the area under the arch curve. This area has been also chosen as design
parameter since it is directly related to the serviceability of the underwater installation [20].

The parameters pm and pa are the bending moment and area weights, respectively,
such that pm + pa = 1. Thus, a dual objective can be achieved: minimization of the maxi-
mum bending moment (which determines the cross section of the arch ) and maximization
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of the area under the arch. One of the advantage of this formulation is the easy way to
implement different design criteria. The maximum deflection allowed has been chosen
to be

max dy < B/150 (11)

in which dy represents the deflection of the curved beam along the guideline of the arch.
The calculation process is represented in Figure 3. It starts with random parameter

values, which are contained in a specific range. These arch parameters are used to calculate
the area under the arch (As), the maximum absolute bending moment (max |Ms|), and
the maximum vertical deflection (max dy). The parameters (max |Ms|) and (max dy) are
calculated using ANSYS software. The arch parameters are changed by the CRO-SL in the
next interactions in order to minimize the functional defined into Equation (10). Thus, the
numerical model is updated with the new proposed geometrical parameters. In addition,
a penalty value is applied to the functional value when this iterative strategy does not
converge or max (dy) > B/150. Thus, the quality of each arch is evaluated through the
functional value, so the CRO-SL evolves the population towards high quality solutions, i.e.,
arches which minimize the objective functional value, given by Equation (10). The CRO-SL
algorithm and its substrates (search procedures) will be fully described in the next section.

Arches parameterization

Area calculation
(θ, B, H, H', t  ) = per p(1-t  )·r (θ, B, H, H') + t· er (θ, B',H')a a a

 Finite Element Model (FEM) in ANSYS

Maximum bending moment and vertical
deflection calculation in both linear and

non-linear analysis

CRO-SL: changes in the arch parameters

Does the solution
converge?

No Solution is discarded

Solution is saved

pr er
per Ellipse

Parabola

B

H

H'
Dp

x

y

Vertical deflection
condition ?

No Solution is discarded

Yes

Yes

Figure 3. Flow diagram for the functional calculation process.
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3. The CRO-SL: A Low-Level Ensemble Evolutionary Algorithm

The concept of ensemble in optimization refers to a combination of algorithms, search
strategies, or operators to better deal with optimization problems [23]. The basic idea is that
the ensemble strategy can obtain better results than any single strategy on its own in the
same problem. Following the work in [23], it is possible to classify optimization ensembles
attending to different characteristics of the technique, mainly the type of the constituent
elements and its implementation: when the ensemble technique combines different types
of search strategies, operators, algorithms, etc., it is classified as a low-level ensemble. On the
other hand, high-level ensembles refer to methods which try to select the best optimization
algorithm for a given problem.

The CRO-SL approach is a recently proposed low-level multi-method ensemble,
based on the previously defined Coral Reefs Optimization algorithm [49], a meta-heuristic
approach of the evolutionary-computation family. Specifically, in the CRO-SL different
search operators are jointly applied and self-adapted within the same population, by means
of defining a set of “substrates” in the CRO reef [21]. In this case, each substrate represents
the application of a different search operator in the same population.

The CRO-SL algorithm was proposed as an advanced version of a basic original
version of the CRO [49]. The CRO is an evolutionary-type algorithm in which the search
operators are based on the processes occurring in a coral reefs, including reproduction,
fight for space, or depredation, see in [50] for details on the algorithm. The CRO-SL, in
turn, was first introduced in [51], and further developed in [21]. The CRO-SL is a general
ensemble approach which promotes competitive co-evolution, where each substrate layer
represents different processes, in this case, different search operators. The CRO-SL has
been successfully applied to a large number of hard optimization problems in science and
engineering, including different problems related to structural design [24,25].

Substrate Layers Defined in the CRO-SL

Very different search strategies can be defined in the CRO-SL as part of the multi-
method approach. They are usually defined at the practitioner’s discretion. In previous
approaches, it has been shown that combinations of well-known traditional operators
with novel search techniques provide the best set of techniques (substrates) in the CRO-
SL. Some of the most used traditional operators in previous applications of the CRO-SL
are Harmony Search (HS), Differential Evolution (DE), classical two-points crossover
(2Px), classical multi-points crossover (MPx), and Gaussian-based mutation (GM). In
this paper, we combine these traditional search strategies with two new operators for
search and optimization, recently proposed: the Firefly algorithm (Fa) and the Water Wave
Optimization (WWo) approach. Previous simulations were developed considering each
substrate individually. All the functional values for both cases analyzed in the paper
were above the functional value obtained using a combination of all the substrates. Thus,
demonstrating a worst performance when they work independently than when working
assembled in the CRO-SL. We provide here a short definition of these substrates for the
CRO-SL ensemble.

1. HS: Mutation from the Harmony Search algorithm. Harmony Search [52] is a
population-based meta-heuristic that mimics the improvisation of a music orches-
tra while it is composing a melody. HS controls how new larvae are generated in
one of the following ways: (i) with a probability HMCR∈ [0, 1] (Harmony Memory
Considering Rate), the value of a component of the new larva is drawn uniformly
from the same values of the component in the other corals, and (ii) with a probability
PAR∈ [0, 1] (Pitch Adjusting Rate), subtle adjustments are applied to the values of
the current larva, replaced by any of its neighboring values (upper or lower, with
equal probability).

2. DE: Mutation from Differential Evolution algorithm (with F = 0.6). This operator is
based on the evolutionary algorithm with the same name [53], a method with power-
ful global search capabilities. DE introduces a differential mechanism for exploring
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the search space. Therefore, new larvae are generated by perturbing the population
members using vector differences of individuals. Perturbations are introduced by
applying x′i = x1

i + F(x2
i − x3

i ) (where F determines the evolution factor weighting
the perturbation amplitude) for each encoded parameter on a random basis. After
this perturbation, final perturbed vector x′ is combined with an alternative coral in
the reef following a classical 2-points crossover, as defined next.

3. 2Px: Classical 2-points crossover. The crossover operator is the most classical explo-
ration mechanism in genetic and evolutionary algorithms [54]. It consists of coupling
to individuals at random, choosing two points for the crossover, and interchanging
the genetic material in-between both points. In the CRO-SL, one individual to be
crossed is from the 2Px substrate, whereas the couple can be chosen from any part of
the reef.

4. MPx: Multi-points crossover. Similar to the 2-points crossover, but in this case a
number k of crossover points are selected, and a binary template decides whether
parts of the individuals are interchanged.

5. GM: Gaussian Mutation, with a σ value linearly decreasing during the run, from
0.2 · (A − B) to 0.02 · (A − B), where [B, A] is the domain search. Specifically, the
Gaussian probability density function is

fG(0,σ2)(x) =
1

σ
√

2π
e−

x2

2σ2 .

The reason of adapting the value of σ along the generations is to provide a stronger
mutation in the beginning of the optimization, while fine-tuning with smaller displace-
ments nearing the end. The mutated larva is thus calculated as x′i = xi + δNi(0, 1),
where Ni(0, 1) is a random number following the Gaussian distribution.

6. Firefly Optimization (Fa): The Fa is a kind of swarm intelligence algorithm, first
introduced by Yang in [55]. The Fa is based on the flashing patterns and behaviour of
fireflies in nature. The pattern movement of a firefly i attracted to another (brighter)
firefly j is calculated as follows:

xt+1
i = xt

i + β0e−γr2
ij(xt

j − xt
i) + αεt

i (12)

where β0 stands for the attractiveness at distance r = 0. The specific Fa mutation
implemented in the CRO-SL is a modified version of the algorithm known as Neigh-
borhood Attraction Firefly Algorithm (NaFa) [56]. It has been implemented as follows.
When a coral (solution) in the reef belongs to the NaFa substrate, it is updated by
following Equation (12). All the parameters of the equation are tuned during the CRO-
SL evolution. The corals in the NaFa substrate consider as swarm a neighborhood
among all the other corals in the reef (not only the NaFa substrate). Thus, the corals
in the NaFa substrate are updated taking into account some solutions from other
substrates, as all the corals in the reef share the same objective function (brightness
for the NaFa substrate). Note that the Fa algorithms has been applied to different
structural problems in previous works [57,58], showing a good behaviour.

7. Water Wave Optimization (WWo): The WWo [59] is a recently proposed meta-heuristic
based on the phenomena of water waves, such as propagation, refraction, and break-
ing. Three different procedures are then defined in this algorithm: Wave propagation:
at each generation of the algorithm, each wave x in the population is propagated, to
generate another wave x′ in the following way:

x′(d) = x(d) + rand(−1, 1) · λL(d) (13)
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where rand(−1, 1) is a uniformly distributed random number within the range [−1,1],
and L(d) is the length of the dth dimension of the search space (see in [59] for
reference). Then, Wave refraction is simulated as

x′(d) = N
(

x∗(d) + x(d)
2

,
|x∗(d)− x(d)|

2

)
(14)

where x∗(d) is the best solution found so far, and N(·) is a Gaussian random number
with mean µ and standard deviation σ. Finally, a wave breaking process is also
simulated as

x′(d) = x(d) + N(0, 1) · βwL(d) (15)

where βw is the breaking coefficient.
The implementation of the algorithm as CRO-SL is straightforward, as any solution
within the substrate is just applied the set of operators described above, with the
algorithm’s parameters described in [59].

4. Numerical Examples

Different design restrictions may be applied depending on the application type for
which the arch is used. To approach a general perspective of the problem, two general
cases have been analyzed: In the first one, the height of the arch H is fixed, while the
parameters H′, B, h, and ta change within a range. For the second scenario, the span of the
arch B is constant, and the parameters H, H′, h, and ta are set for respective ranges of values.
The search for the best arch shape is based on the optimization of the functional given by
Equation (10). Thus, the maximum absolute bending moment is reduced whilst the airspace
of the arch is increased. Note that in this work, the reduction of the bending moment has
been set as the most important objective as it implies some benefits, such as in terms of the
construction cost (the amount of material used for its construction is reduced). Moreover,
the thickness of the arch may be reduced, thus increasing its slenderness, which is an
important aspect in many cases, as in leisure applications. If the importance of the airspace
(or another parameter which can be included in the functional expression) is comparable
with the bending moment, a normalization of the expressions should be addressed to
guarantee that the airspace weight is clearly represented in the functional value.

There are two main restrictions in the problem. The first one is inherent to the
numerical calculation. As nonlinear analysis is developed, some of the solutions may not
converge, thus discarding the proposed solution. The second one is based on Equation (11).
If that condition is not achieved either for linear and nonlinear analysis, the arch shape is
not considered.

The results illustrate how the combined use of the curve parameterization and the
CRO-SL leads to optimal solutions. In addition, the importance of considering the non-
linear effects in the arch design is also evaluated. The CRO-SL parameters are based on
trial and error tests. They are shown in Table 1.

Table 1. Parameters values used the CRO-SL.

Parameter Description Value

Reef Reef size 100
ρ0 Fraction of reef capacity initially occupied 80%
Fb Frequency of broadcast spawning 97%
Fa Percentage of asexual reproduction 5%

Fdep Fraction of corals for depredation 5%
Pd Probability of depredation 10%
α Maximum number of iterations 50
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The Young’s modulus of the arch material is E = 27,664.49 MPa and the Poisson’s ratio
has been chosen to be ν = 0.2 (uncracked concrete) [60], with a density ρh = 2400 kg/m3.
The self-weight of the arch structure is considered in the analysis.

4.1. Case in Which the Height H Is Fixed

In this scenario, the height H and the depth Dp are fixed, while the parameters B,
H′, h, and ta are tuned within a range (see Table 2). The functional weights used for the
calculation are pm = 0.8 (N·m)−1, pa = 0.2 m−2. Thus, the reduction of the bending
moment is more important than increasing the airspace. The results have been obtained for
a single run simulation.

Table 2. Design parameters for the case in which the height H is fixed.

Type of Parameter Parameter Value [m]

Fixed parameters Dp 10
H 6

Variable parameters

H′ 5 ≤ H′ ≤ 9
B 15 ≤ B ≤ 30
h 0.25 ≤ h ≤ 1

ta (dimensionless) 0 ≤ ta ≤ 1

The best solutions for both cases, linear and nonlinear, are shown in Table 3. The arch
shape found by the CRO-SL is basically the same for the linear and the nonlinear cases
(see Figure 4). However, the thickness of the structure (h) for the nonlinear based design is
almost the double than for the linear design. This implies that, although the shape of the
arch is the same for both scenarios, the increment of the bending stiffness of the arch has
lead to a greater thickness of the structure to avoid instabilities issues. The optimal curve
shape has been found between the parabola (ta = 0) and the ellipse (ta = 1), for both cases.

Table 3. Arch shapes comparative for optimal solutions found by the CRO-SL in the linear and the nonlinear cases in which
the height H is fixed.

Optimal Solution

Analysis H′ B h ta As max |Ms| f

Linear 8.99 m 15.00 m 0.25 m 0.52 126.14 m2 5.05 × 104 N·m 4.04 × 104

Non-linear 8.97 m 15.02 m 0.44 m 0.51 126.95 m2 6.32 ×10 4 N·m 5.06 × 104

15 m

6 my

x

0.
25

 m

0.
44

 m

10 m

Figure 4. Arch shapes comparative for linear and nonlinear solutions for the case in which the height
H is fixed. Note that both curve guidelines are coincident and the thickness of the non-linear solution
is represented with external dashed lines.

The parameters used to calculate the functional can be found in Table 3. As expected,
the area for both arches is the same. However, the maximum bending moment for the
nonlinear case is greater than in the linear case. Then, its functional value reaches a higher
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value. As it was aforementioned [18], instabilities issues can occur under service loads
for many of the arch shapes proposed so far, and this example shows the importance of
considering the nonlinear effects in the arch design.

The bending moment and the vertical deflections per unit arch length are shown in
Figure 5a,b, respectively. The nonlinear analysis implies that instabilities issues may appear
for small displacement increments. The CRO-SL has found a stable solution with low
vertical deflection.
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The bending moment and the vertical deflections per unit arch length are shown
in Figure 5a,b, respectively. The non-linear analysis implies that instabilities issues may
appear for small displacement increments. The CRO-SL has found a stable solution with
low vertical deflection.

In this first scenario, the coincidence of both shapes (linear and non-linear solution)
allows clarifying the effectiveness of the optimization procedure adopted in this work,
since the structural stability is achieved mainly through the arch thickness increase. In this
sense, such increase not only augments the bending stiffness as well as bending stresses (as
predictable, due to the self-weight increasing), but causes the characteristic redistribution
of the bending moment already shown in previous works [23]. However, in this particular
case, such redistribution is more relevant for B/4 ≤ x ≤ 3B/4, where the non-linear
bending stresses decreases respect to the linear one, that produces a generalized reduction
of the vertical displacements in the arch; this is due to the different stress redistribution that
the arch experiments depending on the geometrical behaviour hypotheses: linear or non-
linear. Therefore, under certain design conditions (as the corresponding to this scenario),
the second order optimization of submerged arches is not only feasible (as shown previous
works, using other evolutionary strategies, such as the genetic algorithms [23,25]), but it is
necessary in order to obtain a significant reduction in the structural vertical displacements.
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Figure 5. Bending moment and vertical deflection comparative for linear (solid line) and non-linear
(dashed line) in the case in which the height H is fixed.

Regarding the computational performance of the CRO-SL in this problem, Figure
6a,b show the number of larvae (potential solutions to the problem) getting into the reef
per substrate, over the iterations. Note that a new individual can enter in the population
on a random place, if its associated fitness value is better than the occupied one, or if the
place is empty. Due to the initial hollows in the reef, in the first iterations of the algorithm’s
run there is a higher probability to enter, independently of the quality of solutions, so
this number is usually greater at the beginning of the algorithm’s run. In Figure 6c,d
the accumulative ratio of times that each substrate is producing the best larva is shown.
It is remarkable that the best larva might not be better than the fittest coral of the reef.
Regarding both figures, it can be pointed out that DE and NaFa substrates are good in

Figure 5. Bending moment (a) and vertical deflection comparative (b) for linear (solid line) and
nonlinear (dashed line) in the case in which the height H is fixed.

In this first scenario, the coincidence of both shapes (linear and nonlinear solution)
allows clarifying the effectiveness of the optimization procedure adopted in this work,
as the structural stability is achieved mainly through the arch thickness increase. In this
sense, such increase not only augments the bending stiffness as well as bending stresses (as
predictable, due to the self-weight increasing), but causes the characteristic redistribution
of the bending moment already shown in previous works [18]. However, in this particular
case, such redistribution is more relevant for B/4 ≤ x ≤ 3B/4, where the nonlinear bending
stresses decreases respect to the linear one, that produces a generalized reduction of the
vertical displacements in the arch; this is due to the different stress redistribution that the
arch experiments depending on the geometrical behaviour hypotheses: linear or nonlinear.
Therefore, under certain design conditions (as the corresponding to this scenario), the
second-order optimization of submerged arches is not only feasible (as shown previous
works, using other evolutionary strategies, such as the genetic algorithms [18,20]), but it is
necessary in order to obtain a significant reduction in the structural vertical displacements.
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Regarding the computational performance of the CRO-SL in this problem,
Figure 6a,b shows the number of larvae (potential solutions to the problem) getting into
the reef per substrate, over the iterations. Note that a new individual can enter in the
population on a random place, if its associated fitness value is better than the occupied
one, or if the place is empty. Due to the initial hollows in the reef, in the first iterations
of the algorithm’s run there is a higher probability to enter, independently of the quality
of solutions, so this number is usually greater at the beginning of the algorithm’s run. In
Figure 6c,d, the accumulative ratio of times that each substrate is producing the best larva
is shown. It is remarkable that the best larva might not be better than the fittest coral of
the reef. Regarding both figures, it can be pointed out that DE and NaFa substrates are
good in search space exploration and exploitation. On the one side, they get into the reef a
higher amount of larvae, which means, that they usually produce fitter individuals that the
existed ones in the reef. It can be observed that GM does not show a good performance, as
the solutions proposed by this method never fit in the reef. In addition, note that around
50% and 30% of the iterations these substrates, respectively, are producing the best larva in
the linear model. Furthermore, in the nonlinear model DE substrate reaches the 80%. Other
substrates such as HS, GM, MPx, or 2Px, are not producing fitted individuals because they
are collaborating in a further exploration of the search space, instead of its exploitation.
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Figure 6. Number of larvae entering to the reef per substrate for the linear (a) and nonlinear (b) cases, and ratio of times
that each substrate generates the best larva in the linear (c) and nonlinear (d) cases when the height H is fixed.
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Figure 7 shows the fitness evolution for the linear and nonlinear cases. Note that the
linear solution produces the lowest value of the functional, though it needs 37 iterations to
be close of the final functional value.

0 5 15 20 25 30 35 40 45 5010

4

5

6

7

8

9

10

11

12

13
10

4

Figure 7. Fitness evolution in the CRO-SL for the submerged arch design case in which the height H
is fixed.

4.2. Case in Which the Span B Is Fixed

In this scenario, the span of the arch B and the depth Dp are fixed. The ranges of values
for the parameters in which the CRO-SL seeks the optimal solution are defined in Table 4.
The functional weights used for this experiment are pm = 0.7 (N·m)−1 and pa = 0.3 m−2,
then the importance of the arch airspace is slightly greater than for the last scenario.

The obtained functional values can be found in Table 5. As it can be observed, the
area of the arch for the linear analysis based design is lower than for the nonlinear cases.
However, the maximum bending moment for the nonlinear case is more than twice as great
as the bending moment of the linear case.

Table 4. Design parameters for the case in which the span B is fixed.

Type of Parameter Parameter Value [m]

Fixed parameters Dp 10
B 30

Variable parameters

H 3 ≤ H ≤ 8
H′ 3 ≤ H′ ≤ 8
h 0.25 ≤ h ≤ 1

ta (dimensionless) 0 ≤ ta ≤ 1

The parameters of the optimal solution for both cases, linear and nonlinear, are shown
in Table 5. The difference in the contour ellipse height H′ is very small, 0.50 m. However, the
difference between the heights of the arches is more than 1.00 m, see Figure 8. Furthermore,
the aim of reducing the vertical deflection in the nonlinear solution to avoid buckling
phenomenon has resulted in the optimal solution having a greater thickness than in the
linear solution. The shape parameter ta is very similar in both cases. Both solutions tend
to be a parabola curve since ta are equal to 0.22 and 0.18 for the linear and nonlinear
cases, respectively.
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Table 5. Arch shapes comparative for optimal solutions found by the CRO-SL in the linear and the nonlinear cases in which
the height B is fixed.

Optimal Solution

Analysis H′ B h ta As max |Ms| f

Linear 5.26 m 8.00 m 0.35 m 0.22 215.41 m2 1.74 × 105 N·m 1.22 × 105

Non-linear 6.43 m 7.50 m 0.55 m 0.18 267.97 m2 3.88 × 105 N·m 2.72 × 105

5.26 my

10 m

30 m
6.43 m

0.
35

 m

0.55 m

x

Figure 8. Arch shapes comparative for linear (black) and nonlinear (gray) in the case in which the
span B is fixed.

The weighted functional expression leads to an increment of the airspace of the arch
and a reduction of the maximum bending moment. In this scenario, as the spam is fixed,
an increment in the height implies an increment in area. Furthermore, this implies a
reduction of the water column above the arch structure. However, this does not imply
that the maximum bending moment is reduced, especially if the nonlinear behaviour
is considered. In fact, the maximum bending moment of the arch when the nonlinear
behaviour is considered is greater than in the linear case. This evidences the importance
of the self-weight effect in the optimal design of a submerged arch in shallow waters [31],
particularly in their second-order behaviour [18]. Moreover, if the optimal linear solution
is simulated under nonlinear conditions, the stability is not reached. The bending moment
produces an irreversible increment of the vertical deflection. Therefore, it is shown the
importance of considering the nonlinear effects in the arch design.

As in the previous scenario, the bending moment and the vertical deflections per unit
arch length are shown in Figure 9a,b, respectively. The nonlinear analysis also implies
that instabilities issues may appear for small displacement increments. Thus, the CRO-
SL has found a stable solution, with a low vertical deflection. In addition, the bending
moment along the structure is greater for the nonlinear case. Nevertheless, once more, the
redistribution effect in the nonlinear bending stresses produces a significant decrease in
nonlinear vertical displacements (see Figure 9b); in this last case, the redistribution effect on
the vertical displacements is more significance than in the first scenario due to the greater
magnitude of the nonlinear bending moments. In addition, the results obtained by CRO-SL
conjugates such significant reduction of the second-order vertical displacements with the
increasing of the airspace enclosed by the arch, which allows a generalized improvement
of the serviceability conditions in the underwater installation.

In a similar way than the previous case, the computational performance of the CRO-SL
in this problem is discussed by means of the number of larvae entering to the reef per
substrate and the ratio of times that each substrate generates the best larva, displayed in
Figure 10. It is possible to see that the behaviour of the substrates is also very similar to
the previous cases. DE and NaFa substrates have a more important weight in the search
space exploitation and algorithm’s evolution, while the rest of them are useful to further
explore it.
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Figure 11 shows the best fitness evolution in the CRO-SL, for linear and nonlinear
cases. In this case, the submerged arch design only considering linear behaviour in the
calculation of the funicular arch always obtains a better value of the fitness functional
(Equation (10)) than the nonlinear design.
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Figure 9. Bending moment and vertical deflection comparative for linear (solid line) and non-linear (dashed line) in the
case in which the height B is fixed.

Figure 9. Bending moment (a) and vertical deflection comparative (b) for linear (solid line) and
nonlinear (dashed line) in the case in which the height B is fixed.
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Figure 10. Number of larvae entering to the reef per substrate for the linear (a) and nonlinear (b) cases, and ratio of times
that each substrate generates the best larva in the linear (c) and nonlinear (d) cases when the span B is fixed.
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Figure 11. Fitness evolution in the CRO-SL for the submerged arch design case in which the span B
is fixed.
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5. Conclusions

This work considers a recent parameterization of the funicular solution, in order to
propose a novel approach for the optimal design of submerged arches in which geometrical
nonlinear behaviour is considered. As novelty, such parameterization has been combined
with a recently proposed ensemble multi-method meta-heuristic algorithm, the Coral Reefs
Optimization with Substrate Layer algorithm (CRO-SL). A weighted functional has been
proposed in order to guide the CRO-SL search, optimizing the arch serviceability conditions
according to the following design criteria: maximum bending moment reduction and area
under the arch increment. In addition, a vertical deflection restriction and the buckling
load factor have been calculated to discard unrealistic solutions.

To evidence the effectiveness of CRO-SL algorithm in the optimal nonlinear design
of submerged arches, two scenarios have been studied. In the first one, its height has
been fixed and the span has been modified. While in the second scenario, the span of
the arch has been fixed and its height has been tuned. Both cases have been analyzed
considering only linear and then nonlinear effects. From the direct comparison between
the optimized linear and nonlinear solutions, the main conclusion obtained is that the
characteristic redistribution of the bending moments along the arch length may diminish
in a significant way the nonlinear vertical displacements under certain design conditions.
This last fact represents a great improvement of CRO-SL algorithm with respect to previous
experiments performed using genetic algorithms. In addition, the results also show how
the contribution of the CRO-SL substrates (search procedures) depends on the problem,
illustrating that the proposed multi-method approach is able to adapt to the problem
at hand.
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