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Abstract: Chinese Spelling Error Correction is a hot subject in the field of natural language processing.
Researchers have already produced many great solutions, from the initial rule-based solution to the
current deep learning method. At present, SpellGCN, proposed by Alibaba’s team, achieves the best
results of which character level precision over SIGHAN2013 is 98.4%. However, when we apply
this algorithm to practical error correction tasks, it produces many false error correction results. We
believe that this is because the corpus used for model training contains significantly more errors
than the text used for model correcting. In response to this problem, we propose performing a
post-processing operation on the error correction tasks. We employ the initial model’s output as a
candidate character, obtain various features of the character itself and its context, and then use a
classification model to filter the initial model’s false error correction results. The post-processing idea
introduced in this paper can apply to most Chinese Spelling Error Correction models to improve
their performance over practical error correction tasks.

Keywords: natural language processing; Chinese Spelling Error Correction; post-processing; practi-
cal application

1. Introduction

Errors will inevitably occur in the text entered by people. Therefore, researchers have
proposed a large number of error correction algorithms to minimize errors in text. As an
ancient writing system, the Chinese have tens of thousands of different characters, most of
which are graphic variants. However, the Chinese input methods in the modern age are
mostly based on Pinyin. As a result, Chinese spelling errors include two different error
patterns: phonological errors and visual errors. Compared to English, Chinese text has no
character boundaries, and the diversity of errors bring significant challenges to Chinese
Spelling Error Correction (CSC).

The language model plays an essential role in Chinese text error correction algorithms.
In the early years, CSC mostly utilized n-gram language models or character vector models,
until the introduction of Bidirectional Encoder Representations from Transformers (BERT
[1]) in 2018, which provided a strong base-line for the CSC. Since then, various BERT-based
algorithms, such as FASPell [2], Soft-Mask [3], and SpellGCN [4], have kept pushing the
CSC’s state of the art to a new high record. According to its paper, SpellGCN achieves 98.4
precision, 88.4 recall, and 93.1 F1 score over the SSIGHAN 2013 dataset [5]. Encouraged
by this result, we decided to apply SpellGCN to one of our online text editing systems.
However, its actual performance was not as good as expected. The model replaces a
massive number of correct characters with characters that it believes to be more reasonable,
which is not expected in the error correction system.

CSC models are trained on a specific CSC corpus, which contains more errors than
our daily texts. Therefore, in the error correction stage, the model may have a false estimate
of the text’s error rate (the percentage of error sentences in the text), resulting in a greater
likelihood of changing each input character. On the other hand, the model is a simple
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reflection model that chooses the character with the highest probability in the last layer as
output, without any further consideration. However, there can be many suitable characters
in every slot in a Chinese sentence. A correct output may not be a necessary correction.
How to make the model avoid these fault correction in the practical application becomes
very important.

Inspired by post-editing in machine translation, we propose a post-processing op-
eration for the Chinese Spelling Error Correction task. We employ the state-of-the-art
CSC model Spell GCN as the first step, use its output as candidate characters, and then
use the second model to decide whether to adopt the candidate error correction. The
post-processing model is a simple classification model, which uses various features of
the candidate character and original character as input, such as topP, topK, pro, rank, etc.
We also consider its context features, such as uncertainty and similarity. By employing
the post-processing operation, the CSC system can significantly improve the error correc-
tion precision, but at the cost of slightly reducing the recall. The overall F1 score can be
increased by 10% or more. Researchers can apply our approach to various models that
rely on probability for output selection to improve its performance over practical error
correction tasks.

2. Related Work

In the early days, researchers adopted the idea of combining rules and language
models to solve error correction in Chinese texts. They relied on confusion sets to modify
common errors in sentences. Each element in the confusion set is a dictionary. The key is
an error-prone Chinese character or word, and the corresponding values contain a series of
characters or phrases similar to the key in sound or form. In error processing, the sentence
is segmented into many characters and words. Researchers chose one of the values to
replace the error if the confusion set included the element corresponding to these characters
or words. After that, they used the language model to score the replaced sentences and then
selected the sentence with the highest score as the error correction result [6,7]. However,
typos affected the segmentation results in the sentence and reduced the effect of error
correction. Chiu and Wu proposed the noisy channel model [8] to address this limitation.
Zhong and Wang utilized this phenomenon that a misspelled word is often split into
two or more characters, and used the Single Source Shortest Path (SSSP) algorithm to
correct Chinese spelling errors [9]. In Yang and Zhao’s work, they used Minimized-Path
Segmentation [10] to solve this problem.

With the development of deep learning research and the continuous improvement
of computing power, researchers began to use neural networks to solve Chinese error
correction problems. Qiu and Qu used two stages to solve the CSC problem in their
research. First, they used the confusion set and language model to determine the suspected
error position in the sentence and then used the Sequence-to-Sequence [11] model to
correct the mistakes [12]. At the same time, Duan and Wang combined the Long Short
Term Mermory network (LSTM [13]) network with the Conditional Random Fields(CRF
[14]) to accomplish Chinese text error detection through sequence labeling [15]. After
that, they incorporated the Sequence-to-Sequence model and attention to realize the error
correction of Chinese text based on Bi-LSTM [16] model [17]. Lu Xie and Li introduced
the pronunciation and structure of words as model inputs and then combined Bi-LSTM
and CREF to find errors in sentences. After that, they used the Masked Language model
to correct suspected errors [18]. On the basis of the original LSTM model, Wang and
Duan added the pronunciation and confusion set information to the model by introducing
the fusion cell form to help realize text error correction [19]. Wang and Liu rethought
the attention mechanism [20], combined the confusion set and regard the Chinese error
correction task as a prediction problem. They introduced more global information as a new
attention mechanism distribution and used LSTM to predict the target character [21].

More recently, pretrained language models have played a significant role in achieving
impressive gains in a wide varity of Natural language processing tasks. These models
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are trained on a large amount of unsupervised corpora to learn sufficient corresponding
semantic knowledge. Fine-tuning these models on the professional corpus can obtain good
performance while alleviating the problem of insufficient labeled corpora. Bidirectional
Encoder Representations from Transformers (BERT) [1], proposed by the Google team,
achieved leading results in various natural language processing tasks once it came out.
Therefore, researchers began to apply BERT and its variant models to Chinese Spelling Error
Correction tasks. The ByteDance team eliminated the soft-mask mechanism. They used
Bi-GRU to softly cover the error and corrected whole sentences by the Masked Language
model [3]. The Alibaba team introduced the Chinese character information’s glyph and
phonetic information into the BERT model’s uppermost layer and expanded the training
data. This algorithm obtained new, state-of-the-art results for error correction tasks [4].
Considering Chinese characters’ particularity, more and more researchers have begun
to pay attention to Chinese characters’” phonetic and morphological information. They
added this information to the CSC algorithm in different ways. Han and Wang et al.
still treated the Chinese error detection task as a sequence tagging task based on the Bi-
LSTM [16]. They considered the pronunciation and glyph structure of Chinese characters
as the model’s input, which significantly improved the model’s error detection ability [22].
Wang and Zhong et al. used the word-embedding method as the judgment reliance of the
model prediction [23]. After the original model’s outputted results, the iQiyi’s team filtered
those results by artificially determining the filtering curve [21]. This method was similar
to our idea, but the filtering curve needed to be artificially selected, so the workload was
massive [2]. Nguyen and Ngo et al. proposed the adaptable filter, which uses hierarchical
embeddings [24] to filter the suggested amendments given by the Masked Language model.

3. Motivation

In the research field of Chinese Spelling Error Correction, we usually test the algo-
rithm’s capabilities on some public datasets, which contain many errors (such as SIGHAN
[5,25,26]). So far, the Alibaba team proposed SpellGCN, which obtained the SOTA F1 score
on SIGHAN13-15 (the character level correction F1 scores are respectively 93.1%, 85.6%,
and 89.4%). Unexpectedly, when we applied this model to correct erroneous texts in reality,
it produced many unnecessary corrections. After careful analysis of the wrong samples,
we believe that the difference of text error rate (the percentage of error sentences in the text)
caused this result. In machine learning theory, the Independent and Identically Distributed
(IID) assumption is often made for training and test datasets to imply that all samples
belong to the same distribution. However, to make the training process more efficient, the
CSC algorithm training data may contain many more errors than usual, which will break
the IID assumption and cause poor performance during inference.

To illustrate this phenomenon, we performed a detailed test of SpellGCN on Triple
Door’s manuscript. Triple Door [27] is a famous novel, written by Hanhan. However, its
originality has been widely questioned. After a renowned debate with Fang Zhouzi in
2012, Hanhan published Triple Door’s handwritten manuscript to prove his originality.
There are still a number of spelling errors in that manuscript, which need proofreading
before it can be published. Proofreading before the publication of novels or news articles is
the most common application scenario of Chinese Spelling Error Correction. As the only
published unedited original manuscript of a modern book to the best of our knowledge,
we consider Triple Door’s manuscript as a great dataset to test the CSC algorithm’s real
application performance. First, we selected the first 10 pages of the manuscript, including
17 typos. Then, we divided the text into 110 sentences (error rate of 0.15), 16 of which
contained errors. The average length of these sentences was 37.4. Next, we used Spell GCN
to correct these sentences. We kept the hyperparameter settings of the model consistent
with its official open-sourced implementation. During this experiment, we used Precision,
Recall, F1 score and False Positive Rate (FPR) as the metrics.

We chose the model’s result index on the SIGHANT15 test set (error rate of 0.5) as a
comparison, containing 1100 sentences of which 550 sentences contained errors. As shown
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in Table 1, when Spell GCN performed spelling error correction on Triple Door, the result
index was far lower than the result obtained by the model on the SIGHAN15 test set, and
the FPR value was closer to twice that of the latter. The uneven data distribution and
the low error rate caused this phenomenon. Improving the performance of the algorithm
model in actual error correction tasks will promote the application of such methods in the
field of Chinese Spelling Error Correction.

Table 1. CRC results of SpellGCN on Triple Door at character level. P, R, F represent Precision, Recall,
and F1 score. We also give the correction’s False Positive Rate (FPR) at the sentence level. The FPR
value represents the rate of false, corrected sentences to the total number of correct sentences.

Detection Correction
D-P D-R D-F C-r CR C-F FPR
SIGHAN15 85.9 80.6 83.1 85.4 77.6 81.3 13.2
Triple Door 21.1 47.1 29 15.8 35.3 21.7 26.6

4. Approach

In this section, we first propose a method to solve the limitations of the current error
correction algorithm, and then elaborate on the implementation process of our approach.

4.1. Post-Processing

We introduced a post-processing operation to help the algorithm avoid unnecessary
replacements as much as possible in actual error correction tasks. Post-processing is a
pervasive operation in various natural language processing tasks. Typically, in machine
translation, the post-edit [28] corrects the model’s first translation content, improving
the final translation effect. In the past year, many abstract text summary algorithms
have applied post-processing to prevent factual errors [29]. In the Chinese Spelling Error
Correction field, further processing of the language model’s correction results has gradually
become a common method, such as FASPell [2] and adaptable filtering [24]. From the
perspective of artificial intelligence, no matter how complex a neural network is, it is just
a simple reflection model. So, the model’s inference ability is always limited. We can
improve the models’ performance by adding planning and strategy. The post-processing
operation is the first step from a simple reflection model to a more complex model.

As mentioned in Section 3, the core reason why Spell GCN and other SOTA models
perform so poorly, in reality, is that the data in the training set and application scenarios do
not conform to the assumption of independent and identical distribution. However, we
cannot use data with the same distribution as the application scenario to train the model
because the training data, which contain a few errors, cause the training process to be
hugely inefficient, and the model cannot learn sufficient error-correction information. Thus,
we can only separate model training and inference and use a post-processing operation to
bridge the gap between the two.

Making models imitate humans as much as possible is one of the secrets to making
machines smarter. The “two-step” error correction method is usually a standard behavior
when humans perform Chinese Spelling Error Correction. In the first step, humans deter-
mine the candidate set for the suspected error in the sentence. The candidate set contains
all possible modifications to the wrong character. In the second step, they analyze the
connection between the previously obtained candidate character and the original character.
Then, humans replace these two characters to judge whether the sentence’s meaning has
changed. They repeat the second step continuously to select the most appropriate candidate
character as the correct one. The most current algorithms only complete the humans’ first
step in the error correction task and then decide the character with the highest probability
value among the candidate sets as the error correction result.
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Therefore, we added a post-processing operation after the existing error correction
model. This operation is a classification process. Its input is the suggested error correction
result given by the error correction model, and the output chooses whether to adopt this
suggestion. If this classification model is accurate enough, it may slightly reduce the recall
rate of text error correction while significantly improving its precision.

4.2. Implementation of Post-Processing

An extraordinary classification model should notice these points: the feature set
and the classification model itself. We first elaborate on the features needed to post-
process in the next section. After that, we introduce the chosen classifier and the output of
our method.

4.2.1. Features Set

After analyzing the characteristics of Chinese Spelling Error Correction and human
behavior when they perform these problems, we finally determined more than ten features,
such as sos and sop for the classifier to screen the candidate character. Furthermore, we
gave a schematic diagram of the replacement suggestion feature (’k — ¥, provided in
Figure 1).

Base CSC  w; == — W
"z "z
"1 Candidate Set ¥
S S
candidate output 7
1
1
1
1
[ e e 1
1 ——
1
U
M pro
Eid
" rank "

Rethink = S0 il s o ok s ) y
- L 2 N processing HAR # Xk R
%= sop Model RRERE TR x
e o topP
ol Candidate Set

topK
il %

Figure 1. An example of introducing post-processing operation. The base model (the upper part of
the figure) made a unnecessary change 7K to ¥ after correcting this sentence. However, for the PoP
model (the lower part of the figure), we proposed avoided this change.

Probability and Rank

In the Chinese Spelling Error Correction task, the model gives a candidate set (1) that
contains all possible characters in the vocabulary whose size is V for each original character
in the sentence. Based on a given context, the model obtains each character’s probability in
the candidate set, appearing here through the softmax function. The sum of all characters’
possibilities is 1. In theory, characters with higher probability are more likely to become
target characters.

As we mentioned in Section 2, various BERT-based algorithms simply choose the
character with the largest probability value as the correction output. We agreed that
the character’s probability should be one of the most important features, but it should
not be the only one. Rank of probability does also matter. The different specific values
of the probability affect the classification result. For example, there are two corrected
candidate characters, which have the highest probability. Their corresponding possibilities
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are prol = 0.9 and pro2 = 0.3, respectively. At this time, the classification model tends
to judge the former (prol = 0.9) as correct, but the latter (pro2 = 0.3) as an error because
prol > pro2 in this type of attribute. To make the model no longer affected by the different
quantization values of probabilities, we ranked each character in the candidate set (1)
according to the probability value from largest to smallest (rank =1, 2, 3,4, ...). In the
previous example, the rank value corresponding to the two correct characters is rank = 1
because they have the highest probability, which satisfies the property that samples of
the same category in the classification model have the same characteristics. Due to the
Chinese text’s errors providing helpful information for correction, we took the original
character as a candidate character and look for the candidate set at that position to obtain
its corresponding probability and rank, under the condition that the feature values of the
candidate character are canPro = 0.5 and canRank = 1. While the original typo’s features
are originalPro = 0.1 and originalRank = 89, respectively, the model believes that this
candidate character is a reasonable correction. While these two features are 0.48 and 2,
the model must carefully consider whether the error correction is appropriate. We used
the pro and rank features to represent the probability value and rank value of probability;
Figure 2 shows an example of these two features’ calculation.

4
C=lcr,c003.), len(C)=V; Y plc)=1 1)
i=1
original character
7 ¥
probability 50512 + 0364] + 0083 + 0026  + le-12 =1 pro 0.364 0.512
jf{ 7}\ éfé +I‘_t J’\ rank 2 1
rank 1 2 3 4 \Y topK 24123 4122
topP 10.512+0.364=0.876 || 0.512

candidate character

Figure 2. Across the candidate set, our approach obtains some features of X and ¥: pro, rank,
topK, topP.

Phonetic and Morphological Similarity

Chinese characters are one of the oldest writing languages and have been developed
and changed over the last three thousand years, from the original pictographic characters
to today’s simplified characters. Each character’s shape and pronunciation are more or
less related to the meaning of itself. There are similar pronunciations or forms between
characters with related meanings. Observing the errors in Chinese text, we can find that
most of the cases are that the error character and the correct character belong to the category
of near-phonetic characters or near-form characters. Therefore, the degree of pronunciation
and form proximity is an essential factor to judge whether the candidate character is
reasonable. We introduced two features, sos and sop, to measure the similarity between
the candidate character and original character in terms of shape and sound. To get a clear
numerical expression, we built a Chinese character disassembly and pronunciation statistics
file, and then calculated these two feature values by the heuristic method described in
FASPell [2], as shown in Figure 3.
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Figure 3. Our method calculates the phonetic similarity (sop) and glyph similarity (sos) between 7k
and ¥ based on the edit distance.

Text Generation’s Inspiration

Text generation is another hot research topic in natural language processing. Both
text generation and spell checking try to output correct and high-quality text. Researchers
directly used characters with the largest probability value in the model’s last layer as the
generation results in the early stage of text generation. This generation method leads to
low diversity of the generated text. Therefore, researchers introduced sampling methods to
improve diversity. However, sampling methods may lead to another problem: characters
with very low probability will inevitably be sampled, which is extremely harmful to the
generated text’s overall fluency. Top-k sampling [30] and top-p sampling [31] are two
improved sampling algorithms. They truncate low-probability words with accumulated
rank or probability to improve the generated text’s quality. Inspired by text generation
tasks, we introduced the two attributes of topP and topK in order to help the final output
results to get rid of the character’s frequency. Following the specific implementation in
the text generation task, we redefined these two attributes” calculation method. Firstly,
we constructed a probability set (the uppercase English letter P represents this set in the
formula) by replacing all characters with their corresponding probabilities in the candidate
set (1). The original character’s value of rank plus one is the value of topK since their
definitions are very close. Then, we added up all the probability values higher than the
character’s probability value (the lowercase English letter p represents it in the formula),
including itself as the value of topP, as shown in Figure 3.

topK = rank + 1 )

topP =Y pi, piCP, pi=>p ®3)

Error Uncertainty

Due to the characteristics of the Chinese text itself, we found that changing some
correct characters to many others can still ensure that the entire sentence is grammatically
right but the original sentence’s meaning is changed. When this happens, the original
character should not be replaced, even if there are other reasonable candidates. Therefore,
it is significantly inaccurate to determine that the error character relies on the character
with the highest probability. We put forward an extreme hypothesis that if the probabilities
of all characters appearing in a particular position of the sentence are the same, it means
that every character is reasonable in that position. In this case, this position has the greatest
uncertainty [32], and the error’s possibility is the smallest. So, we introduced the feature
of uncertainty to indicate the probability of error. We calculated this value as follows, as
indicated in Figure 4.

uncertainty = — Y _p;*logp;, p; CP (4)
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uncertainty = - (0.512*log(0.512) + 0.364*l0g(0.364) + 0.083*10g(0.083)

+ 0.026*10g(0.026) + --- + (le—-12)*log(le-12))

Figure 4. Our method calculates the character (’K) position’s error uncertainty (uncertainty) in the
original sentence.

Sentence Similarity

A qualified correction will not change a sentence’s meaning, or it should make the
semantic change of the sentence as small as possible. Therefore, we introduced the attribute
similarity to represent the semantic similarity of sentences before and after spelling cor-
rection. Fivez et al. [33] used a similar method to calculate a weighted cosine similarity
between the vectorized representation of a candidate and the misspelling context. In our
Chinese Spelling Error Correction system, we mapped each character in the sentence to a
vector base on the embedding table. We used X; and Y; to represent the i-th character’s
vector in the input and output sentence, which contain N characters, respectively. Then, we
took the cosine similarity between these two vectors as the each character pair’s similarity
value. Finally, we averaged all character pairs’ cosine similarity as the semantic similarity
between the input sentence and the output sentence, as shown in Figure 5.

o 1Y
similarity = N Z cosine(Xj * Yj) 5)
i=1
F* k24
(i | DR ] &
bl Embedding Table o Embedding Table B
R oy ROCN X, Y, «— QCEN -
iz e
X; Y, #*
® R

! 1

similarity = 1/7 * (cosine(X;*Y,) + --- + cosine(X*Y, + -+ + cosine(X;*Y;))

Figure 5. Our method calculates the semantic similarity (similarity) when the model changes 7 to
¥ . This process need the cosine function and model’s embedding table.

Replace and Re-Estimate

As mentioned in Section 4.1, humans usually follow two steps to solve the task of
Chinese Spelling Error Correction. In the first step, they determine the candidates for the
typo in the sentence. In the second step, they analyze whether each candidate character’s
replacement will change the sentence’s semantics to select the most suitable candidate
character. However, the current algorithm is analogous to humans’ first step in solving
error-correction tasks. Fitting to human behavior as closely as possible is the path for
machines to become more intelligent. Therefore, combining with humans’ second step to
correct text errors is a crucial point. We used output candidate characters to replace the
original sentence, and then took it as the model’s new input to obtain the pro, rank, topK,
topP repeatedly as shown in the lower part of the Figure 1.
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4.2.2. Classifier

We relied on the classifier to determine whether the suggested replacement of the
error correction model was reasonable. The candidate set is actually composed of correct
replacement and incorrect replacement, so the classifier is actually a binary classifier. In
specific implementation, the samples used to train the classifier have three characteristics:
(a) the relationship between features and labels is a non-linear mapping; (b) the number of
samples that can participate in training is relatively small; and (c) training samples have
a lot of redundancy. So, we chose SVM [34] with a polynomial kernel as the classifier
to filter out those unreasonable replacement suggestions. Before training the model, we
divided the training samples into two categories (positive categories—correct replacement;
negative categories—incorrect replacement) and ensured that the number of samples in
the two types was basically the same.

4.2.3. Final Output

After inputting the sentence containing the error into the model, the model infers
the target character at each position based on the input sentence’s semantics to achieve
the purpose of Chinese Spelling Error Correction. The activation function softmax is
introduced into the last layer of the model to determine the target character’s probability
distribution in the vocabulary. The existing algorithms mostly select the character with
the largest probability value from the candidate set (1) as the final output (6). When the
candidate character with the highest probability is inconsistent with the original character,
we also called this a replacement suggestion. We filtered the candidate set by setting a 6 to
achieve the simplest post-processing operation. The uppercase English letter X represents
the original Chinese character in the formula. Only when the candidate character with
the maximum probability value is greater than the given 6, will it be the correct output.
Otherwise, we retained the initial character (7). We set the 0 to 0.5 and use it as a baseline
for post-processing operation.

Unlike the above two output results, our approach screens unnecessary replacement
suggestions based on richer information. Firstly, we obtained all features between each
original character and candidate character of the largest probability value, which is a re-
placement suggestion. Then, we relied on trained SVM to determine the suggestion’s class.
Only when this suggestion belongs to the positive class is it the final output. Otherwise,
we kept the original character (8).

output =c;,  max(p(c;)) ©
. - . >
output2 = ci, if m”x(’P(Cz)) >0 o
X, otherwise
output3 = Cis m”x(P(‘Ci)), ¢; C Positive ®
X, otherwise

4.3. An Example of Post-Processing

Figure 1 shows an example of our approach. The base model gives a replacement
suggestion for a sentence that may contain errors. Although there is no problem with the
revised sentence, it changes the semantics of the original sentence. So the suggestion by the
model is not right, which should be dropped. In our approach, we obtain all the features
introduced in the Section 4.2.2, use the trained classifier to filter this suggestion, and reject
this wrong suggestion based on the judgment result. It effectively prevents the language
model from modifying the original correct characters in the sentence.

5. Experiments

In this section, we introduce the details of our experiment. First, we describe all the
experimental datasets, three baseline models, and evaluation metrics. After that, we not
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only give the detailed experimental results, but also analyze and discuss the influence of
different hyper-parameter settings in the experimental process.

5.1. Experiment Data

Training Data: The training data in the experiment come from the SIGHAN13-15
datasets, and we introduced an additional 271,000 pieces of data constructed through
automatic generation [35]. The training data used to process the classifier come from a part
of the SIGHAN2013 [5], SIGHAN2014 [25], and SIGHAN2015 [26] benchmarks.

Test Data: To evaluate each algorithm’s performance, we used the remaining part of
the official SIGHAN13-15.

In the experiment, we pre-processed all the data: (a) replace all the traditional char-
acters in the sentence with simplified characters; and (b) filter out some sentences whose
length exceeds 128. A detailed list of statistics is listed in Table 2 above.

Table 2. Statistics information of the used data resources. Train-PoP is the data used to train the
classifier. It comes from the original three SIGHAN test sets. We selected 500 sentences from each test
set to form the training set.

Training Data Line Avg. Length Errors
Wang et al. [35] 271,329 42.5 381,962
SIGHAN13 350 49.3 350
SIGHAN14 6528 49.7 10,089
SIGHAN15 3174 29.0 4238

Total 281,381 42.6 386,639

Test Data Line Avg. Length Errors
SIGHAN13 498 77.5 634
SIGHAN14 562 50.1 694
SIGHAN15 600 359 702
Total 1660 53.2 2030
Train-PoP 1500 48.4 1821

5.2. Baseline Models
We demonstrate our method by comparing three basic baseline models.

e  BERT [1]: Taking character embedding technology as the softmax layer in model’s
top layer, we use the training data presented above to fine-tune this model.

¢ SpellGCN [4]: Through the introduction of graph coding in the upper layer of the
model, the near-sounding and near-form information between Chinese characters are
put into the model. We use the same settings as in the paper to train the model.

e  Filter by probability: Based on the last layer of the model’s output probability, we
introduce a simple filtering operation by setting a threshold. We put this value to
0.5 in the experiment. When the probability of a candidate character is higher than
this threshold, we take it as a valid candidate. Otherwise, we keep the original
character (7).

5.3. Evaluation Metrics

In the field of Chinese Spelling Error Correction, we frequently use Precision, Recall,
F1 score, and False Positive Rate (FPR) to evaluate the algorithm performance. The first
three indicators include the character level and the sentence level. At the sentence level
evaluation, only when all the errors in a sentence have been correctly detected or corrected
can we accept this sentence as the right result. The FPR value represents the percentage of
false corrected sentences’ number in the correct sentences’ total number.
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5.4. Experiment Setting

For a fair comparison, all models in our experiment were based on the BERT-Base, that
is, a 12-layer transformer with 768 hidden size, 12 attention heads and GLEU [36] activation.
We fine-tuned the BERT and trained the SpellGCN, using AdamW [37] optimizer for six
epochs with a batch size of 32 and a learning rate of 5 x 10~°. For the base post-processing
model, we set § = 0.5 to filter candidate characters whose probability is less than this value.
In the implementation of our post-processing operation, we selected all features to train
SVM, whose threshold is also the default value (8 = 0.5).

5.5. Results

Table 3 presents that using the filter by probability cannot improve the results of the
experiment. We observed the experimental results on SIGHAN13-15. There was no change
in all of the model’s index values after a base post-processing operation. This result also
showed that a small part of the candidate set was filtered when we set the probability
threshold 6 = 0.5. Therefore, we must design a detailed post-processing operation to get
rid of the inaccuracy that only depends on probability.

Table 3. The test results after the post-processing operation on the two basic models. We recorded
detailed different test indicators of two different subtasks: error detection and error correction on
the test set in terms of character level and sentence level. P, R, F represent Precision, Recall, and F1
score. In the sentence level test, we also introduced the False Positive Rate (FPR). We intensified the
improved results compared to the original model after introducing post-processing operation as an
experimental comparison. FP denotes filter by probability, and PoP denotes post-processing.

Character Level Sentence Level
Detection Correction Detection Correction
SIAHAN13 D-P DR DF CP CR CF DP DR DF FPR CP C-R C-F FPR

BERT 833 90.7 869 816 888 850 770 731 750 (-) 748 711 729 (
SpellGCN 846 896 870 836 885 860 786 737 761 (-) 773 725 748 (
BERT-FP 83.7 905 870 821 889 853 774 735 754 () 753 715 733 (-
SpellGCN-FP 848 89.1 869 839 882 860 784 731 757 () 774 721 746 (
© (

Q) (

BERT-PoP 924 828 874 90.5 811 855 839 735 784 81.7 715 76.2
SpellGCN-PoP 91.7 856 88.6 905 845 874 844 76.1 80.0 83.1 749 78.8

SIAHAN14 D-P DR D-F CP CR CF DP DR DF FPR CP C-R CF FPR

BERT 786 793 789 766 774 770 667 698 681 259 650 680 664 26.8
SpellGCN 794 771 783 779 757 768 658 683 670 262 647 673 660 26.1
Bert-FP 786 786 786 774 774 774 670 694 682 255 656 68.0 668 262

SpellGCN-FP  79.7 766 782 787 757 772 661 68.7 673 261 654 68.0 667 264

BERT-PoP 863 642 736 837 623 714 681 569 620 211 66.0 552 600 222
SpellGCN-PoP 84.7 674 751 835 664 74 668 60.1 633 23.0 660 594 625 234

SIAHAN15 D-Pp DR D-F CP CR CF DP DR DF FPR CP C-R CF FPR

BERT 786 802 794 746 761 754 673 705 689 255 644 675 659 272
Spell GCN 791 80 794 751 756 753 679 726 702 255 654 700 675 27.0
Bert-FP 791 797 794 756 761 759 671 700 685 255 648 67.5 66.1 268

SpellGCN-FP 79.0 792 791 752 754 753 678 723 700 255 656 699 67.7 268

BERT-PoP 87.0 700 773 819 655 728 718 637 675 20.0 687 61.0 646 217
SpellGCN-PoP 84.8 734 786 801 693 742 712 678 695 215 68.0 647 663 234

BERT and Spell GCN both had a very significant improvement in precision after the
post-processing operation. For precision at the character level, these two models basically
increased by 6% to 10%. However, the changes of the models’ F1 scores were different
on SIGHAN13-15. On the SIGHAN13 test set, all other indicators increased, except for
the recall rate. Especially at the sentence level, the F1 score of detection and correction
improved by about 5%. On the SIGHAN14 test set, the recall rate descended significantly,
which led to the F1 score also descending by about 5%, whether at the character level or
sentence level. On the SIGHANT1S5 test set, the effects of the post-processing operation
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on precision and recall were balanced, so the F1 score was basically unchanged at the
sentence level.

The post-processing operation can significantly reduce the model’s False Positive Rate
(FPR). FPR measures the unnecessary correction of the model, which is also the current
algorithm’s limitation in the actual error correction application. The FPR values of the
two models descended by 3 % to 6%. This plays a significant role in reducing unnecessary
model corrections.

6. Discussion

After introducing post-processing operations in the two models, the precision in all
datasets was improved. Firstly, the basic model determines replacement candidates for
each character in the sentence. Then, the post-processing operation combines the features
and classifiers to filter out unnecessary corrections effectively. Because of this, the model’s
False Positive Rate is also significantly reduced.

Compared with the previous error correction algorithm, although the post-processing
operation improves the model’s precision, it comes at the cost of slightly reducing the recall
because the post-processing filters out correct replacements when screening competitor
replacements, which is disadvantageous for high recall tasks. However, in the Chinese
Spelling Error Correction task, the corrections’ preciseness is more critical than correcting
all potential errors. Therefore, a model with higher precision rates is more suitable than
one with a higher recall rate.

We also found that the performance of the post-processing operation on the three differ-
ent test sets was quite different. For example, all indicators except recall were improved in
SIGHAN2013, while the F1 score dropped on the other test sets. We believe that the uneven
distribution of errors in the three datasets causes this phenomenon. As evidence, there are a
large number of pronoun errors ( #2—he, #:—she) in the SIGHAN2014 test set. This type of
error is challenging to identify for error correction models and post-processing operations.

Our approach is based on the observation that the distribution between the model’s
training text and its actual application text is inconsistent, hence existing algorithms
produce many fault corrections. In our two-stage process of introducing post-processing
operations, the basic model generates replacement suggestions in the first stage, and then
the post-processing operation is taken as the second stage. One of the advantages of this
approach is that without modifying a ready-to-use Chinese Spelling Error Correction model,
it is possible to reduce incorrect error correction caused by the mismatch of the training text
and the actual application text. The post-processing operation has a high generalization
capability. Thus, in addition to BERT and Spell GCN, which we mentioned in this paper,
researchers can select a greater variety of base models, according to different tasks.

7. Ablation Studies

In this part, we analyze the effect of several components on the classifier’s performance,
including selection of the different feature subsets and the setting of the SVM’s threshold.
The ablation experiments were performed, using a test set, which contains 290 positive
samples and the same number of negative samples. Then, we test the effects of post-
processing operations on model performance under different error rates. We use the
model’s F1 value as the comparison index from the two subtasks: error detection and
error correction.

Different Feature Subsets: Figure 6 shows the specific performance of the trained
classifier on the test set when selecting different feature subsets. The related concept of
text generation has a positive effect. Because the classification results used the probability-
based feature, the subsets (pro and rank) are the same as the results when using the text
generation features (topP and topK). Simultaneously, among all the classifiers trained on
different subsets, these two classifiers have a better specific ability for negative samples.
The classifier trained by using the uncertainty and the sentences similarity can recognize
positive samples better than other sub-features classifiers. However, its ability to recognize



Appl. Sci. 2021, 11, 5832

13 of 16

negative samples is the lowest. When we put all the features together, the resulting classifier
achieves an ideal effect between positive samples and negative samples.

10

Tp
Tn
Fp
Fn

Classification Result

pro+rank topP+topk  sos+sop unc+sim All
Subfeature Sets

Figure 6. The different sets of features classifier on test set which contains 290 positive samples and
290 negative samples. The feature subsets used from left to right are pro + rank, topP + topK, sos
+ sop, uncertainty + similarity (unc+sim), and all features (All). The classification results of the
classifier on the test set are marked with different colors.

Different error rate: At the end, we analyzed the effect of the post-processing op-
eration under different error rates. In order to simulate real-life Chinese error texts, we
used the official training set provided by the 2018NLPCC competition to construct them.
The NLPPCC [38] is a Chinese misdiagnosis competition in which data have a similar
distribution with the SIGHAN dataset. The no-error sentences from the competition’s data
are entirely correct. We randomly selected 3000 right sentences from the training set as
our extra data. Table 4 gives the details of this data. We used BERT and post-processed
BERT to correct the extra data and illustrate the results. Then we selected a part of these
sentences and combined it with the test data to construct some more texts with different
error rates (50%, 40%, 30%, 20%, and 10%). At last, we applied our BERT-PoP models as
well as the baseline models to correct these texts and record the F1 score of the sentence
level correction. The results are shown in Figure 7.

With the decrease in text error rate, higher model precision will result in an excellent
F1 score. Figure 7 shows that when the error rate of the text is less than 20%, the BERT-PoP’s
F1 score is higher than that of BERT. The model’s F1 score can increase by 10% or more
when the error rate of the text is less than 10%. Therefore, the post-processing operation
significantly promotes the model’s performance when the text has a low error rate.

Different SVM'’s thresholds: The classifier’s results in the test set, according to differ-
ent thresholds, are shown in Table 5. It can be seen that the higher the threshold, the higher
the precision. At the same time, it reduces the recall and accuracy of the classifier. So we
should set the threshold according to the actual situation. When the situation requires a
high precision rate, the classifier’s threshold needs to be a higher value. In contrast, the
classifier threshold needs to be lowered.
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Figure 7. The F1 score of the model after the post-processing operation under different error rates
(the percentage of error sentences in the text). Among them, the three colors represent different test
sets. The figure’s left side is the index results of error detection, and the right side is the index results
of error correction. The straight line results from the original model and the dotted line results from
adding the post-processing operation.

Table 4. Statistics information of the extra data. We selected 3000 sentences from the 2018NLPCC

competition’s training set.

Extra Data Line Avg. Length Errors
NLPCC [38] 3000 18.8 0

Table 5. Different thresholds of SVM on test set. The default value of the threshold is 0.5.

Threshold Accuracy Precision Recall
=04 80.8 85.3 91.3
8 =05 78.8 86.6 86.2
6 =06 75.5 87 80.9

8. Conclusions

In this paper, we put forward the limitations of applying existing Chinese Spelling
Error Correction algorithms in practice. The model makes numerous unnecessary replace-
ments that lead to a high False Positive Rate (FPR) value. In order to solve this problem,
we proposed a method to perform a post-processing operation. This post-processing
operation is based on many carefully choosed features, such as sos, sop, topP, topK, etc.
These features can make full use of the pronunciation, shape, and semantics of Chinese
characters. Unlike the traditional confusion set, we integrated these features directly into
our model. More specifically, an SVM model is used to make the final correction decision.
The post-processing operation can be broadly applied to various error correction models
and significantly improve the model’s performance in Chinese Spelling Error Correction
applications, especially when the text contains only a few errors.

In future research, we will design more valuable features to prevent the classification
model from filtering out correct corrections, which might ease the harm of the recall after
post processing. In addition, we will investigate how to combine the characteristics of
Chinese characters to study in depth the problem that the model cannot accurately correct
pronoun errors.
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