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Abstract: Optimal gene expression is central for the development of both bacterial expression systems
for heterologous protein production, and microbial cell factories for industrial metabolite production.
Our goal is to fulfill industry-level overproduction demands optimally, as measured by the following
key performance metrics: titer, productivity rate, and yield (TRY). Here we use a multiscale model
incorporating the dynamics of (i) the cell population in the bioreactor, (ii) the substrate uptake
and (iii) the interaction between the cell host and expression of the protein of interest. Our model
predicts cell growth rate and cell mass distribution between enzymes of interest and host enzymes
as a function of substrate uptake and the following main lab-accessible gene expression-related
characteristics: promoter strength, gene copy number and ribosome binding site strength. We
evaluated the differential roles of gene transcription and translation in shaping TRY trade-offs for
a wide range of expression levels and the sensitivity of the TRY space to variations in substrate
availability. Our results show that, at low expression levels, gene transcription mainly defined TRY,
and gene translation had a limited effect; whereas, at high expression levels, TRY depended on the
product of both, in agreement with experiments in the literature.

Keywords: metabolic synthetic engineering; host-aware models; cell burden; bioreactor production;
multi-scale models; titer-yield-rate; gene expression; RBS strength; promoter strength

1. Introduction

Optimal gene expression is central to the development of both bacterial expression
systems for production of heterologous proteins and microbial cell factories to produce
metabolites of industrial interest. Both applications seek to obtain high levels of products
of interest by means of metabolic engineering. The goal is to reach industry-level overpro-
duction demands in an optimal way, as measured using the key performance indices titer,
productivity (rate) and yield (henceforth TRY).

In practice, some trade-offs in the TRY space must be reached and be adaptive to the
growth and environmental dynamic changes that occur in a bioreactor set-up [1,2]. Indeed,
biomass growth and product yields cannot be simultaneously maximized. For a given
substrate uptake rate, a higher growth yield will lead to a higher growth rate at the expense
of the product yield.

In silico constraint-based metabolic genome-scale models have proved very valuable
in engineering biosynthetic metabolic pathways in which the combined catalytic activity
of a collection of enzymes is coordinated so as to produce the desired metabolites. These
models provide predictions on maximum theoretical yields, optimal flux distribution
to maximize flux towards some metabolite reaction bottlenecks and the required gene
expression leading to increases in fluxes towards the final products [3–5]. It is possible to
deal with the trade-off between yield and productivity using dynamic flux balance analysis
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(dFBA), which incorporates both process dynamics and the constraint-based metabolic
network model and relies on dynamic optimization methods [6–8].

In practice, the metabolic costs of producing proteins, enzymes, and other cell macro-
molecules during gene over-expression often lead to shifts away from the optimal predic-
tions. Yet, the focus of these constraint-based models on metabolism excludes proteins
and other macromolecules, the major biomass constituents, from the model. Models that
integrate metabolism, biomass composition and the cost for the cell to produce a certain pro-
tein or enzyme can potentially yield better predictions than those focused on metabolism
in isolation [9]. Thus, for instance, dynamic enzyme-cost FBA [10,11] includes dynamic
changes in substrate concentration, a detailed description of biomass composition, and
takes into account how much it costs to the cell to produce the desired enzyme.

As an alternative to metabolism-centered models, in the recent years there has been
a increasing interest in the development of models of gene expression accounting for
cellular resources competition [12,13]. These range from very coarse-grain ones [14–17]
to semi-mechanistic ones with varied degrees of granularity [18–20]. This class of models
may consider the interplay between substrates uptake, cell growth rate, gene expression
and interaction with the cell host caused by competition for cellular resources. Therefore,
they have the potential to deal with the related issues of dynamic gene regulation, cell
resource allocation and the varying industry-scale bioreactor environment.

As an intermediate modeling strategy, whole-cell models connecting gene expression,
metabolism and growth, such as the coarse-grained self-replicator models, take into account
the dynamic feedback from gene expression and growth to metabolism [21,22].

So far, the main interest in the literature has been in determining the required optimal
gene expression levels that fulfill the design specifications using any of the modeling
approaches described above. The dynamic regulation of the the specified expression levels
has also been addressed both for heterologous protein expression systems [23] and for
metabolic pathways [24]. Indeed, major improvements in yield, titer and productivity of
engineered metabolic pathways can be accomplished by dynamic balancing of pathway
gene expression [25,26], where the application of dynamic feedback and feedforward
regulation of gene expression addresses the robustness pitfalls of static regulation.

It is known that weakly expressed endogenous genes exhibit low RNA polymerase/
ribosome ratios, while strongly expressed genes have higher RNAP/ribosome ratios, as
this is metabolically efficient [16]. However, to the author’s knowledge, little research has
been done about the differential roles that gene transcription and translation can play in
shaping the trade-offs between titer, yield and productivity at the bioreactor level.

Here, we use a multi-scale model that connects the dynamics of the population of
cells in the bioreactor, those of substrate uptake with the dynamic interaction between the
host and the synthetic circuits expressing proteins of interest. Our model predicts the cell
growth rate and the distribution of cell mass between the protein of interest and the host
ones as a function of the substrate uptake and the main lab-accessible gene expression-
related characteristics: promoter strength, gene copy number and ribosome binding site
(RBS) strength. While in this work we do not consider metabolism explicitly, we do it
implicitly through the substrate dynamics. For a wide range of gene expression levels, we
evaluate the differential roles of gene transcription and translation in shaping the trade-offs
between titer, yield and productivity rate for the three main operational modes of industrial
bioreactors. We also evaluate the sensitivity of the mapping between the expression and
the TRY spaces as a function of variations in the substrate availability.

2. Materials and Methods

In this section the mathematical models and methodological elements used in this
work are presented. First we introduce our multi-scale model including the bioreactor
model, the host model and the synthetic circuit model. Then we dive into the synthetic
circuit gene expression space and into the bioreactor modes of operation. Finally, we present
the TRY performance indices and their relative variation indices for substrate variations.
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2.1. Multi-Scale Model

In order to take into account the different scales involved in the model of a bioprocess,
we consider a multi-scale model integrating the different occurring phenomena. From top
to bottom (Figure 1A), our model describes the interactions in the three levels considered:
the biomass and substrate dynamics in the bioreactor, the dynamics of the host and those
of the synthetic gene circuit expressing the proteins of interest.

Figure 1. Bioprocess multi-scale model. (A). Schematic representation of the multi-scale model. The
three levels considered including the bioreactor, the host cell and the synthetic circuit models and
their interactions. (B). Simulation obtained with the multi-scale model. The colors correspond to the
interactions in panel (A). An example of a batch operation, where the synthetic circuit parameters
are ωA = 50, kA

b = 5 and KA
u = 117. Top panel shows the macroscopic scale with the substrate

availability (left axis) and biomass concentration (right axis). Middle panel shows the growth rate
(left axis) and a measure of the cell burden (right axis). Bottom panel shows the amount of protein A
expressed in a cell (left axis) and its resource recruitment strength JA (right axis). (C). TRY relative
variation indices for substrate variations. Shaded area RVχ represents the integral from minimum
substrate smin to the nominal substrate sn of the difference between the nominal index value and the
actual value.

At the top of our multi-scale model we find the macroscopic dynamics of the substrate
and biomass in the bioreactor (Figure 1A, Bioreactor model). This bioreactor model takes
as inputs the substrate inflow and outflow, together with the specific growth rate of the cell
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population in the bioreactor, and it provides the concentration of available substrate and
biomass in the bioreactor. These dynamics are defined by the following set of equations:

V̇ = Fin − Fout (1)

ṅ = µn− Fin
V

n (2)

ṡ =
Fin
V

(s f eed − s)− y−1µx(n, µ) (3)

where V is the volume of culture in the bioreactor in L, n is the concentration of cells
in the bioreactor (cell · L−1), and s is the amount of available substrate (g · L−1). Fin and
Fout represent the input and output fluxes (L ·min−1), and µ the specific cell growth rate
in min−1.

At the intermediate level (Figure 1A) the host model represents the dynamics of the
cell and takes as inputs the available substrate from the bioreactor model and a measure of
the gene expression resources demanded by the synthetic gene circuit. This host model
provides the cell-specific growth rate and a measure of the cell burden, and it is defined
as follows:

µ =
maa

mp(µ)
ν(s)φb(µ, r, s)φtrt(mr) (4)

r =
φtrt(mr)

1 + Jsum(µ, r, s)
(5)

ṁr =

[
mp(µ)

Nr Jr(µ, r, s)
Jsum(µ, r, s)

−mr

]
µ (6)

ṁnr =

[
mp(µ)

Nnr Jnr(µ, r, s)
Jsum(µ, r, s)

−mnr

]
µ (7)

where the main variables can be found in Table 1, and the terms Jr(µ, r, s), Jnr(µ, r, s) are
the resources recruitment strengths for the host ribosomal and non-ribosomal lumped
ensembles of genes, and Jsum(µ, r, s) = ∑i=r,nr,A Ni Ji(µ, r, s) is the total resources recruit-
ment strength of the cell which represents the cell burden. These are the key functional
coefficients that allow us to explain the distribution of resources in the host and the re-
lationship between the usage of resources, cell growth and protein productivity. Details
of the host–circuit interaction model derivation can be found in our previous work [27].
The parameters used in this work were fitted from experimental data from [28,29] and
correspond to the wild-type E. coli K-12 strain MG1655 [30] and E. coli B/r strain.

The internal variables in the model and the values of the parameter can be found in
Table 2 and Table 3 respectively.

Table 1. States and main variables of the host model.

Name Description Units

r Free mature ribosomes in the cell. molec · cell−1

mr Total mass of ribosomal proteins in the cell. fg · cell−1

mnr Total mass of non ribosomal proteins in the cell. fg · cell−1

mA Total mass of protein A in the cell. fg · cell−1
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Table 2. Internal variables of the model.

Name Description Equation Units

ν(s) Effective translation rate per ribosome. ν(s) = νmaxs/(s + Ks) aa ·min−1

ke(s) Translation initation rate. ke(s) = ν(s)/le min−1

Jsum(µ, r, s) Total sum of all the J in the cell. Jsum(µ, r, s) = ∑i=r,nr,A Ni Ji(µ, r, s) adim
Kr

C0
(s) Effective RBS affinity of ribosomal mRNA. Kr

C0
(s) = kr

b/(kr
u + ke(s)) cell ·molec−1

Er
m Ribosomes density related term for ribsomal mRNA. Er

m = 0.62lr
p/le adim

Jr(µ, r, s) Average J value of one ribosomal E. coli. gene. Jr(µ, r, s) = Er
mωr/(dr

m/Kr
C0
(s) + µr) adim

rt(mr) Number of mature and inmmature ribosomes. rt(mr) = mr/rw molec · cell−1

φb(µ, r, s) Fraction of translating ribosomes of φtrt(mr). φb(µ, r, s) = Jsum(µ, r, s)/(1 + Jsum(µ, r, s)) adim
Knr

C0
(s) Effective RBS affinity of non-ribosomal mRNA. Knr

C0
= knr

b /(knr
u + ke(s)) cell ·molec−1

Enr
m Ribosomes density related term for non-ribsomal mRNA. Enr

m = 0.62lnr
p /le adim

Jnr(µ, r, s) Average J value of one non-ribosomal E. coli. gene. Jnr(µ, r, s) = Enr
m ωnr/(dnr

m /Knr
C0
(s) + µr) adim

KA
C0
(s) Effective RBS affinity of protein A mRNA. KA

C0
(s) = kA

b /(kA
u + ke(s)) cell ·molec−1

EA
m Ribosomes density related term for protein A mRNA. EA

m = 0.62lA
p /le adim

JA(µ, r, s) Average J value of one protein A gene. JA(µ, r, s) = EA
mωA/(dA

m/KA
C0
(s) + µr) adim

mp(µ) Total protein mass of the cell. mp(µ) = c1µ2 + c2µ + c3 fg · cell−1

x(n, µ) Concentration of biomass in the biorreactor. x(n, µ) = nmp(µ) g/L

Table 3. Parameters of the model.

Name Description Value Units Reference

Ks Half activation threshold of growth rate. 0.1802 g · L−1 [31]
νmax Maximum effective translation rate per ribosome. 1260 aa ·min−1 [32]
maa Average aminoacid mass. 182.6 ×10−9 fg · aa−1 [33]
le Ribosome occupancy length. 25 aa estimated [34–37]
φt Fraction of mature available ribosomes relative to the total. 0.7796 adim [17,29] *
lr
p Mean length of ribosomal proteins. 195 aa calculated from [28]

dr
m Mean degradation rate of ribosomal mRNA. 0.16 min−1 calculated from [28]

kr
u Dissotiation rate RBS-ribosome for ribosomal mRNA. 135 min−1 [27] *
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Table 3. Cont.

Name Description Value Units Reference

kr
b Association rate RBS-ribosome for ribosomal mRNA. 8.853 cell ·min−1 ·molec−1 [27] *

Nr Number of proteins that make up a ribosome. 55 adim [27]
ωr Average transcription rate for ribosomal proteins. 4.8658 molec ·min−1 · cell−1 [27] *
rw Weight of a ribosome. 0.0045 fg [29]
lnr
p Mean length of non-ribosomal proteins. 333 aa calculated from [28]

dnr
m Mean degradation rate of non-ribosomal mRNA. 0.2 min−1 calculated from [28]

knr
u Dissotiation rate RBS-ribosome for non-ribosomal mRNA. 6.1297 min−1 [27] *

knr
b Association rate RBS-ribosome for non-ribosomal mRNA. 14.9971 cell ·min−1 ·molec−1 [27] *

Nnr Number of non ribosomal proteins expressed at one time. 1735 adim [27]
ωnr Average transcription rate for non ribosomal proteins. 0.03 molec ·min−1 · cell−1 [27] *
lA
p Length of protein A. 195 aa **

dA
m Mean degradation rate of protein A mRNA. 0.16 min−1 **

kA
u Dissotiation rate RBS-ribosome for protein A mRNA. (6 135) † min−1 [38,39]

kA
b Association rate RBS-ribosome for protein A mRNA. (3 15) † cell ·min−1 ·molec−1 [38–40]

NA Number of copies of gene A. (1 70) † adim **
ωA Average transcription rate for protein A. (0 5) † molec ·min−1 · cell−1 **
c1 First coefficient of mass equation. 239,089 fg · cell−1 ·min2 [27] *
c2 Second coefficient of mass equation. 7432 fg · cell−1 ·min [27] *
c3 Third coefficient of mass equation. 37.06 fg · cell−1 [27] *
y Biomass yield on glucose. 0.45 gbiomass · g

−1
substrate [41]

s f eed Fresh media substrate concentration. 3.6 g · L−1 [31]

* These parameters were re-optimized following the methods described in [27] to better fit the wild-type at low growth rate, since that range is the most relevant for this work. ** Without
loss of generality in the results, we choose lA

p and dA
m to be equal to the ribosomal parameters, and the range of NA and ωA to be in the order of ribosomal and non-ribosomal parameters.

† These parameters define the gene expression space and their value varies in simulations between the minimun value (first value in parentheses) and the maximum value (last value
in parentheses).
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Finally, at the bottom level, a model of the synthetic gene circuits considers the
interaction dynamics with the host and estimates production of the mass fraction of the
proteins of interest (8). In this work, as an example, we consider the expression of a
generic theoretical gene A. More complex synthetic circuits or metabolic pathways with
their corresponding enzymes can be easily incorporated into the model by adding more
equations such as (8).

ṁA =

[
mp(µ)

NA JA(µ, r, s)
Jsum(µ, r, s)

−mA

]
µ (8)

where mA is the total mass of protein A in the cell, NA is the number of copies of gene A,
and JA(µ, r, s) is the resources recruitment strength of the gene A.

The resources recruitment strength of a given gene, gene A in this case, JA(µ, r, s) can
be understood as a measure of its eagerness to capture cell resources to get expressed. As
seen from Table 2, it can be expressed as:

JA(µ, r, s) = 0.62
lA
p

le
ωA

dA
m

KA
C0

(s)
+ µr

(9)

where lA
p /le is the ribosomes density (protein length over ribosomes occupancy length),

the product µr of growth rate and number of free ribosomes is the flux of free resources,
and dA

m is the degradation rate of the transcript. The transcription rate is ωA, the RBS
strength is KA

C0
(s), and the gene copy number is NA. In this work we analyze the roles

that gene transcription and translation may play in shaping the trade-offs between titer,
yield and productivity at the bioreactor level. Thus, on the one hand we will consider
the transcription rate per gene ωA times the gene copy number NA. Notice ωA is directly
related to the promoter strength. On the other hand we consider the RBS strength. The
effective translation rate depends on the availability of the substrate.

In our model, the RBS strength for a gene expressing the protein A is defined as:

KA
C0
(s) =

kA
b

kA
u + ke(s)

(10)

where kA
b and kA

u are the association and dissociation rates between the ribosome binding
site and the transcript, respectively, and ke(s) is a Monod-like function of the extracellu-
lar substrate s that models the translation initiation rate as a function of the maximum
translation rate per ribosome, the ribosomes density, the availability of substrate that
can be catabolized to build aminoacids, and the affinity of the host for the substrate (see
Tables 2 and 3 and reference [27]).

The fact that this RBS strength definition depends on the available substrate as in
Equation (10) has several implications. First, notice that an infinite number of different
combinations of kA

b and kA
u can give the same RBS strength. This is not different from the

situation when considering the substrate-independent saturated RBS strength obtained for
substrate saturation:

KA
C0,sat =

kA
b

kA
u + νmax/le

(11)

Most important, the sensitivity of the substrate-dependent RBS strength to changes
in the substrate concentration in the culture depends on the actual values of kA

b and kA
u .

Notice that for higher values of the saturated RBS strength, the variation of the substrate-
dependent RBS-strength as a function of ke(s) is larger, with:

1
KA

C0
(s)

∂KA
C0
(s)

∂ke(s)
= − 1

kA
b

KA
C0
(s) (12)
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Therefore, in our analysis we evaluated the values of titer, productivity rate and
yield for a nominal value of the substrate concentration in the culture (see Section 2.2) as
a function of the expression space determined by the parameters NAωA, kA

b and kA
u . In

addition, we also evaluated the sensitivity of the TRY space to changes in the substrate
concentration as a function of the expression space.

2.2. Bioreactor Model—Modes of Operation

The extracellular macroscopic inflow Fin and outflow Fout in model (1)–(3) depend on
the mode of operation considered for the bioreactor: batch, fedbatch or continuous.

We assumed a well-mixed, homogeneous culture and the values of parameters defined
in Table 3. The initial conditions for the concentration of cells in the bioreactor, the substrate
concentration and the culture initial volume were set to industrially plausible values for a
small size bioreactor with volume up to 10 L: n(0) = 5× 1010 cell · L−1, s(0) = 3.6 g · L−1

and V(0) = 1 L, respectively. To calculate the initial conditions for the host cell parameters
µ, r, mr, mnr and mA, we ran a simulation for constant substrate s = s(0), and we obtained
the steady-state values for all the variables in the system. These were used as initial
conditions for the host cell parameters.

For the batch mode of operation in the bioreactor, we set Fin = Fout = 0, and we ran
the simulations until the substrate concentration in the bioreactor decreased below 2% of
its initial value.

For the fedbatch and continuous modes, substrate feeding policies were applied such
that the concentration of substrate in the bioreactor was kept constant to the nominal
value sn = s(0) = 3.6 g · L−1. For the fedbatch mode we used Fout = 0 and the substrate
feeding law

Fin(µ, n, V, s) = yµx(µ, n)
V

s f eed − s
(13)

The feeding law (13) makes the substrate concentration in the bioreactor to remain
constant and equal to the initial one [31]. For the substrate feeding concentration we used
s f eed = 180.156 g · L−1, and the bioreactor was fed until the culture volume reached 10 L.
At this point the feeding inflow was set to zero (Fin = 0), and the simulation was continued
in batch mode until the substrate concentration in the bioreactor decreased below 2% of its
initial value.

Finally, for continuous mode, we used the feeding law Fout = Fin = VD(µ, n) with:

D(µ, n) = µ
x(n, µ)

xre f
(14)

where D(µ, n) is the dilution and xre f a reference value for the concentration of biomass in
the bioreactor. We used xre f = 1 g · L−1 to get a production comparable with batch mode.
When the reference is achieved, the concentration of glucose is kept at s = 1.4 g · L−1.
However, the biomass starts in the simulations approximately at 0.01 g · L−1, and it takes
almost all the simulation time to get to the reference. Therefore, for most of the simulation
time the substrate was close to sn = 3.6 g · L−1 as in fedbatch case and in the exponential
phase of the batch one.

The simulation ran for a time interval equivalent to the turnover time, so that 10 L of
culture was introduced and removed form the bioreactor.

Notice the conditions in the three modes of operation of the bioreactor were chosen
so that the metabolic state of the cells in all three cases were equivalent so as to achieve a
fair comparison.
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To keep track of the volume of media and product A added and removed from the
bioreactor we extended the model with the expressions:

V̇f eed = Fin (15)

V̇out = Fout (16)

Ṡout = Fout s (17)

ṀAout = Fout n mA, (18)

where Vf eed is the total volume of media fed to the bioreactor, Vout the total volume of
media removed from the bioreactor, Sout the total mass of substrate removed from the
bioreactor and MAout the total mass of protein A removed from the bioreactor. We assumed
that the substrate removed from the bioreactor due to Fout is recovered and that cells stop
growing once the substrate is removed.

2.3. TRY Performance Indices

Three measures are commonly used to determine the performance of a bioprocess [31]:
titer T, volumetric productivity rate R and yield Y. We evaluated them for the production
of the protein A in E. coli under the three modes of operation of the bioreactor and for
different points covering the expression space (promoter and RBS strength).

The titer T, i.e., the concentration of the molecule of interest at the end of the bioprocess,
was measured in units of grams per liter and was calculated as:

T =
V f n f m f

A + M f
Aout

V f + V f
out

, (19)

where the superscript f indicates the final time of the fermentation, mA is the amount of
protein A mass in one cell and n is the concentration of cells in the bioreactor.

The average volumetric productivity rate R, i.e., the production of the molecule of
interest (protein A) per time unit, was measured in units of grams per liter per hour and
calculated as:

R =
T
t f , (20)

where t f is the final time of the fermentation.
Finally, the yield, i.e., the conversion factor of substrate into the product (protein or

metabolite) of interest, was measured in units of product grams per substrate grams and
was calculated as:

Y =
T(V f + V f

out)

s0V0 − s f V f + s f eedV f
f eed − S f

out

, (21)

where the superscripts {0, f } indicate the initial and final time of the fermentation process,
V is the culture volume in the bioreactor, s the substrate concentration in the bioreactor
and s f eed is the substrate concentration in the feed stream.

We used the nominal substrate concentration sn = 3.6 g · L−1 to evaluate the nominal
values of titer, productivity rate and yield as a function of the expression space determined
by the parameters NAωA, kA

b and kA
u .

2.4. TRY Relative Variation Indices for Substrate Variations

Fluctuations in the availability of limiting substrate are one of the main disturbances
that cells may encounter within the bioreactor environment. Indeed, if the concentration
of limiting substrate in the bioreactor decreases (e.g., because of mixing heterogeneity
or saturation), the achieved TRY will change as the availability and distribution of cell
resources vary.
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To evaluate the sensitivity of the TRY space to changes in the substrate concentration
in the culture as a function of the expression space, we used a measure of the relative
variation of titer, rate and yield with respect to their nominal values for a range of variation
in the substrate concentration, as it can be seen in Figure 1C. Thus, we defined the index:

RVX =
∫ sn

smin

|X (s)−X (sn)|
X (sn)

ds (22)

where X = {T, R, Y} for titer, productivity rate and yield, respectively. The index is the
cumulative relative difference betweenX evaluated for the nominal substrate concentration
and for a range smin ≤ s ≤ sn using Equations (19)–(21).

3. Results and Discussion
3.1. Nominal TRY as a Function of the Expression Space and Bioreactor Operation

The analysis performed with different conditions of bioreactor operation and several
combinations spanning the expression space reveals, as expected, that the cell growth rate
decreases as the cell burden induced by higher expression levels of A increases. Figure 2
shows the results for the nominal variation of the TRY space as a function of the expression
space for the three modes of operation in the bioreactor. We varied the parameters NAωA
and KA

C0
(sn) of the expression space in a range from low to high expression of the protein

A (see Figure 2C).
Titer and yield show a decreasing monotonous relationship with growth rate. Thus,

as observed in Figure 2A, titer and yield decrease as the cell burden decreases (i.e., weak
promoter and RBS strengths are used) and, consequently, the cell growth increases. Indeed,
to obtain higher titer and yield, the cell must invest a higher fraction of its mass to synthesize
the protein A. As a result, it uses fewer cell resources to build ribosomes, and the cell
growth decreases [27].

On the contrary, the maximum productivity rate depends non-monotonously on the
growth rate, achieving a maximum for µ ≈ 0.075 min−1.

Thus, we find the same qualitative trade-offs between titer, yield and rate as a function
of growth rate encountered when trying to optimize the metabolic flux towards a product
of interest using metabolic flux analysis [42,43]. There is a trade-off between titer and yield
on the one hand, and productivity rate on the other. High titer and yield cannot be attained
without eventually decreasing the productivity rate.

Additionally, as expected, the fedbatch mode achieves higher values of productiv-
ity rate and titer of the protein A for all the combinations in the expression space (see
Figure 2A). This simply reflects that in fedbatch mode the total amount of substrate fed to
the bioreactor is larger than in batch and continuous modes. Yet, the normalized results
show no relevant differences (Figure 2B). That is, the normalized titer rate and yield do not
depend on the mode of operation of the bioreactor but only on the the promoter and RBS
strengths in the expression space.

This result provides a principle of space-scale separation for multi-scale models. For
a given substrate availability, and assuming homogeneity in the population of cells in
the bioreactor, the cell growth for each individual local cell and the mass of heterologous
proteins it will express depend on the interactions between the cell host and the genes,
being independent of the way the substrate is fed to the population of cells. The bioreactor
mode of operation will affect the total amount of substrate fed during the fermentation
process and, therefore, the size of the population of cells. Although the geometry and other
physical characteristics of the bioreactor are not considered here, they could be important to
provide a way to characterize heterogeneous distributions of the limiting substrate within
the bioreactor. Individual cells with different substrate concentrations will be subject to
different interactions between the host and the synthetic circuit, and then they might
synthesize the heterologous proteins at different rates.



Appl. Sci. 2021, 11, 5859 11 of 17

Figure 2. TRY of protein A across the gene expression space for batch, fedbatch and continuous
operation obtained by simulation with the multi-scale model. All plots share the growth rate as
the y-axis. Each dot corresponds to a different combination of transcription NAωA and RBS KA

C0
(sn)

strengths. The dot color corresponds to the following: blue, batch; red, fedbatch; yellow, continuous.
(A) Absolute titer, productivity rate and yield. (B) Normalized titer, productivity rate and yield.
(C) Shows the combinations of NAωA and KA

C0
(sn) used and their associated induced growth rate

(note that we plot KA
C0
(sn) at nominal substrate sn = 3.6 g · L−1, since KA

C0
(s) is not constant because

s changes in simulation time). The wild-type growth rate is shown with a black square (right).

3.2. Mapping between Gene Expression and TRY Spaces

In this section, we investigated different combinations of promoter and RBS strength
and their corresponding regions in TRY space. Figure 3 shows the results of TRY space for
fedbatch mode. The colored dots represent different combinations of NAωA and KA

C0
(sn)

and TRY space, and the gray dots show the entire expression space.
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Figure 3. TRY values and relative variation indices of protein A for all the gene expression space
in fed-batch operation obtained by simulation with the multi-scale model. All the plots share the
growth rate as the y-axis. Each one dot corresponds to a different combination of transcription rate
NAωA and effective RBS KA

C0
(sn) (note that we plot KA

C0
(sn) at nominal substrate sn = 3.6 g · L−1,

since KA
C0
(s) is not constant because s changes in simulation time). The colors blue, yellow and

red represent low, medium and high NAωA respectively, while the sizes of the markers are small,
medium and big and show low, medium and high KA

C0
(sn). The gray color respresent the rest of

NAωA and KA
C0
(sn) combinations. (A) TRY measurements: titer, productivity and yield. (B) TRY

relative variation indices for substrate variations. (C) Transcription rate NAωA and the effective RBS
strength KA

C0
(sn).

At low protein expression levels, the promoter strength mainly determines the TRY
values, while the RBS strength weakly influences its value. Figure 3A shows that the low
protein expression region (µ ∈ [0.015, 0.025] min−1) corresponds to low values of NAωA
(blue dots), and the medium to high values (yellow and red dots) are outside this region.
However, varying the value of KA

C0
(sn) (represented in the size of the dots) hardly changes

the value of the TRY space, and they remain within the region of low protein expression
levels. This distinct behavior between varying NAωA and KA

C0
(sn) is because in (9) the

value of JA(µ, r, s) is proportional to the value of NAωA. Whereas the value of KA
C0(s) is in

the denominator of ωA/(dA
m/KA

C0
(s) + µr), so the value of µr limits the effect of KA

C0
(sn) on
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increasing the value of JA(µ, r, s). Moreover, in the case of low protein expression is when
the value of µr is maximized with respect to the case of high protein expression, as there is
less competition for recruiting ribosomes.

At high protein expression, both the promoter and RBS strength determine the TRY
value. Figure 3A shows that the high protein expression region (µ ∈ [0, 0.015] min−1)
corresponds to medium to high values of NAωA (yellow and red dots), as we discussed in
the previous paragraph. Nevertheless, in contrast to the low protein expression case, the
value of KA

C0
(sn) does influence the value of the TRY measures (size of the yellow and red

dots). In particular, high values of NAωA and KA
C0
(sn) (big red dot) maximizes the values of

titer and yield. Otherwise, balanced combinations of NAωA and KA
C0
(sn) (medium yellow

dot or small red dot) maximize the value of productivity rate.
In summary, on the one hand, increasing the promoter strength makes the value of

JA(µ, r, s) rise proportionally, increasing the protein A expression level (if there are cellular
resources that can be recruited by increasing the value of JA(µ, r, s)). On the other hand,
increasing the RBS strength will not always increase JA(µ, r, s) since its effect is limited
by the value of µr. Thus, the promoter strength mainly determines the TRY values, and
the RBS strength can adjust it with some limitations. Finally, there are combinations of
different promoter and RBS strength values that result in the same protein expression value
for a given substrate, which what we focus on in the next section.

3.3. TRY Relative Variation Indices Are Fundamentally Different at Low and High Cell Burden

Different NAωA and KA
C0
(sn) configurations can result in the same value of JA(µ, r, s)

for a given substrate, and hence the same TRY values. Equation (9) suggests these different
configurations could have different sensitivity to variations in s and µr. To test this, we
used the sensitivity indices defined in (22) to analyze how much the TRY space varies
as a function of variations in the substrate availability for different configurations in the
expression space.

Figure 3B shows that, at low protein expression (µ ∈ [0.015, 0.025] min−1), the relative
variation indices RVX span a wide range of values, from being close to zero (little or
no variation in TRY measures due to variations in substrate) to values greater than 1.5
(large variation in TRY measures due to variations in substrate). This result confirms that,
at low protein expression, different configurations of NAωA and KA

C0
(sn) have different

sensitivities in variations of s.
However, Figure 3B shows that increasing protein expression reduces the range of

possible RVX values. In particular, at high protein expression, µ ∈ [0, 0.005] min−1, all
NAωA and KA

C0
(sn) configurations converge to the same RVX values. Specifically, RVT and

RVY approach to zero, while RVR approaches to 0.5. This result shows that, at high protein
expression, it is indifferent the Naωa and KA

C0
(sn) configuration; all Naωa and KA

C0
(sn)

configurations tend to the same sensitivity with respect to substrate.
The TRY relative variation indices are fundamentally different at low and high cell

burden. This is because in the case of high protein expression, µr becomes negligible with
respect to dA

m/KA
C0
(s), so that the JA(µ, r, s) equation can be simplified into

JA(s) = 0.62
lA
p

le
ωA

dA
m

KA
C0
(s). (23)

Then, for high protein expression, JA(s) depends only on the value of s, and it is
independent of µr. This explains why at a high level of expression all the combinations
of NAωA and KA

C0
(sn) tend to the same RVX values; by simplifying Equation (9) into

Equation (23), the effect of NAωA and KA
C0
(s) in the sensitivity of JA(s) becomes similar.

3.4. There Exists a Trade-Off in the Relative Variation Indexes

In the previous sections, we have shown how NAωA and KA
C0
(sn) determine trade-

offs in the measures of titer, productivity rate and yield; in this section we investigated
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whether there is also a trade-off in the relative variation indexes and how NAωA and
KA

C0
(sn) affect it. Next, we show which conditions are necessary to minimize each of the

relative variation indexes.
The titer and yield relative variation indexes are zero when the mass fraction between

host cells and protein A is constant with changes in substrate. The titer and yield equations
are independent of growth rate; therefore, for their relative variation indexes to be zero,
it is sufficient for the cell to invest the same mass fraction as protein A regardless of
substrate changes.

The productivity relative variation index is zero when the product of growth rate
by the fraction of mass invested as protein A is constant with changes in substrate. The
productivity equation depends on the growth rate; then, for its index to be zero, it is not
sufficient to achieve a constant mass fraction invested as protein A (as was the case with
titer and yield). To achieve a productivity relative variation index of zero, it is necessary
that the product of mass fraction and growth rate remains constant.

Therefore, there exists a trade-off between the titer and yield indexes versus the
productivity index since they require different conditions to minimize their values that
are incompatible with each other. Figure 3B shows that none of the combinations of the
colored dots is able to make all three indices zero at the same time (this also true for the
gray dots, although it is not shown in the graph).

To take a deeper look into the relative variation index RVX and their meaning, it is
necessary to analyze the variation of indices for changing levels of substrate. Figure 4
shows that a change in the substrate can affect the TRY values by causing them to go down
or up with respect to the TRY nominal value (it may even be the case that the TRY has one
section where TRY goes up and another where TRY goes down). For example, Figure 4B
shows that in the case of titer it is possible to select a value of ku (solid blue line) that allows
us to increase the titer when the substrate decreases, and we can also select a different
value of ku (dotted blue line) that decreases the titer when the substrate decreases.

Figure 4. TRY at different nominal substrate concentrations for high and low protein expression
levels for fedbatch operation. Orange and yellow (high and medium burden) lines correspond to
different NAωA and KA

C0
(sn) combinations that achieved the same productivity value of 1.31 g/L/h

at the nominal substrate 3.6 g/L, while blue (low burden) lines correspond to combinations that
achieved 4.3× 10−4g/L/h. We chose kb = 15 for all the combinations, ku = {6, 20, 135} for orange
and yellow, ku = {6, 80, 135} for blue, and we used NAωA to achieve the same productivity level.
Low levels of ku are drawn with dotted lines, mid levels with dashed lines and high levels with solid
lines. Then, for these combinations, we reduced the nominal substrate up to 0.1 g/L to see its effect
on titer, productivity rate, yield and growth rate. (A) TRY for medium and high burden NAωA and
KA

C0
(sn) combinations. (B) TRY for low burden NAωA and KA

C0
(sn) combinations.
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From this, we can see that both the absolute variation and the direction of change
in production are important. For industrial production purposes it is not the same for
production to go down than for production to go up with respect to the nominal value.
Then, there may be different combinations of NAωA and KA

C0
(sn) that achieve the same

rate of change, but they may have different directionality, and then one combination can be
more favorable than the other. This highlights the importance of the selection process for
the values of NAωA and KA

C0
(sn).

4. Conclusions

In this work, we demonstrate the need for metabolic burden models as well as their
utility. Our results show that, at low expression levels, gene transcription mainly defined
TRY, and gene translation had a limited effect; whereas, at high expression levels, TRY
depended on the product of both, in agreement with experiments in the literature [5]. Our
model can be used to predict cell growth rate and cell mass distribution between enzymes of
interest and host enzymes as a function of substrate uptake and the main lab-accessible gene
expression-related characteristics: promoter strength, gene copy number and ribosome
binding site strength. Multiscale models, like the one presented here, incorporating the
dynamics of (i) the cell population in the bioreactor, (ii) the substrate uptake and (iii) the
interaction between the cell host and the expression of enzymes of interest, are useful
to understand the differential roles of gene transcription and translation in shaping TRY
trade-offs for a wide range of expression levels and the sensitivity of the TRY space to
variations in substrate availability. Optimal gene expression is central for the development
of both bacterial expression systems for heterologous protein production, and microbial cell
factories for industrial metabolite production. With our approach it will be easier to fulfill
industry-level overproduction demands optimally, as measured by the key performance
metrics: titer, productivity rate and yield (TRY).
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