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Abstract: There are no doubts that quantum programming and, in general, quantum computing,
is one of the most promising areas within computer science and one of the areas where most
expectations are being placed in recent years. Although the days when reliable and affordable
quantum computers will be available is still a long way off, the explosion of programming languages
for quantum programming has grown exponentially in recent years. The software engineering
community has been quick to react to the need to adopt and adapt well-known tools and methods for
software development, and for the design of new ones tailored to this new programming paradigm.
However, many key aspects for its success depend on the establishment of an appropriate conceptual
framework for the conception and design of quantum programs. This article discusses the concept of
module, key in the software engineering discipline, and establishes initial criteria for determining the
cohesion and coupling levels of a module in the field of quantum programming as a first step towards
a sound quantum software engineering. As detailed in the article, the conceptual differences between
classical and quantum computing are so pronounced that the translation of classical concepts to the
new programming approach is not straightforward.

Keywords: software engineering; modularity; cohesion; design; quantum programming

1. Introduction

Designing quantum programs (QP) is quite different from the way in which it is
performed in classical computing, basically because our intuition is anchored in radically
different mathematical models and computer architectures [1]. The (surprising) laws of
quantum mechanics, which underpin quantum computers, allow us to formulate and
solve problems in a new and radically different way from what we are used to in our
macroscopic world. To harness the computational power offered by quantum computers,
we, as programmers, have to change the way we conceive solutions, at least in terms of
their design. At the same time, it only makes sense to resort to the quantum solution if it is
better, from a computational point of view, than any solution available in the “classical”
model. In other words, it would be of little use to have a quantum algorithm to solve
a problem that could be solved with a conventional computer with the same order of
complexity. This makes the quantum programming paradigm a challenge that becomes
even more crucial in terms of what Software Engineering as a discipline can provide [2].

To give support to computation, several quantum architectures [3] and programming
languages [2] have been proposed over the last twenty years. Since the first practical
quantum programming language QCL was introduced in 1988, many other languages have
appeared. They can be categorized into at least four groups [4] attending to the level of
abstraction of the primitives they provide: from high level to hardware-specific ones. In
all of them, QP are translated into a quantum circuit composed by a set of sequences of
quantum gates that manipulate the state of qubits in order to perform a computation [5].

The processing of quantum information is also quite different to classical computing.
Quantum computing is based on the phenomenon of quantum mechanics (superposition,
entanglement, interference, etc.), whereas in conventional computing the state at a given
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time is either “on” or “off” (purely binary) [6]. Moreover, with quantum machines the
power of computation increases exponentially with the number of bits, in contrast to the
linear proportion of conventional computers. Thus, QP are very well suited for tasks
including optimization, analysis, and simulation of huge quantity of data [7]. On the
downside, very common operations in classical programming are no longer possible for
quantum computers, for instance, to produce perfect copies of unknown quantum states [8].
However, perhaps the main difference with classical programming is the fact that quantum
algorithms are designed in a probabilistic way to solve the problems. These and other
relevant differences form the perfect challenge for a community of software developers
used to a set of concepts and rules that are no longer valid for the new paradigm [9].

Very recently, several authors have highlighted the importance of adopting the soft-
ware engineering discipline in the field of quantum computing. One of the most rep-
resentative works is [5], where the term “quantum software engineering” is redefined
and introduces the “quantum software life-cycle”. Furthermore, the authors identify the
main challenges and opportunities for the establishment of the new discipline. The first
remark of importance is that quantum software development is much more than only
quantum programming. Thus, a new approach is needed to cope with quantum software
development. According to that, and in analogy with the classical software engineering
approach, quantum software has to be built economically, has to be reliable, and has to
work efficiently on real quantum computers by means of using the well-known artifacts,
methods, tools, and processes. In [5], the same phases of the classical software development
life cycle are imported to the quantum one and are extended to consider the “quantum”
aspect: quantum software requirements analysis, quantum software design, quantum
software implementation, quantum software testing, and quantum software maintenance.
Most of these steps are nowadays waiting for contributions from the software engineering
community, as summarized below.

Firstly, to our knowledge, there is absolutely no contribution on requirements en-
gineering. With respect to the design phase, a process to transform requirements into a
suitable form so as to make relatively direct the transformation into executable quantum
software is needed. Some authors have also given initial steps on the definition of de-
sign patterns for quantum software [10]. Other authors are extending UML as a notation
to represent (at the same abstraction level as quantum circuits) the sequences of gates
implementing QP [11,12].

Testing and maintenance phases are especially complex, and a real challenge given
the singularity of quantum hardware and quantum execution limits and constraints [13].
Quantum testing, including quantum verification, is also a matter of research due to the
inherent randomness of quantum mechanical systems. The verification of QP is complex in
nature due to the underlying obstacles to design them, the probabilistic nature of quantum
mechanics, and the current absence of error-free hardware to execute QP. Here, the use of
quantum error corrections to emulate noisy-free computers is also of special relevance to
researchers [14].

Of great interest is the Talavera Manifesto for Quantum Software Engineering [15] as the
result of many discussions of academia and industry in 2020. In this manifesto, many prin-
ciples and commitments about how to adapt software engineering principles in quantum
software development have been collected. The main driver is that quantum software
engineering can definitely contribute to the quantum computing field after adapting or
defining the existing principles and methodologies from the classical software engineering
field. The stakeholders who should be involved in this objective are mainly software
developers, researchers, educators, customers, and governments, among others.

In software development, there is a long history of decomposing a system into smaller
modules. Modularization is the technique for dealing with complex systems. Modules are
well established in software engineering, since they were introduced in the 1970s [16] as a
way to reduce the complexity of a system by applying the principle “divide and conquer”,
thus allowing a programmer to approach the development of each module separately
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and almost independently of each other. With a judicious distribution of the complete
functionality of the system among the modules that comprise it, the design of the system
can be greatly simplified. This facilitates enormously the work of the programmer, who
can focus on developing only a (small) part of the program’s functionality and forget about
the rest of the complexity of the system, at least momentarily. A good modular design
facilitates not only the development phase, but also the debugging, maintenance, and
reuse phases, among other desirable characteristics, of the modules created. Modules are
a way to reduce the mental and intellectual load that the programmers of a system must
bear. Modules also allow teamwork, in which each programmer or group of programmers
is responsible for the development and maintenance of one or more modules. Modules
encapsulate a particular functionality and have a well-defined interface that describes how
to access their functionality in a pluggable way.

Modularization is also a factor affecting the software quality attributes maintainability
and reuse. The former is important as modules are dynamic and require modifications in
their lifetime. The latter enables more rapid development of new products or enhancements
of existing products, avoiding developing from “scratch” each time, which would increase
the development costs.

Not many authors have researched on the definition of module for quantum program-
ming from a software engineering perspective, since most of the research results available
come from the quantum mechanics field. One of the most significative works is described
in [17], where the authors provided some insights on the definition of a formal framework
for introducing modularity in QP. They extracted some important conclusions discussed
further in this paper but, from our perspective, some rules for the definition of reusable
modules in terms of software design are missing.

This article aims to lay the initial foundations for the design of QP by addressing
the concept of “module”, its fundamental characteristics, and the rules to design them
for maximizing its reuse. The cohesion and coupling of a quantum module were also
characterized, according to a set of specific rules, grading the cohesion levels in analogy as
it was done for classical structured programming in the eighties. The main contribution of
this work is, therefore, that it addresses the concept of module in the field of gate-based
quantum programming applications and does so from a software engineering perspective,
bringing together the main contributions in the field of quantum computing that, to a large
extent, have an impact on the characteristics that has to fulfill a quantum module. To our
knowledge, no reference has been found in the literature that addresses the definition of
module, so this contribution can serve as a starting point for further work towards a robust
software engineering approach to QP development.

The article is organized as follows. Section 2 gives a background on the quantum
programming concepts to facilitate the reading of the content of the article and to describe
the nomenclature used in it. Section 3 provides a definition of module and the rules that
must be considered together with a definition of several levels of cohesion and coupling in
order to help QP designers to decide on the quality of their modules. Section 4 is devoted
to the discussion on the results of the work and presents some future research lines worth
to be explored in the near future.

2. Brief Background on Quantum Programming

This section is devoted to providing a brief introduction to the basic notions of quan-
tum programming and to show the way in which QP are written.

The first aspect that distinguishes quantum programming from classical programming
is the use of quantum bits (qubits) instead of bits. Unlike a traditional bit, which can only
take the value 0 or 1, a qubit can be in a superposition of those two states, that is, a
probabilistic combination of both (macroscopic) values. A quantum state will be given
by the different values that the qubits can take plus the amplitude (α) which is set by a
complex number. The magnitude associated with the amplitude is the absolute value of
this complex number, while the relative phase is the angle of the complex number in polar
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form. Thus, each qubit is also defined by a magnitude and a relative phase (see [18] for a
complete explanation of the mathematical foundation).

Two qubits may be in four possible states, each parameterized by its amplitude, in
which the quare represents the probability that the qubits, once read, will collapse to that
value. A two-qubit state can be characterized as follows:

System state o f 2 qubits ≡ α0|00〉 + α1|01〉 + α2|10〉 + α3|11〉
where αi ∈ C and |α0|2 + |α1|2 + |α2|2 + |α3|2 = 1

where α0, α1, α2, and α3 are the amplitudes of each state; thus, the square of the absolute
value of each one is the probability of reading such values when collapsing the former
two qubits system. Thus, the superposition of 2n states can be described with just n qubits,
which is a tremendous computational advantage over the classical n bits, where only a
single fixed state is available. In each execution time, and prior to measuring, the qubit can
be a superposition of the previous states. In other words, we no longer have a classical bit
with a specific value (0 or 1), but a qubit given by a superposition of values 0 and 1.

Computation in quantum programming is performed, under the circuit representation
of QP, by means of gates, which provide the primitive operations to manipulate the
magnitude and phase of the system qubits. This notation resembles the origins of current
electronic computation, where the gates implemented the traditional Boolean operations. A
quantum computer implements in practice a set of primitive gates which are used to build
others, using circuits as a collection of interconnected quantum gates and operations. The
type of available gates depends on the hardware infrastructure of the quantum computer,
determining the way in which a program is solved in a specific machine [19].

Without loss of generality, we restricted the discussion of this work to the universal set
of gates described in the seminal article [20]. Among the basic set of gates, the Hadamard
(H) is one of the most used as it provides an equal superposition of states. Other gates
such as NOT (the quantum equivalent of the conventional gate), Z, ROTX, ROTY (for the
manipulation of qubits properties by manipulating the relative phase in different axis),
SWAP (for exchanging two qubits), and CNOT (a two-qubits gate that applies the NOT
operation to a target qubit only if the condition qubit has the value 1) are among the basic
operations that can be considered on a set of qubits before collapsing through a READ
operation. A set of single-qubit gates plus CNOT is called universal when they can be used
to construct any unitary matrix (see [20,21] for more details).

As an example, Figure 1 shows a system with two qubits in superposition after
applying two H gates and Z to the second qubit. Each qubit has a 50% of probability of
collapsing to 0 or 1 but the second one has a relative phase of 180◦ (see the angle of the
radius drawn). The magnitude of the amplitude associated with each value a qubit can
take (i.e., |0〉 and |1〉) is proportional to the radius of the filled in area shown in the circles.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 18 
 

complex number, while the relative phase is the angle of the complex number in polar 
form. Thus, each qubit is also defined by a magnitude and a relative phase (see [18] for a 
complete explanation of the mathematical foundation). 

Two qubits may be in four possible states, each parameterized by its amplitude, in 
which the quare represents the probability that the qubits, once read, will collapse to that 
value. A two-qubit state can be characterized as follows: 𝑆𝑦𝑠𝑡𝑒𝑚 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 2 𝑞𝑢𝑏𝑖𝑡𝑠 ≡  𝛼଴|00⟩ + 𝛼ଵ|01⟩ + 𝛼ଶ|10⟩ + 𝛼ଷ|11⟩ 𝑤ℎ𝑒𝑟𝑒 𝛼௜ ∈  ℂ 𝑎𝑛𝑑 |𝛼଴|ଶ + |𝛼ଵ|ଶ + |𝛼ଶ|ଶ +  |𝛼ଷ|ଶ = 1 

where α0, α1, α2, and α3 are the amplitudes of each state; thus, the square of the absolute 
value of each one is the probability of reading such values when collapsing the former 
two qubits system. Thus, the superposition of 2n states can be described with just n qubits, 
which is a tremendous computational advantage over the classical n bits, where only a 
single fixed state is available. In each execution time, and prior to measuring, the qubit 
can be a superposition of the previous states. In other words, we no longer have a classical 
bit with a specific value (0 or 1), but a qubit given by a superposition of values 0 and 1. 

Computation in quantum programming is performed, under the circuit representa-
tion of QP, by means of gates, which provide the primitive operations to manipulate the 
magnitude and phase of the system qubits. This notation resembles the origins of current 
electronic computation, where the gates implemented the traditional Boolean operations. 
A quantum computer implements in practice a set of primitive gates which are used to 
build others, using circuits as a collection of interconnected quantum gates and opera-
tions. The type of available gates depends on the hardware infrastructure of the quantum 
computer, determining the way in which a program is solved in a specific machine [19]. 

Without loss of generality, we restricted the discussion of this work to the universal 
set of gates described in the seminal article [20]. Among the basic set of gates, the Hada-
mard (H) is one of the most used as it provides an equal superposition of states. Other 
gates such as NOT (the quantum equivalent of the conventional gate), Z, ROTX, ROTY 
(for the manipulation of qubits properties by manipulating the relative phase in different 
axis), SWAP (for exchanging two qubits), and CNOT (a two-qubits gate that applies the 
NOT operation to a target qubit only if the condition qubit has the value 1) are among the 
basic operations that can be considered on a set of qubits before collapsing through a 
READ operation. A set of single-qubit gates plus CNOT is called universal when they can 
be used to construct any unitary matrix (see [20,21] for more details). 

As an example, Figure 1 shows a system with two qubits in superposition after ap-
plying two H gates and Z to the second qubit. Each qubit has a 50% of probability of col-
lapsing to 0 or 1 but the second one has a relative phase of 180° (see the angle of the radius 
drawn). The magnitude of the amplitude associated with each value a qubit can take (i.e., 
∣0⟩ and ∣1⟩) is proportional to the radius of the filled in area shown in the circles. 

 
Figure 1. Two qubits in superposition and the second with a relative phase of 180° (image obtained using the 
https://algassert.com tool, accessed on 23 June 2021). 

It is important to note that when a state is read, the superposition is lost. For instance, 
after reading any qubit on Figure 1, there is a 50% of probability to observe each value of 
the state, so the value read could be 0 or 1. This is one key aspect of quantum 

Figure 1. Two qubits in superposition and the second with a relative phase of 180◦ (image obtained using the https:
//algassert.com tool, accessed on 23 June 2021).

It is important to note that when a state is read, the superposition is lost. For instance,
after reading any qubit on Figure 1, there is a 50% of probability to observe each value of
the state, so the value read could be 0 or 1. This is one key aspect of quantum programming:

https://algassert.com
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the exploitation of performing computations in superposition, but at the same time, one
of the biggest headaches for programmers, along with quantum entanglement. Quantum
programs usually consider the entanglement mechanical phenomenon where a part of the
program cannot be described without considering another part, even if these parts are
considerably separated in space. Thus, measurements done on one part instantaneously
affect the other part entangled with it. This property has huge applications in quantum
computing, especially in cryptography [22].

A quantum register is a collection of qubits used for quantum computation. A quan-
tum circuit is a sequence of gates applied to a subset of the qubits of a quantum register.
Figure 2 shows a quantum circuit demonstrating the increment and decrement of integers
in superposition. More specifically, we implemented the increment and decrement opera-
tions using as input the value |1〉. As it can be seen, the decrement operation is simply the
increment with its constituent operations reversed. The initial instructions write the value
|1〉 to a quantum integer and then execute H and Z gates on the third qubit, resulting in a
register as a superposition of |1〉4 and |5〉4.
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Basically, the steps followed for quantum computing include: (1) the initialization of
qubits, (2) several operations on those qubits by applying any combination of gates, and (3)
the measurement of quantum states to get classic data. The second step can be the sequence
of many different combinations of gates, carrying out well known abstract operations such
as entanglement, the computation of function tables, the reuse of computations of another
quantum algorithms (Oracle, QFT, etc.), uncomputing for removing the entanglement that
resulted from computation, and operations with phases to converts inaccessible phase
differences into readable magnitude differences, among others.

There are many quantum primitives and algorithms of high interest that can be used
as building blocks of bigger modules. Next, we provide a summary of the main ones.

Many of the quantum algorithms that have a speedup on quantum versus conven-
tional computers require calls to an oracle. An oracle provides, in a black-box fashion,
information about a variable or a function, without revealing the variable or functions itself.
The task in some algorithms is to determine the variable or function used by the oracle in
as few calls as possible. In other words, an oracle is a function which we supply with data,
and it responds with a yes/no. Some of the most well-known oracle-based algorithms
are Deutsch–Jozsa and Grover’s. The Deutsch–Jozsa algorithm solves, with exactly one
query, a black-box problem which probably requires exponentially many queries for any
deterministic classical computer. The algorithm determines whether a function is either
constant (0 on all inputs or 1 on all inputs) or balanced (returns 1 for half of the input
domain and 0 for the other half). Grover’s algorithm enables one to find, with a high
probability, a specific item within a randomly ordered set of N items in

√
N operations (it

is a quadratic speedup, since a classical computer requires O(N) operations). In general,
Grover’s algorithm can be applied when having a function which returns true for one of its
possible inputs, and false for all the others. The job of the algorithm is to find the one that
returns true. The basic ideas that comprise this algorithm are applicable in a much broader

https://algassert.com
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context than searching on a database as it could be used for the implementation of other
algorithms (for example, the factoring Shor’s algorithm for factoring integer numbers).

The following are building blocks and patterns that appear in many algorithms.
Quantum amplification converts inaccessible phase differences inside a QPU register into
readable magnitude differences (and vice versa). It is a generalization of the Grover’s search
algorithm that can be used as a subroutine providing performance speedup there where it is
needed to check the validity of a solution (such as Boolean satisfiability, finding global/local
minima, among others). Quantum Fourier transform (QFT), the quantum analogue of the
inverse discrete Fourier transform, is a primitive allowing quantum software developers
to access hidden patterns and information stored inside a QPU register’s relative phases
and magnitudes. While the amplitude amplification primitive allows information to be
extracted about discrete values encoded in the phases of the register, the QFT primitive
aims to obtain patterns of information encoded in the QPU register. QFT is part of other
well-known algorithms such as Shor’s algorithm and quantum phase estimation algorithm.
Quantum phase estimation is also a very useful tool that, as with amplitude amplification
and QFT, extracts tangible, readable information from superpositions. Phase estimation
helps determine (to some precision) the eigenphases associated with the eigenstates of a
QPU operation, returning a superposition of all the eigenphases. In other words, it finds a
way of moving information about the global phase into another register in a readable form.

There are many other well-known quantum algorithms such as Shor’s algorithm for
solving the discrete logarithm problem and the integer factorization problem in polynomial
time, and Simon’s algorithm to find how the values of a function on whole numbers repeat
themselves. All these and other primitives are common and frequent assets for building
QP. A more detailed description of all the algorithms and applications can be found in [23].

Given this initial background to quantum computing and how QP are built by means
of gates and circuits, we discuss how to complete the first steps into the modular develop-
ment of QP.

3. Towards Modular Quantum Programming

This section provides, after detailing the existing gap between classical and quantum
programming, some insights with respect to the concept of modularity in the quantum
computing field. First of all, some background on the existing gat between classical and
quantum ways of programming is given in Section 3.1. Afterwards, the main existing
works dealing with modularity in the quantum regimen are given in Section 3.2, and
finally, the definition of module for QP is given together with the definition of cohesion
and coupling metrics.

3.1. Impedance Mismatch between Classical and Quantum Programming

In traditional software engineering, the engineer makes use of conceptual tools to
model the target system in the problem domain and, with gradual transformations, de-
velops software using a programming language, where the design concepts have some
correspondence with the implementation ones. Object orientation is the culmination of this
process, where classes normally mimic concepts of the problem domain. In other words,
through an iterative process of successive refinement, engineers arrive at a solution where
the common concepts identified in the previous phases are not lost along the way.

In contrast, when developing a QP, the engineer has to make use of mathematical
structures and algebra operators to manipulate qubits. More specifically, they make use of
magnitude and phase manipulation tools to provide a solution to a well-defined problem.
Such tools do not come from a direct translation from concepts and rules used at the
design level, but rather from the quantum mechanical field of physics itself. There are no
classes or functions or similar high-level concepts (yet) at the programmer’s disposal to
develop QP. Therefore, engineers face a big conceptual gap between conceptualization
and implementation. This implementation, in terms of low-level concepts, is in a manner
equivalent to how a programmer would implement the Quicksort algorithm in assembler,
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which reminds us to a large extent to the beginnings of computing, with wiring programs
directly on the primitive ENIACS.

The clear proof of this conceptual gap is the fact that, although most of the algorithms
conceived and widely known in quantum programming (such as Grover, QFT, and Shor
to mention a few) are very well described and studied [23], they are difficult to under-
stand, reuse, and much less to be extended by most of the “classical” programmers, a
barrier that cannot be minimized as of today by learning the fundamental concepts of
quantum programming.

To add more difficulties, very basic operations of classic computing do not have a
direct equivalence in quantum computing and have to be carried out in different, and
sometimes very creative, ways. For instance, copying the value of a variable into another,
a basic operation in traditional computing, is not possible in quantum computing, as
information cannot be replicated (because of the no-cloning theorem [8]). The only way
to do that is by means of teleportation [24] but at the price of destroying the qubit being
teleported, the original one. This is only an example of the big conceptual gap between
our way of thinking and the way in which quantum mechanics constraints what can be
programmed with quantum computers.

Authors of [23] analyzed up to twenty well-known quantum computing algorithms
which are each one classified according to five paradigms (Grover operator, Quantum
Fourier Transform, Harrow–Hassidim–Lloyd, Variational Quantum Eigenvalue solver, and
direct Hamiltonian simulation). A combination of such paradigms can be found in the
implementation of any quantum program. The number of quantum paradigms is reduced
compared to classical software case because of the limitations imposed by unitarity and
reversibility requirements of quantum operations and the intrusiveness of measurements.
According to the area of application, each algorithm can also be classified into a class of
quantum algorithm, namely, algebraic applications, graph applications, learning applica-
tions, inverse function computation, number-theoretic applications, quantum simulation,
and quantum utilities.

To add, if possible, more complexity to the new software development paradigm, QP
have to be developed using the minimum number of gates in order to finish execution
before decoherence and other quantum errors arise, which reduce the probability of success
in the computation. Classical computers are also affected by many sources of errors, but
they can be fixed with a reduced and well-defined extra memory and logic. However, the
loss of coherence in quantum computers (coming from vibrations, fluctuations of tempera-
ture, electromagnetic interactions with the environment, among others) produce a loss of
the amazing properties of the quantum computer. To minimize this problem, engineers
have tried to develop methods for algorithm optimization (also known as transpilation)
to be able to execute them on noisy quantum computers (see [3,25] for more detail on
this subject). Many companies are trying to minimize decoherence by using more robust
quantum processes and studying different ways for detecting errors (mainly by using
temperatures close to absolute zero and trapping atoms in electromagnetic fields).

To sum up this motivation, quantum computers are not a simple evolution of classical
computer in the same way as quantum programming is not yet another programming
paradigm, and has nothing to do one with the other. As described in the literature, there
are some problems where quantum algorithms (such as Deutsch–Jozsa and Simon) achieve
exponential speedups over any known classical algorithms, which is a revolution in the
computation field as quantum computers might surpass existing computers for some kinds
of problems.

The continuity of classic computers and software development tools developed has
not been questioned in recent years. Quite the contrary. Current computers remain,
at least in the medium term, as the most simple and economical way to solve most of
the problems. At the same time, quantum computers have the opportunity of promoting
radical advances in many fields such as chemistry, materials science, cryptography, machine
learning, engineering, and finance, among others.
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3.2. Background on Modularity in Quantum Programming

In general, modularization is the process of breaking down a software into several
modules, each one developed separately. One module should have limited or no depen-
dency on other modules, in such a way that introducing changes in one of them affects the
minimum number of other modules in order to reduce error propagation and maximize
reuse. Modules also reduce intellectual burden on programmers, who can focus on just the
functionality offered by the module. This concept has permeated and is present, in various
forms, in all “traditional” programming languages.

Quantum programming, with its special and counterintuitive rules and principles,
should not be an exception to the inclusion of modules. Problem decomposition and
module reuse have served us very well over the last 50 years in computer science (and
for centuries to Humankind in other disciplines), and we should at least try to include
modules and its key features into this new software development paradigm. However,
to be able to talk about problem decomposition and reuse, we first need to explore the
minimum reuse unit, the module, as well as the rules that constraint how to integrate and
connect these units to other parts of a QP.

Module independence is a key characteristic of any design. To measure it, at least
qualitatively, the concepts of cohesion and coupling have been defined [16]. Cohesion is
a measure of the relationship strength of the elements included in the definition of the
module. In classical structured programming, seven levels of cohesion are distinguished,
ranging from functional (the best) to co-incidental (the worst). Inter-related with cohesion,
coupling measures the relationship strength among modules themselves. Six types of
coupling have been distinguished, ranging from data (the best) to content (the worst). A
good software system design should look for designing modules with high cohesion and
low coupling [26]. These quality attributes have guided software developers for decades to
achieve software systems of the highest possible quality.

In the context of quantum programming and to our knowledge, there is only one work
analyzing the concepts of module, cohesion, and coupling. In [14], several quantum archi-
tecture design characteristics to measure these attributes were identified. It distinguished
two levels of cohesion, depending on the use of qubits superposition (temporal cohesion)
and the existence of “correlation between neighbouring qubits in order to interact”. Regard-
ing coupling, the authors identified four levels, ranging from measure coupling (which
exists between a quantum state and its environment) to non-coherent coupling (caused
by loss of energy from emission of photon to the environment). From our point of view,
both cohesion and coupling are defined there from a hardware perspective, and therefore,
are not a useful tool for software modeling. Moreover, the definition of module is not
clearly stated.

Prior to these definitions, we must clearly define what a module is or can be in
quantum computing terms. In [17], a formal framework for introducing modularity in
quantum circuits is included. They demonstrate that it is not always possible to reuse a
quantum circuit without knowing its implementation and, in certain situations, a small
change in the algorithm can lead to a fully re-conception of the quantum circuit itself.
Figure 3 shows an example of an abstracted quantum circuit with two slots to parametrize
different implementations of unitary transformations (U), which range over the set of
possible inputs {U}.

We can have many algorithmic realizations of each Ux, provided that each one pro-
duces the same output (at the vector level) given the same input. According to [17], given
Ux, we can say that a circuit P is modular with respect to Ux if it is possible to construct a
Ux-independent module with different implementations provided that: (1) there is inde-
pendence with respect to the infrastructure used for its realization (this requires that the
physical systems implementing P and U are well-known, including the respective Hilbert
spaces and computational basis), and (2), no changes on P are needed for replacing one Ux
implementation by other equivalent.
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There is a constraint that must be satisfied if we want to have U modular with respect
to P. Here, the classical concept of black box is needed. A black box [27] is a device or
system which can be viewed in terms of its inputs and outputs, without any knowledge of
its internals. Two algorithms are equivalent and indistinguishable if, given any inputs, they
generate the same outputs. Thus, if P is modular with respect to U, then P[U] does not reveal
which algorithm has actually been used for implementing U. This is a constraint limiting
what kind of quantum computations can be made modular. As described in [17], there are
many algorithms (like phase estimation, quantum factoring, solution of linear equations,
among others) that are not modular (because they work by extracting information beyond
the black-box properties of the embedded module), thus precluding the implementation
of circuits that work for every possible input and forcing to be adapted for each possible
entry. In these cases, some redesign is needed in order to make them modular.

Thus, in spite of the importance of being able to define QP as a set of separately
constructed modules that are combined as needed without knowing their internal imple-
mentation, scarce theoretical results have demonstrated in which situations the modularity
is not possible, although they also have provided methods to avoid the situation for certain
algorithms. In some cases, modularity can be achieved at the cost of losing part of the
information computed, while, in other cases, the information sacrificed is not crucial (for
more detail about this subject, readers can refer to [17]). In any case, more guidelines for
modular design are needed in order to facilitate the development of QP.

3.3. Quantum Modules

Modules are considered, under the circuit representation, as “regular” gates that take
qubit lines as inputs, apply the operations included inside the module to the joint state
represented by the input qubits, and have the same number of qubits lines as output. Each
operation (gate) corresponds to applying a concrete matrix to the quantum state, so the
gates that make the module up are written from left to right. Figure 4 shows a simple
quantum module with four (input and output) qubits (a), and a program composed by two
sequential modules (b).

It is also possible to apply a module to a subset of the total program qubits, as
shown in Figure 5a, when there is no entanglement between the involved qubits, the
equivalence with the application of identity operators to the other qubits, as shown in
Figure 5b. This is because (I

⊗
I
⊗

U)(|ψ〉
⊗
|θ〉

⊗
|ξ〉), where

⊗
is the tensor product,

is the same as |ψ〉
⊗
|θ〉

⊗
U|ξ〉 (again, when there is no entanglement among input

qubits). When the qubits are entangled, as in Figure 5c, the state cannot be factored as
a product of the individual qubit states. Tensor product is the machinery used to build
quantum systems from other existing quantum systems. See [18] for more details on the
mathematical foundations.
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It should be noted that in quantum computing, not every unitary matrix is allowed
for implementing quantum systems. Those gates (as unitary matrices) are only valid
coming from the combination of gates from the basic set, equivalent to the basic instruction
set of a CPU. This set is dependent on the selected quantum hardware for executing the
quantum program.

Considering all the above, the definition of module can be as follows. A quantum
module is the basic reuse unit in quantum programming, which provides a specific func-
tionality and has an interface given by the same number of input and output qubits. A
module has to satisfy the following rules, summarized in Table 1:

1. Any quantum gate belonging to the universal gate set is considered itself a quan-
tum module;

2. A quantum module has to be unitary and reversible. This is because every operation
on a state must keep the sum of probabilities of all possible outcomes at exactly 1,
and it must be possible to obtain the previous state by using only the output state,
without additional information. In order to be reversible, no measurement of any of
the input qubits can be made inside the module. In addition, the designer of a module
U may need to include additional input qubits in order to allow the development
of the module U† that performs the inverse operation: reconstructing the original
input qubits that entered U. This U† module is computed as the Hermitian matrix
(transposed, complex conjugate) of module U;

3. In case the module needs scratch qubits to store the result of temporary computations,
it has to make sure that they are returned back to the value they had before entering
the module. This can be a hard process in case the scratch qubits got entangled inside
the module. Scratch qubits that are entangled with data qubits alter the state of the
data qubits if they are reset or measured. Reclaiming scratch (ancilla) qubits is the
process of returning them to their original state for future reuse [28]. This facilitates
the reuse of the scratch qubits on subsequent computations, and, at the same time,
the modification of the scratch qubits downstream does not affect the output qubits
in case they are entangled;

4. A quantum module can be replaced indistinguishably by any other equivalent mod-
ule which, given the same inputs, produces the same outputs. In other words, it
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should be possible to make use of the module without knowing its construction, as a
black box. Please note that, according to the “no-go” theorem described in [17], the
implementation in circuits of certain quantum algorithms may force to rebuild almost
entirely the circuit after changing some input data. These types of circuits are not
considered modular according to the given constraints, as they can reveal information
regarding which algorithm was used beyond its black-box properties;

5. It is possible to include a controlled sub-module to decide, at run-time, if the sub-
module should be executed or not. Controlled modules are a particularly important
class of modules where one qubit (the controller) turns on or off a unitary operation U.
This is a very relevant question in quantum computing because in many cases it is not
clear how to directly add a control to a quantum operation, especially in situations
where the module implementation is unknown. This is a matter of research that has
generated a lot of theorical work [29]. For our purposes and considering the desired
black-box properties of the modules, the only way to accomplish that is through the
use of the SWAP gate, as it is described in [30];

6. Any explicit sequence of universal gates or sub-modules integration is also considered
a quantum module, provided that all the stated constraints are satisfied;

7. Input qubits should not be entangled (though superposition is allowed) with other
qubits that do not enter the module or a sub-module. Otherwise, the execution of the
module will generate changes beyond the output qubits specified in the definition
of a module as a black box, effectively breaking encapsulation. In addition, it could
hinder reversibility since the module does not have enough information to reverse the
computation. This last rule is added more as a recommendation than an obligation
but is needed in order to achieve universal module reuse (for more details on this see
the Discussion Section).

Table 1. Summary of rules for building up quantum modules.

Property Description

Uniformity Basic quantum gates are modules
Composability Any valid sequence of modules is a module

Indistinguishability Given inputs, if same outputs then same module
Unitarity and reversibility Modules have to be reversible because quantum mechanics is reversible

Ancilla reclaiming Reclaiming ancilla qubits via uncomputation
Entanglement limitation Input qubits should not be entangled with others external to the module

Feasibility of controlled sub-modules A control qubit can decide whether or not to call a submodule

Figure 6 shows a possible abstract structure of a general module. Some scratch (ancilla)
qubits could be considered (as auxiliary) in order to make the computation reversible. The
result of the computation could be stored in the relative phase of the output qubit/s (or
directly as magnitude). The scheme showed corresponds to a module which itself includes
the reverse of the operation performed. As long as the computation does not interfere with
the relative phases of the output registers, the information can survive the uncompute
step [30]. Please note that not all parts of the figure are mandatory. For instance, a module
may not need scratch qubits or to perform the uncompute step.

Figure 7 shows an example of a module developed to add two integer numbers
encoded in 4 and 3 qubits, respectively. This module implements the expression a = a + b.
This in an example of a module that follows the aforementioned structure, but which:
(1) does not require scratch qubits to store temporary values, (2) does not require additional
qubits to store the result of the computation, and (3) does not require an uncompute step,
since the result is stored on the input qubits. In addition, the operation is performed in
such a way that is reversible: Input values can be re-constructed from output one just by
subtracting the second number from the first one.
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Figure 7. Example of reusable module for adding two numbers represented by the register a and
b. Despite it does not include all the elements indicated above, it is a module that fulfils the
constraints required to be a module (image obtained using the https://algassert.com tool, accessed
on 23 June 2021).

Figure 8 shows an example of a module which implementation is closer to the abstract
scheme shown in Figure 6. It solves a concrete 3-SAT problem including three Boolean
inputs. After a superposition of the inputs, two logical clauses are evaluated, followed by
a flip of phase to highlight the selected valid combination of Boolean values; afterwards,
uncomputing is performed to obtain the original values that satisfied the Boolean equation,
followed by a mirror operation as an amplitude amplification mechanism.

The next section is devoted to classifying modules according to their levels of cohesion
and coupling.

https://algassert.com
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3.4. Cohesion and Coupling Levels for Quantum Modules

After the definition of quantum module and its main characteristics, we can now
tackle the study of the cohesion and coupling levels. We followed, to some extent, the
naming conventions of cohesion levels from classic programming; however, in some cases,
we adopted new names and constraints, according to the quantum context. From best to
worst, we considered that a module U can have functional, sequential, communicational,
and clustered cohesion. For all the definitions we always assumed the same Hilbert space
and communicational basis among the quantum information exchanged by modules.

We argued that a module U has functional cohesion when its sub-modules contribute
to the realization of a single well-defined task. Figure 9 shows an example of functional
cohesion, where there is a module (called “incr”) for incrementing an integer number rep-
resented by three qubits. Please note that the other constraints coming from the definition
of module were also fulfilled (specially, its reversibility). Functional cohesion is the greatest
level and the most desirable in terms of reuse and modifiability of a QP.
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When the module performs more than one task, but still the order in the execution
of the gates is relevant, we say that the module U has sequential cohesion, being a lower
level than functional one. An example could be a module performing the increment and
the multiplication by a factor of two.

The next level is communicational cohesion. We consider that a module U has commu-
nicational cohesion when the embedded sub-modules use, each, only a subset of the input
qubits to carry out separate tasks, and their partial results are returned by the module.

https://algassert.com
https://algassert.com
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However, there are some execution dependencies among some of the tasks. Figure 10
shows the situation of a module that computes both the Boolean OR and AND operations
(the last two qubits of the circuit are where the outputs are calculated and stored). This level
of cohesion is not desirable because the reuse of the module is not so feasible. It should be
preferrable to split the tasks of U into two separate modules embedded sequentially into
the circuit, as is taught on first year courses on classical programming.
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Finally, a module has clustered cohesion when the embedded sub-modules carry out
independent tasks that overlap in time, and therefore, there is no order. A control qubit can
activate or deactivate the execution of some tasks of the module. This is the worst level of
cohesion because it greatly prevents the reuse of the module.

Coupling is a metric used to measure the degree of interdependence between software
modules. In this case there is no direct correspondence with the coupling levels of classical
software as the concept of “module call” does not exist as such in quantum programming.
In this context, we studied two situations: (a) the coupling between a module (Ma) and the
submodules (Ma,i) used to build Ma, and (b) the coupling between the submodules Ma,i
themselves as part of the realization of Ma.

Regarding (a), we argued that Ma,i is data coupled with Ma when the only information
exchanged between the Ma and Ma,i is a subset of the qubits handled by Ma. This is the
coupling level by default. We argued that Ma,i is control coupled with Ma when one or
more input qubits of Ma,i are used to control internally its execution. Coupling by data is
the desirable level for all the modules and it is generally related to functional, sequential,
and communicational cohesion. Control coupling may be more frequent for clustered
cohesion and should be avoided to have a reusable module.

Regarding (b), two submodules Ma,i and Ma,j are coupled by entanglement when
some output qubits of Ma,i are entangled with input qubits of Ma,j as a consequence of
the execution of Ma,i. This is a high level of coupling and should be avoid because when
this occurs the effect of the module Ma,j is given not only by its input qubits but also
by the interactions that its qubits may have with Ma,i, canceling the expected properties
of a black-box module. Please take into account that we were not ruling out the use of
entanglement but rather limiting its scope to the boundaries of the module.

Both the definition of module and its rules, together with the different levels of
cohesion and coupling, were a useful tool for the design of any QP.

4. Discussion

For a successful achievement of a quantum software engineering discipline, we con-
sidered crucial the establishment of abstractions for quantum software development. In
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object-oriented software development, as an evolution from the original abstract data
types, the main abstractions used were the concepts of object and classes, as factories
for creating objects according to a given template. Before that, procedures and functions
were the only abstractions available to implement software, defined as a sequence of in-
structions that manipulate (common) data, and allowing hierarchical interactions through
procedure-to-procedure calls.

At first sight, the notion of class may not be probably an adequate abstraction for
quantum software development. The software engineering community may have the
temptation to quickly adopt well-known abstractions (classes, objects, etc.) and their
corresponding techniques and look for the equivalence for developing quantum software,
trying to do something that is radically different. As stated in [31], researchers should focus
their contributions having in mind to “think and model in quantum”.

This is exactly the rationale behind the seven rules that define a module that have
been described in this work. We think that they are the minimum set of rules necessary to
allow the successful creation of modules in quantum programming. However, they can
nevertheless be extended with additional ones by quantum software designers according
to their specific needs and limitations (for instance, characteristics of the hardware where
they execute their QP).

The rule #1 states that the elementary quantum gates are modules, while #6 says that
all groupings of gates that meet the previous rules are also modules. That is, they are
the rules that establish that it is possible to create new modules by composing modules
that meet certain properties. These types of rules are present in the definition of reusable
entities in all classical programming languages.

Rules #2 to #5 are derived from the intrinsic characteristics and limitations imposed
by quantum mechanics as follows. Rules #2 and #3 are directly related to the fact that com-
putation must be unitary and reversible. If additional qubits are used to store temporary
results (ancilla qubits), they must be restored to the previous state after performing the
computation before being used in a new computation to avoid unwanted effects of their
(possible) entanglement with other qubits. Rule #4 is, perhaps, the most surprising one,
derived from deeper research on modularity of quantum circuits. It states that a set of gates
and sub-modules can be considered modular, and therefore, can be reused as a building
block in other QP only if its black box properties, that is, considering only the input and
output values, do not allow the user of the module to identify how it is implemented.
From this it follows that, unlike classical programming languages, not every grouping
of quantum gates is modular per se. Rule #5 only applies if, in a module, it is needed to
include control-U functionality. That is, if one or more qubits are going to control whether
a certain part of the module, which implements a U operation, should be executed or not.
As such, this rule is not essential since many algorithms do not need to make use of this
functionality. However, if needed, it should be included carefully, for instance, by using
SWAP gates.

Rule #7 states that, if any entangled qubit enters a module, then all the qubits that are
entangled with it must enter the module too. This is a recommendation, rather than an
obligation, considering that we aim to achieve universal module reuse, that is, being able
to reuse the module without knowing anything about the rest of the quantum program
in which it will be integrated into. The objective is to mimic the characteristics of the
standard libraries that come with programming languages, like <math>, which provide
functionality that can be used and reused many times, and which introduce no restrictions
or assumptions about the source code that surrounds their use. Entanglement opens up the
possibility that qubits entering a module are modified by some other parts of the quantum
program, outside the module’s control. It is like having global variables or pointers to
the local variables of functions, which can be modified from any point of the source code,
in a concurrent program. This is, in general, a bad design. If the programmer is careful,
one can still create a program that does its job and uses global variables, since one knows
and controls how the code is implemented. However, it would be hard and error-prone
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to reuse these functions in other programs, especially by third parties. Our position with
entanglement is similar to this one, and this is why we state that, in order to maximize
reuse, all entangled qubits or none at all should enter a module. This rule may seem too
restrictive but, from our point of view, is needed if we want to converge to an off-the-shelf
scheme of module cataloguing and reuse in quantum programming.

We have also purposely avoided, in general, references to concrete quantum pro-
gramming languages when defining the main properties that a module should have. Our
objective is to provide a “language-agnostic” module definition, which could be used
in any such language, given the variability in their implementation (from imperative
languages like Q#, functional languages like QPL to specialized libraries and SDKs for
general-purpose languages like Qiskit).

We adapted the classical definitions of cohesion and coupling between modules to
the characteristics of the (circuit-based) quantum programming and quantum modules.
The different levels of cohesion highly determine the coupling level between the modules.
As expected, the higher the cohesion, the lower the coupling, which provides much better
reuse, among other benefits from modular design. The provided classification can be
subjected to other points of view and updates, given the novelty of quantum programming
and the small quantity of examples to take as input to evaluate it. For instance, since there
is no support for datatype definitions right now (data are just qubits) it makes no sense to
consider stamp coupling. However, this may change in the future. Further, most of the
developed algorithms were designed for a specific task and they are not usually conceived
thinking in their reuse as part of a more general program. As the development of new
software and algorithms for quantum programming progresses, new case studies become
available to validate the usefulness of heuristics such as those provided in this work. On
the other hand, we identified a new type of coupling that is only present in QP: coupling
by entanglement.

We also made a proposal for a general internal structure that a module could have,
according to the module definition rules described in the article. Not all the blocks proposed
on the structure are mandatory, but rather the objective is to provide a starting point, it is, a
template for helping the quantum module designer to keep in mind all the options that he
should consider when developing quantum modules.

As with general purpose languages where the use of generics is important, the param-
eterization of modules in such a way that concrete realizations can be made from a template
is also of interest. In terms of module parameterization, we identified two scenarios at
the design level: (1) when including gates with a concrete configuration parameter (e.g.,
indicating the angle of the phase rotation gate) into a module, (2) when considering a
conceptual parameterization at the schematic design level (e.g., the one we have when it is
indicated to the phase estimation algorithm that it receives the operator U on which such
estimation is made). In the first case, the parameterization is seen as the concrete realization
of the gate being embedded on the module. In the second case, it is an abstract representa-
tion aspect of the algorithm whose only implication is the fact that when implementing
the specific algorithm, the gates necessary for its implementation have been included as
part of the module realization (in the case of the example of phase estimation, it would be
equivalent to the unitary operator U on which the invoked estimation is made, applying all
the controlled operations C−U2j

). The first scenario is fully compatible with the definition
of module provided above. However, the second one requires a deeper research since in
theory it would be possible to provide a concrete operation U that could make the whole
module not valid according to our definition.

From our point of view, one important contribution comes from the definition of
domain-specific languages for quantum software development (QDSL). To that aim, the
extensions of the UML notation for enabling classical and quantum aspects to be modeled
together are very useful for software developers (for example, see the quantum UML profile
introduced in [12] to design and model quantum circuits using UML activity diagrams).
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Together with the use of QDSL, another major contribution to the establishment of
quantum software engineering discipline comes from working on the use of patterns [10].
The definition of a repository of useful patterns will serve as generic way solutions to
recurring problems in the context of quantum computing. The independence of platform
implementations, assumed by the definition of pattern itself, is still a matter of research in
the quantum computing field given the differences between quantum execution platforms.
Nevertheless, it serves as a very interesting starting point for the success of the quantum
software engineering. The combination of patterns with a QDSL for defining not only the
patterns, but also the quantum applications using these patterns, would be tremendously
useful for software practitioners. It is needed a means to support not only the definition of
patterns and the combination of them, but also a refinement process to directly applicate
these patterns to concrete solutions modeled using the QDSL. This needs to be done taking
into consideration the previously mentioned limitations of unitary transformations reuse
and having a well-defined concept of module.

Prior to the definition of QDSLs and patterns for reuse, the software engineering
community must agree upon adopting a set of common criteria, including the definition of
quantum program modules and a way to measure their modularity. The promotion in short
term of reuse facilities and the achievement of the well-known benefits from traditional
software modeling techniques is, without a doubt, of great interest for the adoption of
software engineering techniques in quantum computing discipline.

As stated in [32], there is some urgency in developing and adapting classical software
engineering techniques to the new challenge of quantum programming. Our work is a
first step in a non-easy journey, as it has been explained in the paper. The progress on the
establishment of a sound quantum software engineering discipline will depend on how
solid the foundations for managing the basic gears are. Without a doubt and from our
point of view, a proper definition of quantum module is part of the solution.

The next steps from our side will be, on one hand, the definition of initial methodolog-
ical heuristics for guiding the developers in the design of QP from a software engineering
perspective and considering the definition of module given in this work, and on the other
hand, the identification of useful basic patterns to serve a design by reuse process. We
also want to further research how to parameterize quantum modules in order to maximize
their reuse in as many QP as possible, how mainstream quantum programming languages
and libraries support the concept of module, and what similarities and differences exist
between their definition of module and the one proposed in this article.
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