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Abstract: Lightweight design is one of the important ways to reduce automobile fuel consumption
and exhaust emissions. At the same time, the fatigue life of automobile parts also greatly affects
vehicle safety. This paper proposes a multi-objective reliability optimization method by integrating
Monte Carlo simulation (MCS) with the NSGA-II algorithm coupled with entropy weighted grey
relational analysis (GRA) for lightweight design of the lower control arm of automobile Macpherson
suspension. The dynamic load histories of the control arm were extracted through dynamic sim-
ulations of a rigid-flexible coupling vehicle model on virtual proving ground. Then, the nominal
stress method was used to predict its fatigue life. Six design variables were defined to describe the
geometric dimension of the control arm, while mass and fatigue life were taken as optimization
objectives. The multi-objective optimization design of the control arm was carried out based on the
Kriging surrogate model and NSGA-II algorithm. Aiming at the uncertainty of design variables, the
reliability constraint was added to the multi-objective optimization to improve the reliability of the
fatigue life of the control arm. The optimal design of the control arm was determined from Pareto
solutions by entropy weighted grey relational analysis (GRA). The optimization results show that the
mass of the control arm was reduced by 4.1% and the fatigue life was increased by 215.8% while its
reliability increased by 7.8%. The proposed multi-objective reliability optimization method proved to
be feasible and effective for lightweight design of a suspension control arm.

Keywords: multi-objective reliability optimization; suspension control arm; fatigue life; kriging
surrogate model; lightweight design

1. Introduction

With the continuous growth of car ownership, automobile exhausts emit a large num-
ber of pollutants. Additionally, the fuel consumption problem is becoming increasingly
serious. In order to reduce the environmental and energy problems caused by the develop-
ment of the automobile industry, making an automobile lightweight has become one of
the effective measures [1–3]. A suspension control arm has to bear and transfer various
loads caused by road roughness and engine vibrations. Thus, its thickness is always set
to be thicker to ensure vehicle safety, which leads to the weight of the suspension system
also being greatly increased. Therefore, it is of great significance to carry out a lightweight
design of the control arm on the premise of ensuring its stiffness, strength, and fatigue
life [4–6].

Scholars have paid much attention to automobile lightweight solutions, including
optimization design, the application of lightweight material, and advanced manufacturing
processes. Mohd et al. [7] optimized the topology of an aluminum control arm and
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proposed the optimal material layout method based on load and boundary conditions,
which achieved a mass reduction of 41% under the condition of satisfying the strength.
Yoo et al. [8] replaced the aluminum used for the control arm with carbon fiber-reinforced
polymer and carried out topology optimization. At the same time, under the conditions
of multiple constraints including stiffness and durability, the weight was reduced by 30%.
Zhang [9] changed the material of automobile B-pillar from metal to carbon fiber-reinforced
polymer, which not only reduced the mass by 50.76%, but also greatly improved the
crashworthiness. Guler et al. [10] developed automobile hinge components with PA66
GF60 glass fiber-reinforced polyamide composite instead of ordinary steel. Topology
optimization was carried out under a specific load to obtain the optimal size and minimum
mass. Chen et al. [11] designed a new single stamping control arm and achieved a mass
reduction of 33.3% compared to the original one through topology optimization and size
optimization.

For engineering optimization problems, there are usually two or more objectives that
need to be achieved. Generally, these objectives are in conflict with each other. Traditional
single objective optimization often focuses on one key optimization performance while
ignoring the correlation with the other performance. Multi-objective optimization methods
are proposed to select the Pareto solutions in many engineering fields. Wang et al. [12]
designed a new bumper system composed of negative Poisson’s ratio (NPR) beam and
NPR absorber, and used a multi-objective optimization algorithm to search for the optimal
structural parameters. The results show that the performance of pedestrian protection
and vehicle crashworthiness was improved. Fossati et al. [13] used the multi-objective
optimization method to optimize the passive suspension system of a whole vehicle model
running on a random road, which achieved a reduction of 21.14% for the weighted mean
square root of vertical angular velocity of the driver seat. Based on the Kriging surrogate
model, Tang et al. [14] used a multi-objective genetic algorithm to optimize the thickness of
acoustic package material. Under the condition of ensuring that the acoustic performance
of automobile acoustic package remained unchanged, the mass was reduced by 20.76%.
Nikkhah et al. [15] optimized the thin-walled tube with the aim of maximizing specific
energy absorption (SEA) and minimizing peak crushing force (PCF). Response surface
methodology (RSM) was established to find the optimal configuration of the tube for
improving the energy absorption characteristics of the thin-walled tube.

Reliability is the probability that a product will not fail. The failure probability of the
product is closely related with the uncertainty of design parameters [16,17]. The traditional
optimization design is usually performed without considering the uncertainty of input
variables, which may lead to failure of the optimization results in practical application.
Therefore, reliability optimization has attracted much attention recently. Lim et al. [18]
proposed a reliability-based multi-objective optimization design method to optimize the
engine mount. They obtained a more reliable optimization solution than the deterministic
optimization based on the NSGA algorithm. Zhang et al. [19] presented a new method for
hybrid reliability-based design optimization under random and interval uncertainties, and
used a ten-bar truss example and a design of piezoelectric energy harvester to verify the
accuracy and effectiveness of the method. Combined with the response surface method
and a multi-island genetic algorithm, Li et al. [20] applied an efficient reliability-based
design optimization process to optimize the reliability of lattice boom. The results showed
that it not only met the reliability requirements, but also ensured safety and economy.

In this paper, a multi-objective reliability optimization method by integrating MCS
with NSGA-II algorithm coupled with entropy weighted GRA is proposed, and the effec-
tiveness of this method is verified by the lightweight optimization of the lower control arm
of Macpherson suspension. Firstly, the finite element model of the control arm is established
and the modal and stiffness analysis are carried out. Then, the inertial release method
is used to calculate the stress distribution of the control arm under unit load. The load
time histories of the control arm are extracted by dynamic simulations of the rigid-flexible
coupling vehicle model. Accordingly, the nominal stress method is used to calculate the



Appl. Sci. 2021, 11, 5825 3 of 18

fatigue life of the control arm. On this basis, six design variables are defined for describing
geometric dimension of control arm based on mesh morphing technology. The optimal
Latin hypercube method is applied to generate the sample points for constructing Kriging
surrogate models, which are used to describe the relationships between design variables
of control arm and its structure performance including mass, fatigue life, stiffness, and
mode. The multi-objective reliability optimization of the control arm is further performed
by combining the NSGA-II algorithm and the Monte Carlo simulations. Finally, the entropy
weighted grey relational analysis is adopted to determine the optimal solution from Pareto
set for realizing lightweight design of the control arm.

2. Multi-Objective Reliability Optimization Method
2.1. Kriging Surrogate Model

Kriging is one of the most used estimation methods for spatial data interpolation, and
it has been widely used to build surrogate models in automotive engineering in recent
years [21–23]. The Kriging surrogate model covers the global trend and local nonlinearity
of the response, and especially has high accuracy for predicting nonlinear response. It can
analyze the trend and dynamic characteristics of known information [24–26].

The Kriging surrogate model usually includes a polynomial function and a random
distribution. Its approximate function expression is:

ŷ(x) = fT(x) · β + z(x) (1)

where β =
[
β1, . . . , βp

]T represents the regression coefficient vector; fT(x) represents a
polynomial with design vector x; z(x) represents a random distribution, which can be
expressed as a random function with zero mean and standard deviation of σ.

The covariance of random distribution z(x) is:

Cov
[
z(xi), z

(
xj
)]

= σ2R (2)

where R =
[
R
(
xi, xj

)]
is the spatial correlation equation of any two nondiagonal sample

points xi and xj in the matrix, which plays an absolute role in the simulation accuracy.
Using Gaussian correlation equation to express R

(
xi, xj

)
is:

R
(
xi, xj

)
= EXP

(
−

m

∑
k=1

λk

∣∣∣xik − xjk

∣∣∣2) (3)

where m is the number of design variables; λk represents the correlation coefficient of the
fitted surrogate model; and xik and xjk represent the kth value of xi and xj, respectively.

After determining the correlation function, the estimated value ŷ(x) of the approxi-

mate response can be obtained. The estimated value
^
β of regression coefficient β and the

estimated value σ̂2 can be expressed as:

ŷ(x) = fT(x)
^
β + rT(X∗)R−1

(
y− F

^
β

)
^
β =

(
FTR−1F

)−1FTR−1y

σ̂2 =

(
y−F

^
β

)T

R−1
(

y−F
^
β

)
n

(4)

where rT(X∗) = [R(X∗, x1), R(X∗, x2), . . . , R(X∗, xn)] is the correlation coefficient vector
between prediction point X∗ and sample point x; F is the (n× p) design matrix.

The maximum likelihood estimation for parameter λk is:

max(λk)
λk>0

= −
[
n ln

(
σ̂2)+ ln|R|

]
2

(5)
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2.2. Monte Carlo Simulation

Monte Carlo simulation (MCS) is a very important numerical analysis method guided
by probability and statistics theory. The MCS method can be used to propagate the uncer-
tainty in design variables to predicted responses. In MCS, random design variables are first
generated according to statistical distribution. Their responses are usually predicted using
surrogate models because the number of simulations is very large. Then, the probability
distribution of responses can be obtained through statistical analysis. The process of MCS
calculation using simple random sampling method is shown in Figure 1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 19 
 

( ) ( ) ( ) ( )
( )

( ) ( )

1

11 1

1

2

ˆ ˆˆ

ˆ

ˆ ˆ
ˆ

T T

T

T

σ

∗ −

−− −

−


 = + −
 =

 − −
 =


x f x β r X R y Fβ

β F R F F R y

y Fβ R y Fβ

T

y

n

 (4)

where ( ) ( ) ( ) ( )1 2, , , , ..., ,T
nR R R∗ ∗ ∗ ∗ =  r X X x X x X x  is the correlation coefficient vector 

between prediction point ∗X  and sample point x; F is the ( )n p×  design matrix. 
The maximum likelihood estimation for parameter kλ  is: 

( ) ( )2

0

ˆln ln
max

2λ

σ
λ

>

 + = −
k

k

n R
 (5)

2.2. Monte Carlo Simulation 
Monte Carlo simulation (MCS) is a very important numerical analysis method 

guided by probability and statistics theory. The MCS method can be used to propagate 
the uncertainty in design variables to predicted responses. In MCS, random design varia-
bles are first generated according to statistical distribution. Their responses are usually 
predicted using surrogate models because the number of simulations is very large. Then, 
the probability distribution of responses can be obtained through statistical analysis. The 
process of MCS calculation using simple random sampling method is shown in Figure 1. 

 
Figure 1. Flowchart of MCS calculation. 

Based on MCS, the reliability of the design can be defined as: 

1 1 F
f

N
R P

N
= − = −  (6)

Figure 1. Flowchart of MCS calculation.

Based on MCS, the reliability of the design can be defined as:

R = 1− Pf = 1− NF
N

(6)

where Pf is the failure probability; NF is the number of samples that does not satisfy the
constraints; and N is the total samples.

2.3. Entropy Weighted Grey Relational Analysis

Grey relational analysis (GRA) is an important branch of grey system theory and has
been widely applied to decision-making problems. Its basic idea is to map the discrete
data to the geometric shape of the space by using the linear interpolation between adjacent
points of the sequence. It provides the grey relational grade to judge the close relationship
between sequences based on the distance between reference sequence and comparison
sequence [27,28].

In order to eliminate the non-commensurable caused by different dimensions, it is nec-
essary to normalize the response values before grey relational analysis. The normalization
methods corresponding to different response characteristics are different. If the response
value has a smaller-the-better characteristic, that is, the smaller the response value is, the
better the performance is, the normalization calculation method is as follows:

x∗i (k) =
maxkxi(k)− xi(k)

maxkxi(k)−minkxi(k)
(7)
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If the response value has a larger-the-better characteristic, that is, the larger the
response value is, the better the performance is, the normalized calculation method can be
expressed as follows:

x∗i (k) =
xi(k)−minkxi(k)

maxkxi(k)−minkxi(k)
(8)

where xi(k) and x∗i (k) represent the original and normalized value of the ith response for
the kth attribute, respectively; maxkxi(k) and minkxi(k) are the maximum and minimum
values of the kth attribute, respectively.

The response results after normalization are converted to values between [0, 1]. The
larger the value is, the better the performance is, and 1 represents the optimal value. Define
x∗0(k) = 1 as the reference sequence, and the normalized results as the comparison sequence.
The deviation sequence of these two sequences is:

∆0i(k) = |x∗0(k)− x∗i (k)| (9)

The calculation formula of grey relational coefficient between comparison sequence
and reference sequence is as follows:

γ
(
x∗0(k), x∗i (k)

)
= ∆min+ζ∆max

∆0i(k)+ζ∆max

∆min = minimink∆0i(k)
∆max = maximaxk∆0i(k)

(10)

where ∆min and ∆max are the minimum and maximum of the deviation sequence, respec-
tively; ζ ∈ [0, 1] is the distinguishing coefficient, generally it equals to 0.5.

The grey relational grade is calculated by weighted summation of the grey relational
coefficient of each attribute. The calculation formula is:

Γi =
n

∑
k=1

wkγ(x∗0(k), x∗i (k)) (11)

where n is the number of attributes; wk is the weight coefficient of the kth attribute,
n
∑

k=1
wk = 1.

Generally, the relative importance of each attribute may be different, and their weights
can be calculated by information entropy which denotes the degree of uncertainty of a
random variable [29,30]. The projection value of the ith response for the jth attribute is
formulated as:

pij =
xij

n
∑
i

xij

(12)

where i = 1, . . . , n, n is the number of responses; j = 1, . . . , m, m is the number of attributes;
and xij represents the normalized value of the ith response for the jth attribute.

The entropy value of the jth attribute is:

ej = −
1

ln n

n

∑
i=1

pij ln pij (13)

Then, the weight coefficient of attribute can be calculated as:

wj =
dj

m
∑

j=1
dj

(14)

where dj = 1− ej represents the deviation degree of the jth attribute. Generally, a larger
value of deviation degree indicates that it provides more information. Therefore, this
attribute has a higher weight.
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2.4. Multi-Objective Reliability Optimization

The traditional deterministic multi-objective optimization can be expressed by:
min fm(x), m = 1, . . . , M

s.t. gk(x) ≤ 0, k = 1, . . . , K
xlb ≤ x ≤ xub

(15)

where x is the vector of design variables; xlb and xub are the lower and upper limits of the
design variable, respectively; fm(x) and gk(x) are the optimization objectives and inequality
constraints, respectively.

Deterministic optimization has been widely used in engineering design. However,
it cannot consider the inevitably uncertain factors such as material properties and load-
ing conditions, which may lead the optimal solutions near the constraint boundary to
failure [31,32]. To overcome this drawback, the reliability optimization was proposed, as
shown in Figure 2. The deterministic optimization point is the point optimized without
reliability constraint and the reliability optimization point is the point optimized with
reliability constraint.
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Considering the uncertainty of design variables, reliability optimization was added to
deterministic multi-objective optimization. It can be described as:

min fm(x), m = 1, . . . , M
s.t. R[Gk(x,y) ≤ 0] ≥ Rj, k = 1, . . . , K
hj(x) ≤ 0, j = 1, . . . , J

(16)

where fm(x) is the mth objective function; x is a vector of deterministic design variables;
y is a vector of random variables; R is the reliability; Rj represents expected reliability;
Gk(x,y) is the probability constraint; and hj(x) is the deterministic constraint.

Accordingly, this paper proposes a multi-objective reliability optimization method
based on Monte Carlo simulation and NSGA-II (elitist non-dominated sorting genetic
algorithm) coupled with entropy weighted grey relational analysis. The Kriging surrogate
models are employed to predict the response for improving optimization efficiency, for
which the optimal Latin hypercube design is adopted to sampling. The proposed multi-
objective reliability optimization procedure is shown in Figure 3.
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3. Finite Element Analysis of Suspension Control Arm
3.1. Finite Element Modeling of Control Arm

For building the finite element model, the shell element was used to mesh the model
of the control arm, which was discretized into 11,193 elements and 11,412 nodes. The front
point and rear point of control arm were connected to the body using bushings, and the
outer point was connected to the steering knuckle by a ball joint. These installation points
were simulated by RBE2 elements. The finite element model of the lower control arm of
the Macpherson strut was established, as shown in Figure 4.
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3.2. Modal Analysis of Control Arm

The vibration performance of the suspension control arm has a great influence on
the comfort, and is also related to the fatigue failure of the structure. Modal analysis
was mainly used to calculate the vibration frequency and vibration mode of the structure.
The modal analysis of the finite element model of the control arm was carried out under
unconstrained free state, and the first six natural frequencies were extracted, as shown in
Table 1.
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Table 1. Natural frequency of the first six modes of control arm.

Order Natural Frequency/Hz

1 324.1
2 357.1
3 602.5
4 1003.9
5 1254.2
6 1439.4

3.3. Stiffness Analysis of Control Arm

The longitudinal stiffness and transverse stiffness of the control arm is related to
its deformation under load, which affects the ride comfort and handling stability of the
vehicle. In the stiffness analysis model of control arm, the translation in X, Y, Z direction
and rotation around Y, Z axis of front point were constrained (marked as 1, 2, 3, 5, 6),
and three translational degrees of freedom and rotation around X, Y axis of rear point
were restrained (denoted as 1, 2, 3, 4, 5). The translation in Z direction of outer point was
fixed (denoted as 3), while a load of 2000 N was applied in positive X and Y direction,
respectively, so as to calculate the longitudinal stiffness and transverse stiffness of control
arm. The boundary condition of stiffness analysis of control arm is shown in Figure 5, and
the calculation results of stiffness are given in Table 2.
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Table 2. Results of stiffness analysis of control arm.

Direction Force/N Displacement/mm Stiffness/N·mm−1

X+ 2000 0.156 12,821
Y+ 2000 0.077 25,974

4. Fatigue Life Analysis of Suspension Control Arm
4.1. Cumulative Fatigue Damage Theory

It is well known that materials subjected to alternating load may lead to fatigue failure
even at a quite low stress level. The fatigue can be divided into high cycle fatigue and low
cycle fatigue. The number of high cycle fatigue cycles is usually greater than 105–107 times,
and the alternating load is generally less than the yield limit of the material. Low cycle
fatigue refers to the number of cycles is usually less than 104–105 times, and the alternating
load is close to or higher than the yield limit of the material [33].

The fatigue cumulative damage theory includes linear, nonlinear, and bilinear fatigue
cumulative damage theory. Miner cumulative damage theory is a representative linear
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damage theory. It assumes that the damage of component under every stress is inde-
pendent. Without considering the loading sequence, the fatigue damage can be linearly
superimposed, which can be expressed as:

D =
m

∑
i=1

ni
Ni

(17)

where D is the total fatigue damage, which equals 1, meaning fatigue failure; m is the
number of stress levels; ni is the number of cycles accumulated at the ith stress level; and
Ni is the fatigue life at the ith stress level.

4.2. Stress Analysis of Control Arm

The stress analysis of the lower control arm was carried out using the inertia release
method. The control arm mainly transfers the loads between the wheel and body through
three installation points. Hence, nine load cases, three cases for each connection point,
were employed to predict the fatigue life of the control arm. A force of 1 N was applied
for each load case. The stress distribution of the control arm for the nine load cases were
obtained through finite element analysis. The stress contour of the control arm under the
unit load in X direction of the outer point is shown in Figure 6.
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4.3. Load Spectrum of Control Arm

The durability road of automotive proving ground is usually used to provide a load
spectrum for estimating the fatigue performance of vehicle components because of the
greatly reduced test cycle. The fatigue life of the control arm was predicted according
to a virtual durability road, including a pebble road of 40 m, a washboard road of 40 m,
and a Belgian road of 80 m [34]. Then, the dynamic simulation of a rigid-flexible coupling
dynamic vehicle model, running on the virtual durability road, was performed to extract
load time histories of the control arm. The dynamic load time histories of the outer point,
the front point, and the rear point of the control arm were acquired, as shown in Figure 7.
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4.4. Fatigue Life Prediction of Control Arm

The number of fatigue cycles of the suspension control arm is usually greater than
105, which belongs to the high cycle fatigue failure. Thus, the nominal stress method was
adopted to predict its fatigue life. It was firstly necessary to determine the S-N curve, in
which one axis denotes stress and the other axis is the number of cycles. The relationship
between fatigue life and stress can be expressed by S-N curve, and its mathematical
expression is:

σa = σ′f

(
2N f

)b
(18)

where σa represents the stress amplitude; σ′f represents the fatigue strength coefficient; N f
represents the number of load cycles; and b is fatigue strength index. The material of the
control arm was QSTE420TM, its yield strength was 420 MPa, and its ultimate strength
was 520 MPa. Then, the S-N curve was estimated using the material mapping, as shown in
Figure 8.
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The S-N curve is generally measured under the stress ratio of −1, which means the
compressive stress equals the tensile stress. However, the stress ratio of control under load
spectrum usually may not be −1. In a certain range, the compressive stress increases the
fatigue limit while the tensile stress decreases the fatigue limit. Therefore, it is necessary
to correct the effect of stress ratio on fatigue damage when the mean stress is not zero.
Goodman theory can be used to correct the mean stress, that is:

Sa

Se(R = −1)
+

Sm

UTS
= 1 (19)

where Sa and Sm are the stress amplitude and mean stress of the material under load
spectrum, respectively; UTS is the ultimate tensile strength of the material; and Se is the
stress amplitude when the stress ratio is −1.

The load spectrum of the above nine cases were integrated with stress analysis results
of the control arm under unit load to calculate the dynamic stress time histories. The
Goodman method and the survival rate of 95% were adopted to conduct the S-N curve
correction. The nominal stress method was then used to predict the fatigue life of the
control arm, as shown in Figure 9.
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It can be seen from Figure 9 that the minimum number of fatigue cycles of the control
arm was 1.393 × 106, which appeared near the front point connection. According to the
length of established road model, the fatigue life durability mileage of the control arm
was 1.393 × 106 × 0.16 = 222,880 km. By considering the enhancement coefficients of the
pebble road, washboard road, and Belgian road, which took the value of 5.8, 4.9, and 12.6,
respectively [35], the enhancement coefficient of the durability road model was calculated
as 5.8 × 0.25 + 4.9 × 0.25 + 12.6 × 0.5 = 8.975. Thus, the minimum life mileage of the
control arm was 222,880 × 8.975 = 2,000,348 km. The life mileage had a large margin, and
there is potential for lighter weight.

5. Multi-Objective Reliability Optimization of Suspension Control Arm
5.1. Design Variables

The parameterized finite element model of the control arm was developed based on
mesh morphing technology. Five shape variables and a thickness variable (denoted as x1,
x2, ···, x6) were defined, as shown in Figure 10. The mesh morphing of the parameterized
model of the control arm was realized by translating and scaling the control node. The
value ranges of design variables are given in Table 3.
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Figure 10. Parameterized model of the control arm and its design variables.

Table 3. Design variables and value range of control arm.

Variables Variable Description Initial Value Lower Limit Upper Limit

x1/mm Variation of flanging height 0 −5 5
x2 Width scaling at outer point 1 0.9 1.1
x3 Width scaling at front point 1 0.9 1.1
x4 Width scaling at rear point 1 0.9 1.1
x5 Scaling of hole diameter 1 0.9 1.1

x6/mm Thickness 5 4 6

5.2. Kriging Surrogate Models of Control Arm

Surrogate model technology is a method used to approximate the relationship between
a set of input variables and output variables by mathematical model. The sampling method
has a great influence on the accuracy of the surrogate model. The optimal Latin hypercube
design can sample uniform points throughout the design space, so that the fitting of factors
and responses is more accurate [36].

Therefore, the optimal Latin hypercube sampling method was adopted to generate
41 sample points for the six design variables, which were employed to build the Kriging
surrogate models of the control arm. The performance indexes were obtained through
finite element analysis of the control arm. The accuracy was verified by the determination
coefficient R2, expressed as:

R2 =

n
∑

i=1
(ŷi − y)

n
∑

i=1
(yi − y)

(20)

where n is the number of sample points used to verify the accuracy of Kriging model; ŷi is
the predicted value of the ith response; yi is the simulation value of the ith response; and y
is the average value.

The closer to 1 the determination coefficient R2 is, the higher the prediction accuracy
of the surrogate model is. Ten sample points were selected to verify the accuracy of the
Kriging models. The R2 of the fatigue life, mass, first-order natural frequency, longitudinal
stiffness, and transverse stiffness of the control arm were 0.9808, 0.9830, 0.9821, 0.9672 and
0.9936, respectively. The Kriging surrogate model accuracy verification results of fatigue
life and mass are shown in Figure 11.
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5.3. Deterministic Multi-Objective Optimization of Control Arm

The control arm is expected to have sufficient life without fatigue failure, while having
a small mass. Further considering the performance constraints of longitudinal stiffness,
transverse stiffness, and first-order natural frequency, the deterministic multi-objective
optimization of the control arm can be formulated as:

min(m(x),−N(x))
f ind x = (x1, . . . , x2)

T

s.t.|kx(x)− kx0| ≤ 0.1kx0∣∣ky(x)− ky0
∣∣ ≤ 0.1ky0

| ft(x)− ft0| ≤ 0.1 ft0
x ∈ (xL, xU)

(21)

where x is the design variable vector of the control arm; m(x) is the control arm mass; N(x)
is the minimum fatigue life; kx(x), and kx0 are the longitudinal stiffness and its initial value,
respectively, kx0 = 12,821 N·mm−1; ky(x) and ky0 are the transverse stiffness and its initial
value, respectively, ky0 = 25,974 N·mm−1; ft(x) and ft0 are the first order natural frequency
and its initial value, ft0 = 324.1 Hz; and xL and xU are the lower and upper limits of design
variable, respectively.

The NSGA-II algorithm with a population size of 40 and generation of 100 was
applied to solve the optimization of control arm. The Kriging surrogate models were
used to calculate the performance indexes in the optimization process. Then, the Pareto
front was obtained, as shown in the Figure 12. The optimal design parameters were
selected from the Pareto solutions by considering that the mass was minimized as far as
possible while meeting the fatigue life requirements. According to engineering practice, the
optimization results of design variables were corrected, as shown in Table 4. The corrected
design parameters were used to modify the finite element model of the control arm, and
its performance indexes were obtained, also listed in Table 4. The mass of the optimized
control arm decreased from 3.16 kg to 2.88 kg while its fatigue life was 1.08 × 106, meeting
the design requirement, as well as the other performance indexes.
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Table 4. Deterministic multi-objective optimization results.

Variables Optimal Value Corrected Value Responses Value

x1/mm −4.9711 −5.0 Mass/kg 2.88
x2 0.94625 0.95 Life/cycles 1,080,000

x3 1.0955 1.09 First order natural
frequency/Hz 333.84

x4 0.90005 0.90 Longitudinal stiffness/N·mm−1 11,765
x5 0.98121 0.98 Transverse stiffness/N·mm−1 23,810

x6/mm 4.9934 5.0

5.4. Multi-Objective Reliability-Based Optimization

The fatigue life of the control arm is sensitive to the uncertainties of the six design
variables. Therefore, a multi-objective reliability-based optimization of the control arm was
developed based on deterministic optimization by considering the reliability constraint of
fatigue life, in which the Monte Carlo simulation was applied to calculate the reliability.
The deterministic optimization results of design variables were determined as the mean
values of the design parameters of the control arm, which were taken as probability random
variables subjected to normal distribution, as shown in Table 5. Considering the reliability
of fatigue life more than 106 cycles, the multi-objective reliability optimization can be
formulated as: 

min(m(x),−N(x))
find x = (x1, . . . , x2)

T

s.t.R
[
N(x) ≥ 106] ≥ Rj

|kx(x)− kx0| ≤ 0.1kx0∣∣ky(x)− ky0
∣∣ ≤ 0.1ky0

| ft(x)− ft0| ≤ 0.1 ft0
x ∈ (xL, xU)

(22)

where R is the reliability; and Rj represents the expected reliability, set to 95%.
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Table 5. Design variable probabilistic distributions.

Variables Mean Standard Deviation Distribution

x1/mm −5.0 0.75 Normal
x2 0.95 0.14 Normal
x3 1.09 0.16 Normal
x4 0.90 0.14 Normal
x5 0.98 0.15 Normal

x6/mm 5.0 0.75 Normal

There were 111 Pareto solutions obtained by solving the reliability-based optimization
based on NSGA-II algorithm and Monte Carlo simulations. Then, the entropy weighted grey
relational analysis was employed to determine the optimal design of the control arm. The
Pareto solutions were defined as the decision-making matrix, which were used to calculate
the grey relational coefficients, and some of them are listed in Table 6. Then, the weights of
performance indexes were obtained using the entropy method, as listed in Table 6. Finally,
the grey relational grade was calculated, as shown in Figure 13.

Table 6. Grey relational coefficient.

Grey Relational Coefficient Weight
1 2 . . . 110 111

Mass 0.6775 0.4280 . . . 0.1730 0.0954 0.2837
Fatigue life 0.3534 0.5154 . . . 0.0454 0.1197 0.1210

First order natural
frequency 0.3678 0.7201 . . . 0.0206 0.0408 0.0450

Longitudinal stiffness 0.3774 0.7262 . . . 0.0227 0.0446 0.0529
Transverse stiffness 0.4079 0.5795 . . . 0.0365 0.0932 0.0946

Reliability 0.3520 0.3600 . . . 0.2364 0.1450 0.4027
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It can be seen from Figure 13 that the grey relational grade of the third Pareto solution
was the maximum, that is, this grey relational grade was the closest to the expected value.
Therefore, the third Pareto solution was selected as the optimal design of the control
arm after multi-objective reliability optimization. The design variables obtained by the
reliability-based optimization were corrected according to practical engineering, as shown
in Table 7. The finite element model of the control arm was modified using these design
parameters, and the fatigue life contour is given in Figure 14.
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Table 7. Multi-objective reliability optimization results.

Variables Optimal Values Corrected Values

x1/mm −4.9471 −4.9
x2 0.90029 0.90
x3 1.09890 1.10
x4 0.90091 0.90
x5 0.90021 0.90

x6/mm 5.3401 5.3

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 19 
 

 
Figure 13. Grey relational grade. 

It can be seen from Figure 13 that the grey relational grade of the third Pareto solution 
was the maximum, that is, this grey relational grade was the closest to the expected value. 
Therefore, the third Pareto solution was selected as the optimal design of the control arm 
after multi-objective reliability optimization. The design variables obtained by the relia-
bility-based optimization were corrected according to practical engineering, as shown in 
Table 7. The finite element model of the control arm was modified using these design 
parameters, and the fatigue life contour is given in Figure 14. 

Table 7. Multi-objective reliability optimization results. 

Variables Optimal Values Corrected Values 𝑥 /mm −4.9471 −4.9 𝑥  0.90029 0.90 𝑥  1.09890 1.10 𝑥  0.90091 0.90 𝑥  0.90021 0.90 𝑥 /mm 5.3401 5.3 

 
Figure 14. Fatigue life nephogram of optimized control arm. 

The comparison of the performance indexes before and after multi-objective reliabil-
ity optimization of the control arm is shown in Table 8. Compared with the initial steel 
control arm, after the deterministic optimization, the mass of optimized control arm was 
reduced by 8.89% from 3.16 to 2.88 kg and the life was reduced by 22.47% from 1.39 × 106 
to 1.08 × 106, with a reliability of 90%. After the multi-objective reliability optimization of 

Figure 14. Fatigue life nephogram of optimized control arm.

The comparison of the performance indexes before and after multi-objective reliability
optimization of the control arm is shown in Table 8. Compared with the initial steel control
arm, after the deterministic optimization, the mass of optimized control arm was reduced
by 8.89% from 3.16 to 2.88 kg and the life was reduced by 22.47% from 1.39 × 106 to
1.08 × 106, with a reliability of 90%. After the multi-objective reliability optimization of the
control arm, longitudinal stiffness changed little, the first mode frequency and transverse
stiffness increased, and the mass changed from 3.16 kg to 3.03 kg. The mass decreased by
4.1% while the life increased by 215.8%, with a high reliability of 97%.

Table 8. Comparison of optimal design results.

Initial Value Deterministic
Optimization

Reliability
Optimization

Mass/kg 3.16 2.88 3.03
Life/cycles 1.39 × 106 1.08 × 106 4.39 × 106

First order natural
frequency/Hz 324.09 333.84 356.49

Longitudinal
stiffness/N·mm−1 12,821 11,765 12,658

Transverse
stiffness/N·mm−1 25,974 23,810 26,316

Reliability of fatigue life 0.90 0.97

6. Conclusions

This paper proposed a multi-objective reliability optimization method based on Monte
Carlo simulation, NSGA-II algorithm and entropy weighted grey relational analysis, ap-
plied to perform the lightweight design of a lower control arm of McPherson suspension.
The finite element model of the control arm was developed to conduct the modal and
stiffness analysis. The fatigue life of the control arm was predicted by a normal stress
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method, using the load spectrum acquired by dynamic simulations of the rigid-flexible
coupling vehicle model running on the virtual durability road. Then, the deterministic
multi-objective optimization of the control arm was carried out to minimize the mass and
maximize the fatigue life with the constraints of first order natural frequency and longitu-
dinal and transverse stiffness, based on the Kriging model and NSGA-II algorithm. The
deterministic optimization results showed that the mass of the control arm was reduced
from 3.16 kg to 2.88 kg with a reduction of 8.89%, and the life was reduced by 22.47% from
1.39 × 106 to 1.08 × 106, with a reliability of 90%.

On this basis, the multi-objective reliability optimization of the control arm was
conducted using the NSGA-II algorithm and the Monte Carlo simulations. The entropy
weighted grey relational analysis was adopted to determine the optimal design of the
control arm from the Pareto solutions. The reliability optimization results indicated that
the mass of the optimized control arm was reduced by 4.1% and the life was increased
by 215.8% with a high reliability of 97%. This proves that the proposed multi-objective
reliability optimization procedure is effective for automotive lightweight design.

Author Contributions: Conceptualization, R.J., T.S. and D.W.; methodology, R.J. and T.S.; software,
R.J. and T.S.; validation, R.J. and T.S.; writing—original draft preparation, R.J., T.S., D.L. and Z.P.;
writing—review and editing, R.J., T.S., D.L. and Z.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (grant no.
51805286) and Shandong Province Natural Science Foundation (grant no. 2017PEE004).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Agarwal, J.; Sahoo, S.; Mohanty, S.; Nayak, S.K. Progress of novel techniques for lightweight automobile applications through

innovative eco-friendly composite materials: A review. J. Thermoplast. Compos. 2020, 33, 978–1013. [CrossRef]
2. Deng, Y.L.; Guo, Y.S.; Wu, P.; Ingarao, G. Optimal design of flax fiber reinforced polymer composite as a lightweight component

for automobiles from a life cycle assessment perspective. J. Ind. Ecol. 2019, 23, 986–997. [CrossRef]
3. Pu, Y.F.; Ma, F.W.; Zhang, J.Y.; Yang, M. Optimal lightweight material selection for automobile applications considering multi-

perspective Indices. IEEE Access 2018, 6, 8591–8598. [CrossRef]
4. Kahoul, H.; Belhour, S.; Bellaouar, A.; Dron, J.P. Fatigue life prediction of upper arm suspension using strain life approach. J. Eng.

Des. Technol. 2019, 17, 25–40. [CrossRef]
5. Yarmohammadisatri, S.; Shojaeefard, M.H.; Khalkhali, A. A family base optimization of a developed nonlinear vehicle suspension

model using gray family design algorithm. Nonlinear Dyn. 2017, 90, 649–669. [CrossRef]
6. Albak, E.I.; Solmaz, E.; Ozturk, F. Simplified optimization model and analysis of twist beam rear suspension system. Proc. Inst.

Mech. Eng. Part D 2021, 235, 1434–1445. [CrossRef]
7. Viqaruddin, M.; Reddy, D.R. Structural optimization of control arm for weight reduction and improved performance. Mater.

Today Proc. 2017, 4, 9230–9236. [CrossRef]
8. Yoo, S.H.; Doh, J.; Lim, J.; Kang, O.; Lee, J.; Kang, K. Topologically optimized shape of CFRP front lower control ARM. Int. J.

Automot. Technol. 2017, 18, 625–630. [CrossRef]
9. Zhang, H.T. Lightweight and performance of anti-collision strength of automobiles based on carbon fiber composites. Korean J.

Mater. Res. 2019, 29, 525–531. [CrossRef]
10. Guler, T.; Demirci, E.; Yildiz, A.R.; Yavuz, U. Lightweight design of an automobile hinge component using glass fiber polyamide

composites. Mater. Test. 2018, 60, 306–310. [CrossRef]
11. Chen, J.; Peng, B.; Wang, D.F.; Huang, H. Lightweight design of optimization of a single piece of stamping control arm of vehicle.

J. Tongji Univ. 2018, 46, 389–393.
12. Wang, C.Y.; Wang, W.W.; Zhao, W.Z.; Wang, Y.L.; Zhou, G. Structure design and multi-objective optimization of a novel NPR

bumper system. Compos. Part B Eng. 2018, 153, 78–96. [CrossRef]
13. Fossati, G.G.; Fadel Miguel, L.F.; Paucar Casas, W.J. Multi-objective optimization of the suspension system parameters of a full

vehicle model. Optim. Eng. 2018, 20, 151–177. [CrossRef]
14. Tang, Z.H.; He, Y.S.; Ma, T.; Zhang, Z.F.; Pu, H.J.; Li, Y.; Chen, Z. Lightweight design of automotive sound package. Automot. Eng.

2021, 43, 113–120.
15. Nikkhah, H.; Baroutaji, A.; Olabi, A.G. Crashworthiness design and optimisation of windowed tubes under axial impact loading.

Thin-Walled Struct. 2019, 142, 132–148. [CrossRef]
16. Panagant, N.; Bureerat, S.; Tai, K. A novel self-adaptive hybrid multi-objective meta-heuristic for reliability design of trusses with

simultaneous topology, shape and sizing optimisation design variables. Struct. Multidiscip. Optim. 2019, 60, 1937–1955. [CrossRef]

http://doi.org/10.1177/0892705718815530
http://doi.org/10.1111/jiec.12836
http://doi.org/10.1109/ACCESS.2018.2804904
http://doi.org/10.1108/JEDT-03-2018-0047
http://doi.org/10.1007/s11071-017-3686-8
http://doi.org/10.1177/0954407020963988
http://doi.org/10.1016/j.matpr.2017.07.282
http://doi.org/10.1007/s12239-017-0062-0
http://doi.org/10.3740/MRSK.2019.29.9.525
http://doi.org/10.3139/120.111152
http://doi.org/10.1016/j.compositesb.2018.07.024
http://doi.org/10.1007/s11081-018-9403-8
http://doi.org/10.1016/j.tws.2019.04.052
http://doi.org/10.1007/s00158-019-02302-x


Appl. Sci. 2021, 11, 5825 18 of 18

17. Lobato, F.S.; Da Silva, M.A.; Cavalini, A.A.J.; Steffen, V.J. Reliability-based robust multi-objective optimization applied to
engineering system design. Eng. Optim. 2020, 52, 1–21. [CrossRef]

18. Lim, J.; Jang, Y.S.; Chang, H.S.; Park, J.C.; Lee, J. Multi-objective genetic algorithm in reliability-based design optimization with
sequential statistical modeling: An application to design of engine mounting. Struct. Multidiscip. Optim. 2020, 61, 1253–1271.
[CrossRef]

19. Zhang, J.H.; Gao, L.; Xiao, M. A new hybrid reliability-based design optimization method under random and interval uncertainties.
Int. J. Numer. Methods Eng. 2020, 121, 4435–4457. [CrossRef]

20. Li, J.P.; Bai, L.; Gao, W.; Shi, N.; Wang, N.; Ye, M.; Gu, H.; Xu, X.X.; Liu, J. Reliability-based design optimization for the lattice
boom of crawler crane. Structures 2021, 29, 1111–1118. [CrossRef]

21. Shi, Y.; Lu, Z.Z. Dynamic reliability analysis model for structure with both random and interval uncertainties. Int. J. Mech. Mater.
Des. 2019, 15, 521–537. [CrossRef]

22. Gao, F.L.; Bai, Y.C.; Lin, C.; Kim, I.Y. A time-space Kriging-based sequential metamodeling approach for multi-objective
crashworthiness optimization. Appl. Math. Model. 2019, 69, 378–404. [CrossRef]

23. Chowdappa, V.; Botella, C.; Javier Samper-Zapater, J.; Martinez, R.J. Distributed radio map reconstruction for 5G automotive.
IEEE Intell. Transp. Syst. Mag. 2018, 10, 36–49. [CrossRef]

24. Xu, F.X.; Sun, G.Y.; Li, G.Y.; Li, Q. Crashworthiness design of multi-component tailor-welded blank (TWB) structures. Struct.
Multidiscip. Optim. 2013, 48, 653–667. [CrossRef]

25. Kim, S.; Lee, S.; Kim, J.; Lee, T.H.; Lim, M. Uncertainty identification method using kriging surrogate model and Akaike
information criterion for industrial electromagnetic device. IET Sci. Meas. Technol. 2020, 14, 250–258. [CrossRef]

26. Jiang, R.; Jin, Z.; Liu, D.; Wang, D. Multi-objective lightweight optimization of parameterized suspension components based on
NSGA-II algorithm coupling with surrogate model. Machines 2021, 9, 107. [CrossRef]

27. Zhang, Y.H.; Liu, C.; Xu, T.T.; Huang, Y.; Tao, L.Y. Impact analysis and classification of aircraft functional failures using improved
FHA based on grey evaluation. Grey Syst. Theory Appl. 2020, 10, 159–171. [CrossRef]

28. Zhang, Z.F.; Li, H.L.; Yue, L.; Du, Y.K. End of life vehicle disassembly plant layout evaluation integrating gray correlation and
decision making trial and evaluation laboratory. IEEE Access 2020, 8, 141446–141455. [CrossRef]

29. Ding, Q.Y.; Wang, Y.M. Intuitionistic fuzzy TOPSIS multi-attribute decision making method based on revised scoring function
and entropy weight method. J. Intell. Fuzzy Syst. 2019, 36, 625–635. [CrossRef]

30. Jiang, R.; Zhang, T.; Sun, H.; Liu, D.; Chen, H.; Wang, D. Study on lightweighting of CFRP bumper beam using entropy-based
TOPSIS approach. Automot. Eng. 2021, 43, 421–428.

31. Dammak, K.; El Hami, A. Multi-objective reliability based design optimization of coupled acoustic-structural system. Eng. Struct.
2019, 197, 109389–109395. [CrossRef]

32. Yin, H.; Fang, H.; Xiao, Y.; Wen, G.; Qing, Q. Multi-objective robust optimization of foam-filled tapered multi-cell thin-walled
structures. Struct. Multidiscip. Optim. 2015, 52, 1051–1067. [CrossRef]

33. Pavlou, D.G. The theory of the S-N fatigue damage envelope: Generalization of linear, double-linear, and non-linear fatigue
damage models. Int. J. Fatigue 2018, 110, 204–214. [CrossRef]

34. Jiang, R.C.; Wang, D.F.; Qin, M.; Jiang, Y.F. Lightweight design of twist beam of rear suspension of passenger car based on fatigue
life. J. Jilin Univ. (Eng. Technol. Ed.) 2016, 46, 35–42.

35. Guo, H.; Chen, W.H.; Fan, X.Y.; Deng, Y.W.; Wu, H.M. Research of enhancement coefficient of automobile reliability enhancement
test on proving ground. Chin. J. Mech. Eng. 2004, 40, 73–76. [CrossRef]

36. Ba, S.; Myers, W.R.; Brenneman, W.A. Optimal sliced latin hypercube designs. Technometrics 2015, 57, 479–487. [CrossRef]

http://doi.org/10.1080/0305215X.2019.1577413
http://doi.org/10.1007/s00158-019-02409-1
http://doi.org/10.1002/nme.6440
http://doi.org/10.1016/j.istruc.2020.12.024
http://doi.org/10.1007/s10999-018-9427-4
http://doi.org/10.1016/j.apm.2018.12.011
http://doi.org/10.1109/MITS.2018.2806632
http://doi.org/10.1007/s00158-013-0916-7
http://doi.org/10.1049/iet-smt.2019.0349
http://doi.org/10.3390/machines9060107
http://doi.org/10.1108/GS-07-2019-0027
http://doi.org/10.1109/ACCESS.2020.3004447
http://doi.org/10.3233/JIFS-18963
http://doi.org/10.1016/j.engstruct.2019.109389
http://doi.org/10.1007/s00158-015-1299-8
http://doi.org/10.1016/j.ijfatigue.2018.01.023
http://doi.org/10.3901/JME.2004.10.073
http://doi.org/10.1080/00401706.2014.957867

	Introduction 
	Multi-Objective Reliability Optimization Method 
	Kriging Surrogate Model 
	Monte Carlo Simulation 
	Entropy Weighted Grey Relational Analysis 
	Multi-Objective Reliability Optimization 

	Finite Element Analysis of Suspension Control Arm 
	Finite Element Modeling of Control Arm 
	Modal Analysis of Control Arm 
	Stiffness Analysis of Control Arm 

	Fatigue Life Analysis of Suspension Control Arm 
	Cumulative Fatigue Damage Theory 
	Stress Analysis of Control Arm 
	Load Spectrum of Control Arm 
	Fatigue Life Prediction of Control Arm 

	Multi-Objective Reliability Optimization of Suspension Control Arm 
	Design Variables 
	Kriging Surrogate Models of Control Arm 
	Deterministic Multi-Objective Optimization of Control Arm 
	Multi-Objective Reliability-Based Optimization 

	Conclusions 
	References

