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Abstract: With a large of time series dataset from the Internet of Things in Ambient Intelligence-
enabled smart environments, many supervised learning-based anomaly detection methods have
been investigated but ignored the correlation among the time series. To address this issue, we
present a new idea for anomaly detection based on dynamic graph embedding, in which the dynamic
graph comprises the multiple time series and their correlation in each time interval. We propose an
entropy for measuring a graph’s information injunction with a correlation matrix to define similarity
between graphs. A dynamic graph embedding model based on the graph similarity is proposed
to cluster the graphs for anomaly detection. We implement the proposed model in vehicular edge
computing for traffic incident detection. The experiments are carried out using traffic data produced
by the Simulation of Urban Mobility framework. The experimental findings reveal that the proposed
method achieves better results than the baselines by 14.5% and 18.1% on average with respect to
F1-score and accuracy, respectively.

Keywords: Ambient Intelligence; dynamic graph embedding; vehicular edge computing; incident
detection; Internet of Things

1. Introduction

Ambient Intelligence (AmI) consists of technologies integrated into the physical envi-
ronment for providing users with assistive and predictive support seamlessly. It combines
artificial intelligence and the Internet of Things (IoT) with the pervasiveness of smart objects.
In AmI-enabled environments, IoT is evolving as an intermediary layer between hardware
systems and applications that offer intelligent services to people [1,2]. IoT connects a
variety of networked devices that are embedded with sensors, applications, and other
technologies in order to communicate and share data with other devices and systems [3].
With billions of time series data collected from IoT in AmI-enabled environments, effective
data mining methods are necessary to address these data [4]. Anomaly detection is a vital
research issue in data mining. It aims to identify the significantly different data from the
most observations [5]. Therefore, applying outlier detection technologies to the IoT time
series can save computing time and predict the risk in smart environments. For exam-
ple, in transportation systems based on AmI, IoT, and vehicular edge computing (VEC),
anomaly detection can help vehicular users know the road condition in advance and avoid
time loss caused by traffic incidents [6,7]. The existing approaches focusing on the outlier
detection on the time series are learning the prior knowledge using the supervised learning
model [8] or utilizing the statistical methods to compute the probability distribution of the
data [9]. The statistical methods require that the data has a normal distribution and detect
the outliers based on the statistical indices. The supervised learning learns the patterns
of inliers and outliers from the training datasets and fits the supervised learning models.
However, the patterns of outliers are diverse, so that the models cannot learn the patterns
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of all types of outliers. To overcome this problem, we discover the correlation between the
multiple IoT time series for anomaly detection.

Traffic incident detection is one of the critical research issues in smart transportation
systems [6,7,10,11]. In this study, we focus on the traffic incident detection problem with
multiple traffic time series data. In this regard, we pose the following research questions:

• How to extract incident patterns from multiple traffic time series data? (Q1)
• How to construct the model for detecting incidents from extracted patterns? (Q2)
• How to demonstrate the efficiency of the model? (Q3)

To address the research questions, we propose a new method to detect traffic incidents
by identifying the anomaly among multiple traffic time series data. The proposed system
collects traffic data from roadside units and connected vehicles and then detects the traffic
incidents from the collected data to help users avoid the incidents and save travel time.
We identify the correlation among the traffic time series to construct the dynamic graph.
The graph is a typical data structure that consists of the vertices and edges for representing
the correlation among the multiple data. The sliding window is exploited to generate the
time intervals, and each time interval can be represented by using the graph. The dynamic
graph consists of these graphs in continuous time. The graph entropy quantifies the
information of the graph, and we compute the similarity between two graphs based on the
graph entropy. The graphs with similar entropy have a small distance in the embedding
space, while the graphs with anomalies are far from the regular graphs. Therefore, they
can easily be detected as anomalies. The key contributions of this study are summarized
as follows:

• We propose a new idea for incident detection by discovering the correlation among
multiple time series to build the graph and exploit the correlation to calculate the
entropy of the graph.

• We present the definitions of graph similarity based on the graph entropy for estimat-
ing the similarity between the two graphs. Then, we introduce a dynamic embedding
model with the graph similarity to cluster the graphs for traffic incident detection in
vehicular networks.

• We conducted the experiments on multiple traffic time series data simulated by the
Simulation of Urban Mobility (SUMO) simulator. The experimental findings show
that the proposed model outperforms the baselines and performs better on high traffic
volume scenarios.

The rest of this paper has the following structure. In Section 2, background and
related work are offered. Section 3 discusses the dynamic graph embedding model for
detecting traffic incidents in road networks. In Section 4, experimental settings and results
are explained. In Section 5, the conclusion is finally given.

2. Background and Related Work

This section summarizes the background and related work of the paper. We first
introduce the background of Ambient Intelligence, Internet of Things, and Vehicular Edge
Computing. Then, we summarize the technologies related to graph embedding and their
applications. Finally, the recent technologies for traffic incident detection are organized.

2.1. Ambient Intelligence, Internet of Things, and Vehicular Edge Computing

AmI is the ensemble of technologies embedded in human environments to seam-
lessly offer assistance and prediction in various contexts through a human–computer
interface [1,2]. Examples of AmI environments are smart homes [12], connected vehi-
cles [13–15], healthcare services [16], smart grid [17], and smart cities [18]. AmI technology
realization is an interdisciplinary area that includes sensor networks, artificial intelligence,
and human–computer interaction. IoT, which is an enabling technology for promoting the
interconnection and exchange of data between heterogeneous objects in smart environ-
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ments by creating a connectivity network between sensors, embedded devices, and human–
computer interaction, serves as the cornerstone of AmI [2,3].

With the advancement of AmI and IoT, new automotive innovations, e.g., autonomous
vehicles, smart navigation, and cooperative cruise control, are starting to make modern
transportation systems safer and smarter [3,19–21]. The traditional technology-driven
transportation systems are turning into data-driven intelligent transportation systems,
which produce a large volume of data, contributing to increased communication, comput-
ing, and storage demands as well as stringent latency and network bandwidth capacity
criteria. VEC is emerging as a promising approach to overcome these problems [20,21].
VEC drives efficient computing and storage capacities from distant clouds to the edges
of networks near vehicular users, allowing low response time and decreased bandwidth
usage. As shown in Figure 1, the architecture of VEC typically includes three layers: user
layer (connected vehicles), edge layer (Roadside Units—RSU), and cloud layer (cloud
servers). Connected vehicles have communicating capability, computing, and storage
resources of their own. Connected vehicles can communicate via Vehicle-to-Vehicle (V2V)
communications or with the RSU via Vehicle-to-Infrastructure (V2I) communications. RSU,
operating as edge devices, are located near vehicles for real-time gathering, analyzing,
and storing traffic information. Since vehicles have limited resources, they may shift
latency-sensitive and compute-intensive tasks to edge devices, reducing delay and heavy
workload on backhaul networks.

V2I, V2V Communications

CloudCloud Layer

Edge Layer

User Layer

Computation and Storage Connected Vehicles

Backhaul links

VEC 
Server

VEC 
Server

VEC 
Server

Data 
Center

Roadside Units

Figure 1. A general architecture of Vehicular Edge Computing.

Since its inception, VEC has attracted a great deal of interest from scholars. Many
works and surveys have examined different facets and applications of VEC, such as resource
allocation [22], traffic routing [14,15], and intersection control [23]. Raza et al. [20] discussed
the VEC architecture’s technical issues and provided several recent solutions and future
research challenges in the field. Liu et al. [21] reviewed recent research in VEC by classifying
the research topics, including task offloading, caching, information sharing, dynamic
network control, privacy, and security.

2.2. Graph Embedding

Graph embedding captures the neighbor structure of vertices to map the vertices
or graph into the embedding space. The graph embedding technologies are mainly di-
vided into dimension-reduction-based methods, random walk-based methods, matrix-
factorization-based methods, and neural network-based methods [24]. With the develop-
ment of deep learning, neural network-based models are proposed for the graph embed-
ding issue. For example, a graph convolutional network (GCN) utilizes the convolutional
kernels to extract the graph’s structure information and maps the vertices into the embed-
ding space. The convolutional kernels extract the local structure’s features and compute the
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embedding vectors by reconstructing the graph. Jiang et al. [25] combined spatiotemporal
graph convolution network and recurrent neural network to construct a hybrid model for
embedding the traffic graph to predict the traffic speed. The structural deep network em-
bedding model [26] defined two proximities for holding the local and global structures and
computed the embedding vectors by using two autoencoders. The dynamic graph consists
of the graphs in continuous-time intervals. Dynamic graph embedding maps the graphs
into the embedding space based on similarity and temporality. Goyal et al. [27] utilized
the autoencoder to map the graphs into the embedding space and input the embedding
vectors to the recurrent neural network to capture the temporal information for computing
the final embedding vectors.

2.3. Traffic Incident Detection

Traffic incident detection is one of the key research topics in smart transportation
systems [6,7,10,11]. The traffic incidents can be classified into five categories: accidents
(e.g., collisions), road maintenance, hazardous weather, special events (e.g., Marathon),
and obstacle vehicles. Existing methods are mainly based on deep learning technologies [5].
Lin et al. [6] proposed a traffic incident strategy based on the generative adversarial
networks (GANs). The spatial and temporal features are extracted as variables from real
traffic data. For feature engineering, the random forest was used to filter the features
that are not important for detecting traffic incidents. To overcome the imbalance problem
that the outlier samples are not enough, they utilized GANs to generate the data with the
traffic incidents patterns. Support vector machine was used as the traffic incident detection
method. This study utilized the datasets that have been labeled as outliers and inliers.
However, the GANs model cannot generate the outlier patterns that were not in the datasets.
Davis et al. [7] constructed the transportation networks by using the temporal traffic data.
The hybrid model combined with the long short-term memory (LSTM) and extreme value
theory (EVT) was proposed to predict the traffic incident. LSTM is an improvement of
the recurrent neural network. It drops the data that is not useful for predicting the traffic
incident using the backward propagation algorithm. The EVT is applied to the loss function
of the hybrid model. Via experiments, the proposed hybrid model achieves a better F1 score
than the baselines. Since there is a possibility of overshooting in deep learning training,
Hatri et al. [10] used fuzzy logic to solve this problem. This method considers extracting
the spatial and temporal information in the traffic data for incident detection. The results
indicated that the proposed model could reduce the training time and the training loss.
Zhang et al. [11] collected the information from social media to detect the car accident from
the traffic flow. The main idea is to collect the tweet contents about the traffic information.
Then, they detect the accident by analyzing these tweet contents. However, they did not
exploit the traffic flow directly for accident detection. Only using the information from
social media to detect the accident lacks credibility. Unlike the existing works, we aim
to develop a dynamic graph embedding model considering the correlation between the
multiple traffic time series to detect incidents at intersections in the VEC environment.

3. Traffic Incident Detection Based on Dynamic Graph Embedding

Taking into account research questions Q1 and Q2, in this section, we describe the
traffic incident detection based on the dynamic graph embedding. The main idea is to
utilize the correlation between the multiple traffic time series to construct the graph where
the nodes indicate the traffic flow and the weights of the edges is the correlation coefficient
between two traffic flows. We set a sliding window to divide the multiple traffic time
series into several time intervals and construct the dynamic graph. To quantify the graphs’
information, we calculate the graph entropy based on the correlation coefficient matrix.
The dynamic graph embedding model is proposed to cluster the graphs. Since there is a
stable correlation in the graphs without the traffic incident, the graphs with anomalies are
far from the regular graphs. In this case, the abnormal graphs are discriminated and can be
detected as a traffic incident.
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3.1. Dynamic Graph Construction

Given two time series x and y, we can calculate their Pearson correlation coeffi-
cient [28], which is formulated as R(x, y). |R(x, y)| = 0 indicates that there is no correlation
between them. For each time interval t ∈ [0, T], the correlation coefficient matrix of the
dynamic graph Gt is formulated as R = {R(Gt)|t ∈ [0, T]}. The dynamic graph can be
constructed by utilizing the correlations.

To measure the information of graphs, we calculated the graph entropy based on the
information entropy [29]. Given an event x, the information of the event can be formulated
as h(x) = −log2 p(x) where p(x) indicates the probability of the event x. The information
entropy is described as the probability of the event times the information of the event,
which is denoted as E(x) = −p(x)log2 p(x). For the multiple independent events xi ∈ X,
the information entropy is formulated as E(X) = −∑N

i=1 p(xi)log2 p(xi) where X indicates
the set of the events xi and N indicates the number of the events. To calculate the graph
entropy, we first calculate the entropy of the vertex in the graph, which is calculated by
using the weight of the edge.

Definition 1 (Vertex entropy). Given a graph G = (V, E) where V indicates the set of the vertices
and E indicates the set of edges. The entropy of the vertex vi is calculated based on the correlation
between the vertices vi and vj, which is formulated as e(vi) = −∑N

j=0,j 6=i R(vi, vj)log2R(vi, vj)
where N indicates the number of vertices.

Then, we have to measure the information of the graph based on the vertex entropy.
The vertex entropy measures the information of edges in the graphs. Supposing the vertex
entropy e(vi) is high, the vertex vi has a high correlation with the other vertices. It indicates
that the corresponding time series plays an essential role in anomaly detection. To measure
the graph entropy, we have to summarize the entropy of each vertex. The definition of
graph entropy is as follows.

Definition 2 (Graph entropy). The graph entropy is calculated by summing the entropy of all
vertices, which is formulated as e(G) = ∑N

i=0 e(vi). The dynamic graph entropy is described as the
graph entropy e(G) at the time interval t ∈ [0, T], which is formulated as E = {e(Gt)|t ∈ [0, T]}.

3.2. Dynamic Graph Embedding

Dynamic graph embedding is utilizing the nonlinear function f : Gt → gt to learn
the representation for mapping the graphs into the embedding space, where Gt is the
graph at the time intervals t ∈ [0, T] and gt is the embedding vectors of the graph Gt.
In this study, the graph G includes two elements which are correlation coefficient matrix
and the graph entropy formulated as Gt = 〈R(Gt), e(Gt)〉. The object of the dynamic
embedding is clustering the graphs based on the similarity. It requires that the dynamic
graph embedding considers the similarity of the neighbor structure between the graphs
and considers the similarity of graph entropy. We define the graph similarity based on the
correlation coefficient matrix and the graph entropy to solve this problem.

Definition 3 (Graph similarity). The graph similarity is described as the similarities of the
neighbor structure and graph entropy, which is formulated as S(Gi, Gj) = ||R(Gi)− R(Gj)||22 +
||e(Gi)− e(Gj)||22 where S(Gi, Gj) indicates the similarity between the graphs Gi and Gj. The low
similarity S(Gi, Gj) indicates that two graphs Gi and Gj are similar at the neighbor structure and
graph entropy.

In this study, we used a graph proximity-based dynamic graph embedding model
(DynGPE) to embed the graphs [30]. Given a dynamic graph G = {Gt|t ∈ [0, T]}, Gi and
Gj indicates the graphs at the time interval i, j ∈ [0, T]. Gj is the most similar graph with
Gi. The embedding vector gi is calculated at the embedding layer. The model consists of
two autoencoders. The encoder maps the graph Gi into the embedding space by using
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the nonlinear function. The output of the decoder is to reconstruct the graph Ĝi. If the
graphs Gi and Gj are close in the embedding space, the graph Gi is similar to the graph
Gj. The inputs of the two autoencoders are the correlation matrices R(Gi) and R(Gj)
and the hidden layers can learn the features from the correlation matrices by using the
nonlinear functions

y1 = δ(W l R(Gi) + bl) (1)

yl = δ(W lyl−1 + bl) (2)

where yl indicates the outputs of the lth hidden layer and W l and bl indicate the weights
and basis values at the lth hidden layer, respectively. To make the functions nonlinear, we
exploit the ReLU function as an activation function that is denoted as δ [31]. The input of
the first hidden layer is the correlation matrix of the graph Gi, and the input of the next
hidden layer is the output of the previous layer. The autoencoder reconstructs the input by
reversing the nonlinear functions. Since the graph Gj is the most similar graph with the
graph Gi on the neighbor, their embedding vectors are close in the embedding space.

Since the autoencoder learns the features by reconstructing the input, the similarity
between the input and output is required to be small. We establish the loss function
L1 = ∑T

i=1 ||Gi − Ĝi||22 to reduce the error between the input graph and the output where
T is the number of time intervals. To make two similar graphs on entropy close together
in the embedding space, we establish the loss function L2 = 1

T ∑T
i=1 ||gi − gj||22. The loss

function L2 includes the embedding vectors of two graphs Gi and Gj so that the distance
between them is reduced by optimizing the loss L2. To avoid the overfitting, we add
a regularization term, which is formulated as Lreg = 1

2 ∑L
l=1(||W l ||22 + ||Ŵ l ||22) where L

represents the number of layers and W represents the weights. The joint loss function for
optimizing the whole model is formulated as

L =
T

∑
i=1
||Gi − Ĝi||22 +

1
T

T

∑
i=1
||gi − gj||22 +

1
2

L

∑
l=1

(||W l ||22 + ||Ŵ l ||22) (3)

3.3. Dynamic Graph Embedding-Based Traffic Incident Detection

In road traffic networks, the intersection areas are more susceptible to traffic congestion.
Depending on the different root causes, traffic congestion can usually be divided into two
types: (1) recurrent congestion and (2) nonrecurrent congestion [32]. Recurrent congestion
is caused by predictable phenomena, such as rush hours and holidays. Nonrecurrent
congestion is produced by traffic incidents, for example, collisions, disabled cars, work
zones, extreme weather conditions, and special events. Because of its unpredictable
character, nonrecurring congestion produced by traffic incidents is more responsible for
traffic delays than recurrent congestion in metropolitan areas. This work aims to develop an
intelligent system that can use real-time, multiple time series from road traffic to determine
an incident at the intersections.

To detect traffic incidents at the intersections, we utilize the installed RSU. Each
RSU acts as a traffic controller, monitoring a specific intersection area for traffic incident
detection in real time. V2V and V2I communications allow connected vehicles to perceive
their driving surroundings and transmit the traffic data [14,15,23]. When a connected
vehicle enters the coverage area of the RSU, the vehicle broadcasts a message with its
driving information (e.g., vehicle identification, current speed, waiting time, location,
and timestamp). The RSU fuses the driving data of vehicles traveling in its coverage area
and estimates the traffic flow parameters. Three fundamental characteristics in traffic flow
theory are traffic volume, traffic speed, and occupancy [6,7,10]. Although these parameters
can be collected via inductive loop detectors (sensor-based) and cameras (vision-based) [33],
they are more correctly collected in real time under the VEC environment. In the context of
the intersection area, the selected parameters are specified as follows.
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• Number of vehicles: The number of vehicles within the coverage area of the RSU. It
represents the traffic volume characteristic of the traffic flow.

• Mean speed (m/s): The average speed of all vehicles. It represents the traffic speed
characteristic of the traffic flow.

• Mean waiting time (s): The average time spent of all vehicles waiting to pass the
intersection. The waiting time of a vehicle at the intersection is the consecutive time
in which the vehicle was standing. It represents the occupancy characteristic of the
traffic flow.

The RSU continuously collects the data and estimates three parameters, forming three
data as time series. Then, we apply the dynamic graph embedding model to these time
series for traffic incident detection. A graph is a typical data structure for modeling the
items and their relationships. Therefore, it is used to build the correlation among the time
series. Given a graph G = (V, E), V indicates the vertices in the graphs, and each vertex
is a traffic time series. The weight value of the edge E indicates the correlation coefficient
between the two time series. The dynamic graph is composed of graphs in a continuous
time. It records the evolution of the correlation among the traffic time series. Figure 2
illustrates an example of the dynamic graph, where S is the mean speed, V is the number of
vehicles, and T is the mean waiting time. The weight of the edge indicates the correlation
coefficient between two vertices, and Gi indicates the graph at the ith time interval. Then,
we calculate the entropy of the graph at each time interval. Next, we embed all graphs into
an embedding space based on the graph entropy. Since there are multiple intersections and
each intersection consists of a dynamic graph, we map the graphs of all intersections into
an embedding space. In this way, the intersection with an incident is far from the most
normal intersections, and we can detect the location and time of the incident.

S T

V

S V

T

S V

T

0.7

0.
6 0.4

0.7

0.
6 0.4

0.7

0.
6

G0 G1 G2

Figure 2. Example of the dynamic graph.

4. Performance Evaluation

Regarding research question Q3, in this section, we compare the performance of the
proposed method with other dynamic graph-based methods for detecting traffic incidents
in a realistic road network.

4.1. Experimental Scenarios

To generate the traffic data, we use the SUMO (https://www.eclipse.org/sumo/
(accessed on 5 May 2021)), a well-known microscopic road traffic simulator [15,34,35].
As shown in Figure 3, the traffic scenario is a realistic road network at Lotte World, Seoul,
South Korea, including 12 signalized intersections. It is obtained and converted from
OpenStreetMap (https://www.openstreetmap.org/ (accessed on 5 May 2021)) at the coor-
dinates of (37.5112, 127.1165). A two-phase 90-s regulates the traffic light. Each intersection
includes its RSU, and the connected vehicles can communicate and exchange traffic infor-
mation to the RSU. The proposed method is implemented in the RSU to detect the incident
at its coverage area.

The vehicles are randomly generated by the randomTrips tool of SUMO with an
arrival rate. As default, a binomial distribution is used to randomize the arrival rate,
which is the number of vehicles generating per time unit. Three traffic volume scenarios are
varying by the arrival rates. The number of vehicles generated is 500, 700, and 1000 vehicles,
corresponding to low, medium, and high traffic volume scenarios. To simulate an incident,
we stop some vehicles on a lane for a specific duration [35], i.e., 300 s (5 min). The simulation

https://www.eclipse.org/sumo/
https://www.openstreetmap.org/
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time is 3600 s. The main parameters in the simulator are shown in Table 1. The generated
data includes features, such as mean waiting time, mean speed, and the number of vehicles
in the form of time series data. An example of generated time series with the anomaly is
illustrated in Figure 4. In this generated data, traffic volume is medium, a traffic incident
happens at the timestamp of 1000 at intersection I9 in the examined road network, and the
incident duration is 300 s.

I1

I2

I3

I4
I5

I6

I7

I8
I9

I10

I11 I12

Figure 3. A realistic road network scenario.
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Figure 4. An example of generated time series with anomaly.
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Table 1. Simulation parameters.

Parameters Values

Simulator SUMO 1.9.2
Communication range 200 m
Vehicle size 5 m
Vehicle safety gap 2.5 m
Vehicle speed limit 16.67 m/s
Simulation time 3600 s
Incident period 300 s

4.2. Methods and Performance Metrics

We compare the proposed method against the following models. Three models,
which are based on the dynamic graph to vector architecture (Dyn2vec) for embed-
ding the dynamic graph, are constructed using the autoencoder (Dyn2vecAE), recur-
rent neural network (Dyn2vecRNN), and autoencoder-based recurrent neural network
(Dyn2vecAERNN) [36]. Dyn2vecAE maps the dynamic graph into the embedding space
by using an autoencoder. Dyn2vecRNN inputs dynamic graphs to the recurrent neural net-
work to calculate the embedding vectors. Dyn2vecAERNN model utilizes the autoencoder
to map the graphs into the low-dimensional space and inputs the embedding vectors into
the recurrent neural network to learn the temporal features. In addition, we use the graph
convolutional network (GCN) model as one of the baselines [37].

This paper utilizes the sliding window to partition the traffic data into several time
intervals. We select five slide windows with different sizes to divide the time series.
The sizes of the slide windows are set as 200 s, 250 s, 300 s, 350 s, and 400 s. Given the
incident period of 300 s, the reason for setting the sliding window with different sizes is
that we want to observe the performance with three different cases, i.e., the size of the
sliding window is smaller than, equal to, or is greater than the incident period.

Experiments are conducted with different traffic volumes and slide windows to obtain
the performance with different parameters. We construct the ground truth as follows.
The time intervals are divided by using the sliding window. If the time intervals do not
include the incident timestamp, the time intervals are labeled as positive. The proposed
model can then be evaluated by using the Accuracy (ACC) and F1 score as

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(4)

Precision =
Tp

Tp + Fp
(5)

Recall =
Tp

Tp + Fn
(6)

F1 =
2 ∗ Precision ∗ Recall

Recall + Precision
(7)

where Tp represents the number of anomalies detected to be anomalous, Tn represents
the number of nonanomalies detected to be nonanomalous, Fp represents the number
of nonanomalies detected to be anomalous, and Fn represents the number of anomalies
detected to be nonanomalous.

4.3. Results and Discussion

Figure 5 shows the results with different sliding windows of the proposed method.
It achieves the best F1 score with a window size of 300. However, the accuracy with the
window size of 300 is slightly lower than that of the window size of 200. It indicates that
when the size of the sliding window is 300, there are graphs detected incorrectly. In terms
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of the F1 score, the results show that if the window size of the method equals the incident
duration period, it achieves the best performance. This is because the large window sizes
contain not only the abnormal interval but also some normal intervals. Therefore, the large
window sizes affect the performance of the method. In contrast, the small window sizes
cannot contain the whole abnormal time interval, so some abnormal patterns are ignored.
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Figure 5. The performance with different window sizes.

With the selected window size of 300, we conducted experiments to observe the
performance with different traffic volumes. As shown in Figure 6, with the decrease in
traffic volume, the performance shows a downward trend. This is because in low traffic
volume scenarios, the traffic flow is hardly interrupted, and traffic congestion may not
occur even if traffic incidents happen. In other words, the mean speed, mean waiting time,
the number of vehicles, and their correlation will not be significantly affected in the low
traffic volume scenarios. Therefore, the accuracy of the incident detection in the low traffic
volume scenarios is lower than that in the higher traffic volume scenarios.
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Figure 6. The performance with different traffic volumes.
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Table 2 presents the results of the proposed method against other dynamic graph
embedding methods. In all traffic volume scenarios, the proposed method has better
results than the baselines by 14.5% and 18.1% on average with respect to F1 score and
accuracy, respectively. GCN is a node embedding method that considers the neighbor
structure of the vertices in the graph. In order to apply the GCN method to our research,
we use two GCN models to build an autoencoder for calculating the embedding vector of
each graph. According to the result, the performance of the GCN method is lower than
the proposed method but outperforms the other methods. Dyn2vecAE model does not
exploit the temporal information of the dynamic graph so that its performance is lower
than that of the Dyn2vecRNN model. The combined model, Dyn2vecAERNN, considers
the spatial and temporal information so that it achieves better results than the other two
Dyn2vec-based models. Our method uses entropy as a measurement to embed the dynamic
graph. Thereby, the graph with an abnormal entropy can be highly distinguished.

Table 2. Comparison of different dynamic graph embedding models.

Traffic Volumes Low Medium High

Models ACC F1 Score ACC F1 Score ACC F1 Score

Dyn2vecAE 0.560 0.690 0.573 0.720 0.763 0.637
Dyn2vecRNN 0.547 0.707 0.583 0.727 0.680 0.810

Dyn2vecAERNN 0.587 0.723 0.597 0.733 0.667 0.790
GCN 0.630 0.737 0.663 0.790 0.797 0.843

Proposed model 0.700 0.843 0.740 0.850 0.800 0.880

Table 3 shows the comparison results of the proposed method with different window
sizes on the high traffic volume with respect to F1-score. According to the results, the pro-
posed method exhibited the best performance by comparing with the baselines on all of
the window sizes. The standard deviation of the proposed method is 0.012. It indicates
that there is little affection with different window sizes. In addition, the window sizes of
300 and 350 achieved the best F1-score on our method. It indicates that we cannot find
a window size to get the best performance of the proposed model. However, we can get
a window size by calibrating the assigned time window, and the model can achieve a
relatively good performance.

Table 3. Comparison of different window sizes.

Window Sizes (s) 200 250 300 350 400

Dyn2vecAE 0.620 0.717 0.637 0.677 0.723
Dyn2vecRNN 0.700 0.700 0.810 0.650 0.677

Dyn2vecAERNN 0.700 0.700 0.790 0.650 0.677
GCN 0.623 0.667 0.843 0.650 0.660

Proposed model 0.890 0.864 0.880 0.880 0.850

5. Conclusions

This work proposed a novel method for detecting traffic incidents on multiple traffic
time series based on the dynamic graph embedding. The sliding window divides the
time series into several time intervals, and the dynamic graph represents the correlation
between the time series in each time interval. The graph entropy is exploited to measure
the similarity between two graphs. Based on the graph similarity, we presented a dynamic
graph embedding model for clustering the graphs. The object of the model is reducing
the distance between two graphs, which are similar to the neighbor structure and graph
entropy. In this case, if the neighbor structure and graph of two graphs are similar and their
distance is short in the embedding space. The experiments were carried out with the traffic
time series generated by the SUMO simulator. The experimental results demonstrated that
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the proposed model achieved better performance than the baselines by 14.5% and 18.1%
on average with regard to F1 score and accuracy, respectively.

Some issues could be taken into account in future work. For enhancing the perfor-
mance of the proposed method, we consider a hybrid model that combines the autoencoder
and LSTM models to extract the temporal features for dynamic graph embedding. As the
competing baselines are exclusively from the dynamic graph embedding models, the pro-
posed method could be compared with other incident detection methods. For determining
the right time window in the proposed method, we plan to utilize the wavelet transform to
calculate the frequency domain of the multiple time series and divide the time series into
several time intervals based on their frequency.
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