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Abstract: In this work, the transport equations of ionic species in concrete are studied. First, the
equations at the porescale are considered, which are then averaged over a representative elementary
volume. The so obtained transport equations at the macroscopic scale are thoroughly examined
and each term is interpreted. Furthermore, it is shown that the tortuosity-connectivity does not
slow the average speed of the ionic species down. The transport equations in the representative
elementary volume are then compared with the equations obtained in an equivalent pore. Lastly,
comparing Darcy’s law and the Hagen–Poiseuille equation in a cylindrical equivalent pore, the
tortuosity-connectivity parameter is obtained for four different concretes. The proposed model
provides very good results when compared with the experimentally obtained chloride profiles for
two additional concretes.

Keywords: tortuosity; microscale-macroscale; averaging; equivalent pore; ion transport; concrete

1. Introduction

The durability of concrete, which can be defined as its resistance to weathering action,
chemical attacks and other degradation processes, is one of the most significant areas
of research interest. Specifically, one of the most serious causes of durability problems
affecting reinforcing steel is the introduction of chloride ions. The penetration of this
aggressive ionic species into reinforced concrete induces steel corrosion and leads to
premature deterioration of structures exposed to marine or de-icing salt environments [1,2].
As a result, most modern codes of practice have adopted strict maximum levels for chlorides
permitted in concrete structures, among others the Spanish Standard of Structural Concrete
EHE-08 [3]. Therefore, studying the processes involved in transport of ionic species in
concrete is of utmost benefit.

Accurate prediction of the behaviour of concrete in different environments has been a
challenge until now. The means by which ions penetrate into concrete at a given exposure
time are complex and depend on several variables of the material, particularly on the
moisture of the material. Bertolini [4] pointed out that, among the different penetration
mechanisms, four should be considered, namely diffusion, migration, absorption/capillary
suction and permeation. An enormous variety of mathematical models has been proposed
over the years with the main goal to explain and predict the penetration of ionic species
into concrete [5–10]. The most simple models are generally based on the diffusion equation
with an apparent diffusion coefficient which depends on the material as well as on the
concentration of the ionic species [11–14]. The description of the various processes involved,
requires the consideration of various transport mechanisms coupled with the effect of the
interaction between the ion and the pore surface, which is very challenging. Despite
this, some authors have recently proposed advanced approaches aiming at modelling
the features of chloride transport in difficult and variable exposure conditions. Thus,
Song et al. [15] studied how different types of cation influence the diffusive process of
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chloride ions in concrete. Ožbolt et al. [16] proposed a 3D chemo-hygro-thermo mechanical
model for reinforced concrete to simulate physical processes related to corrosion of steel
bars. In a more recent work, Zang et al. [17] have proposed a model that couples the ionic
diffusion process with the concrete microstructure evolution.

The problem is further complicated when dealing with heterogeneous and porous
materials, such as concrete. Indeed, the complex geometry of the porous network of
cement-based materials is tortuous in nature. The geometry of the pathways of this
materials for the penetration of aggressive agents is very complicated, even further due to
its heterogeneity and particularly the higher porosity of the interface zone can facilitate the
ingress of external aggressive agents and the development of deleterious chemical reactions.
Bourdette et al. [18] found a notably higher effective diffusion coefficient of chloride ions
in the interface zone (6 to12 times greater) than in the bulk cement paste. So, the detailed
modelling of cement-based materials microstructure requires to consider different levels of
approximation, which would greatly complicate the modelling. In addition, micro-models
consider a large number of parameters which are usually difficult to calibrate through
specific tests [17]. Seeking to more practical approaches, in previous works, a constant
tortuosity factor has been adopted which assumes that all the effects arising from pore
orientation, connectivity, size variation, etc., can be encompassed by a mean value valid for
all pore sizes [19–21]. This is obviously a gross assumption since it depends on the implicit
assumption that the effects of pore geometry and structure are the same for all pore sizes,
even so, if the pore structure is characterized in detail, a sufficiently accurate aproach can
be made. Ahmad [19] studied the relationship between permeability and tortuosity, based
on the fact that both depend upon the pore structure and its interconnectivity.

This work focuses on the influence of the geometric complexity of the porous network
on the different mass fluxes. First, the equations at the porescale are considered, which
are then averaged over a representative elementary volume. This procedure shows the
origin of the tortuosity-connectivity parameter used for modelling ionic transport in porous
media. An explicit expression for the tortuosity-connectivity parameter is finally obtained
by comparing Darcy’s law and the Hagen–Poiseuille equation in a cylindrical equivalent
pore. This expression can be written as a function of the pore radii, or more conveniently,
as a function of the pore water content.

2. General Considerations

In order to determine the differential equations which govern the transport problem
at the macroscopic scale, the equations at the pore scale are integrated in a representative
elementary volume (REV). The REV Ω is assumed to contain three phases, namely the
liquid phase (the pore water), the gaseous phase (air) and the solid phase (concrete).
Furthermore, it is assumed that the ionic species are transported solely through the liquid
phase, and the solid phase is assumed to be inert. The REV can be seen as a whole of
multiple elementary volumes. In this work, only homogeneous materials are considered,
so that each elementary volume has the same properties. The characteristic length of the
elementary volume is denoted as l, while the characteristic length of the REV is denoted as
L. Furthermore, the size of the REV is chosen such that ε = l/L << 1. A representation of
one elementary volume, projected onto a 2D plane, is depicted in Figure 1. The volume
of the liquid phase is denoted as Ωl , while the boundaries between the phases i and j are
denoted as Aij. Finally, the unit vectors nij are normal to the i− j interface pointing from
the i-phase to the j-phase.

Throughout this work, the following notations are adopted:

〈 · 〉Ω =
1
Ω

∫
Ω
· dV (1)

〈 · 〉Ωl =
1

Ωl

∫
Ωl

· dV (2)



Appl. Sci. 2021, 11, 5812 3 of 19

g-phase 
(air)

l-phase
(pore water)

s-phase
(concrete)

ngs

nlg

n ls

Ags

Als

Alg

Figure 1. Elementary volume.

Note that Equations (1) and (2) are related as follows:

〈 · 〉Ω = φl〈 · 〉Ωl (3)

where φl = Ωl/Ω is the pore water content.
Furthermore, let u be a quantity related to the l-phase and consider the following

decomposition [22]:

u = 〈u〉Ωl + ũ (4)

〈ũ〉Ωl = 0 (5)

where ũ is the deviation of u with respect to the average 〈u〉Ωl . From Equation (5), the fol-
lowing relations may be deduced:

〈〈u〉Ωl 〉Ωl = 〈u〉Ωl (6)
˜̃u = ũ (7)

Equation (6) states that the average of the average value of u in Ωl is simply the
average itself, while Equation (7) states that the deviation of ũ is equal to ũ.

Moreover, the following theorems are used throughout this work [23–25] :

〈∂u
∂t
〉Ω =

∂

∂t
〈u〉Ω −

1
Ω

∫
Ali

uvli · nlidA Reynolds (8)

〈∇u〉Ω = ∇〈u〉Ω +
1
Ω

∫
Ali

unlidA Averaging (9)

〈∇.J〉Ω = ∇.〈J〉Ω +
1
Ω

∫
Ali

J · nlidA Averaging (10)

where J is a vector quantity related to the l-phase, i refers to the g-phase and the s-phase
and vli is the velocity vector of the l − i interface.

Equations (8)–(10) referred to the volume Ωl read:

〈∂u
∂t
〉Ωl =

1
φl

∂

∂t
(
φl〈u〉Ωl

)
− 1

Ωl

∫
Ali

uvli · nlidA (11)

〈∇u〉Ωl =
1
φl
∇
(
φl〈u〉Ωl

)
+

1
Ωl

∫
Ali

unlidA (12)

〈∇.J〉Ωl =
1
φl
∇.
(
φl〈J〉Ωl

)
+

1
Ωl

∫
Ali

J · nlidA (13)
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Applying Equations (8) and (9) to u = 1, the following lemmas are obtained:

1
φl

∂φl
∂t

=
1

Ωl

∫
Ali

vli · nlidA (14)

1
φl
∇φl = −

1
Ωl

∫
Ali

nlidA (15)

Using Equations (14) and (15), Equations (11) and (12) can be rewritten as:

〈∂u
∂t
〉Ωl =

∂

∂t
〈u〉Ωl −

1
Ωl

∫
Ali

ũvli · nlidA (16)

〈∇u〉Ωl = ∇〈u〉Ωl +
1

Ωl

∫
Ali

ũnlidA (17)

3. The Transport Equations at the Pore Scale

Denoting the concentration, mass flux and reaction terms of species i by ui (kg/m3),
Ji (kg/m2/s) and ri (kg/m3/s), respectively, the transport equation at the pore scale is
formulated as follows:

∂ui
∂t

+∇.Ji = ri (18)

where each term is expressed in units of mass per volume of pore water per second
(kg/m3/s).

The total mass flux is the sum of the diffusive mass flux Ji
D, the advective mass flux

Ji
A, the mass flux related to migration Ji

M and the mass fluxes due to temperature gradients
and chemical activity Ji

T [5]:

Ji = Ji
D + Ji

A + Ji
M + Ji

T (19)

Ji
D = −Di∇ui (20)

Ji
A = aui (21)

Ji
M = − ziF

RT
Diui∇Φ (22)

Ji
T = −Diuiγ

−1
i ∇γi − Diui ln(ai)T−1∇T (23)

where D (m2/s) is the diffusion coefficient at infinite dilution and solely depends on tem-
perature, a (m/s) the advection velocity (i.e., the velocity of the pore water), z the valence,
F (C/mol) the Faraday constant, R (J/mol/K) the gas constant, T (K) the temperature,
Φ (V) the electric potential, γ (m3/kg) the activity coefficient and a the chemical activity.
An explicit expression for the advection velocity a will be given later.

Substitution of Equations (19)–(23) into Equation (18) yields:

∂ui
∂t

+∇.(aiui) = ∇.
(

Di∇ui +
ziF
RT

Diui∇Φ+

Diuiγ
−1
i ∇γi + Diui ln(ai)T−1∇T

)
+ ri (24)

4. The Transport Equations at the Macroscopic Scale

In order to obtain the equations at the macroscopic scale, the microscopic transport
equation needs to be integrated in the REV. Thus, Equation (24) is first integrated in the
elementary volume Ω:

〈∂ui
∂t
〉Ω + 〈∇.Ji〉Ω = 〈ri〉Ω (25)

In the following, each term will be treated separately.
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4.1. The Time Derivative

The average of the time derivative is obtained by applying Reynolds’ transport theo-
rem (Equation (8)) to the first term on the left-hand side of Equation (24):

〈∂ui
∂t
〉Ω =

∂

∂t
〈ui〉Ω −

1
Ω

∫
Alg

uivlg · nlgdA

− 1
Ω

∫
Als

uivls · nlsdA (26)

It should be noted that the velocity of the l− s interface is not necessarily equal to zero.
Indeed, if the ionic species react to the cement matrix, the boundary between the l-phase
and the s-phase may be deformed. However, for the sake of simplicity, it is assumed
that this deformation does not alter significantly the transport of the ionic species, which
simplifies Equation (26) to:

〈∂ui
∂t
〉Ω =

∂

∂t
〈ui〉Ω −

1
Ω

∫
Alg

uivlg · nlgdA (27)

4.2. The Divergence of the Mass Fluxes

The average of the divergence of the total mass flux is obtained by applying the
averaging theorem (Equation (10)) to the second term of the left-hand side of Equation (18):

〈∇.Ji〉Ω = ∇.〈Ji〉Ω +
1
Ω

∫
Alg

Ji · nlgdA

+
1
Ω

∫
Als

Ji · nlsdA (28)

Since the ionic species are assumed to be transported solely through the l-phase,
and assuming that the temperature is constant within the elementary volume, the following
boundary conditions can be applied:

Ji
D · nlg = 0 = Ji

D · nls (29)

Ji
A · nls = 0 (30)

Ji
M · nlg = 0 = Ji

M · nls (31)

Ji
T · nlg = 0 = Ji

T · nls (32)

The assumption of a constant temperature within the elementary volume, which will
be adopted in the rest of this paper, can be justified by the high thermal conductivity
of concrete when compared with the slow penetration of the ionic species and the pore
water [5]. Moreover, it was found in [5] that temperature plays an important role in the
transport of ionic species in concrete, while temperature gradients do not.

Now, the average of the divergence of the mass fluxes are obtained by means of
Equation (28) and the boundary conditions (29)–(32):

〈∇.Ji
D〉Ω = −Di〈∇.(∇ui)〉Ω = −Di∇.〈∇ui〉Ω (33)

〈∇.Ji
A〉Ω = 〈∇.(aui)〉Ω = ∇.〈aui〉Ω +

1
Ω

∫
Alg

uia · nlgdA (34)

〈∇.Ji
M〉Ω = − ziF

RT
Di〈∇.(ui∇Φ)〉Ω = − ziF

RT
Di∇.〈ui∇Φ〉Ω (35)

〈∇.Ji
T〉Ω = −Di〈∇.

(
uiγ
−1
i ∇γi + ui ln(ai)T−1∇T

)
〉Ω

= −Di∇.〈uiγ
−1
i ∇γi + ui ln(ai)T−1∇T〉Ω (36)
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4.3. The Transport Equations at the Macroscopic Scale

Substituting Equation (27) and Equations (33)–(36) into Equation (25), the transport
equations at the macroscopic scale are obtained:

∂

∂t
〈ui〉Ω +∇.〈aui〉Ω +

1
Ω

∫
Alg

ui

(
a− vlg

)
· nlgdA

= Di∇.〈∇ui〉Ω +
ziF
RT

Di∇.〈ui∇Φ〉Ω

+ Di∇.〈uiγ
−1
i ∇γi + ui ln(ai)T−1∇T〉Ω + 〈ri〉Ω (37)

The velocity vlg represents the total velocity of the l − g interface, while a at the
boundary is the velocity of the interface due to the movement of the l-phase. In other
words, unlike a, vlg accounts for the velocity of the interface due to the evaporation and
condensation of the pore water. The velocity vlg can thus be interpreted as the sum of the
velocity at the l − g interface a|lg and the velocity of the boundary due to evaporation and
condensation vlg,vap:

vlg = a|lg + vlg,vap (38)

Combining Equations (14) and (38), the variations of the pore water content with time
can be expressed as follows:

∂φl
∂t

=
1
Ω

∫
Alg

a · nlgdA +
1
Ω

∫
Alg

vlg,vap · nlgdA (39)

where the second surface integral of Equation (39) represents the change of φl with time due
to evaporation and condensation of the pore water. Mainguy et al. [26] showed that when
concrete is subjected to drying processes the pore water is evaporated at the surface of the
material, and the evaporation within the material can be ignored. Therefore, the effects
of evaporation and condensation within the elementary volume are neglected, so that
vlg,vap = 0.

Equation (37) can now be rewritten as:

∂

∂t
〈ui〉Ω+∇.〈aui〉Ω = Di∇.〈∇ui〉Ω +

ziF
RT

Di∇.〈ui∇Φ〉Ω+

Di∇.〈uiγ
−1
i ∇γi + ui ln(ai)T−1∇T〉Ω + 〈ri〉Ω (40)

or with respect to volume Ωl :

∂

∂t
(
φl〈ui〉Ωl

)
+∇.(φl〈aui〉Ω)

= Di∇.
(
φl〈∇ui〉Ωl

)
+

ziF
RT

Di∇.
(
φl〈ui∇Φ〉Ωl

)
+ Di∇.

(
φl〈uiγ

−1
i ∇γi + ui ln(ai)T−1∇T〉Ωl

)
+ φl〈ri〉Ωl (41)

4.4. The Mass Fluxes

Explicit expressions for the mass fluxes are given in Equations (20)–(23), except for the
advective mass flux, which depends on the advection velocity a. The advection velocity is
not known a priori and depends strongly on the pore water content φl . In this work, a is
modelled by means of Darcy’s law, based on research work [5]:

a =
kl
νl
∇pc (42)

where kl (m2) is the permeability of the porous medium, νl (Pa·s) is the dynamic viscosity of
the pore water, and pc (Pa) is the capillary pressure. The permeability of the porous medium
relative to the pore water depends on the pore water content, the dynamic viscosity of the
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pore water depends on the concentration of the ionic species and on temperature, and the
capillary pressure depends on the pore water content, temperature and porosity [5]. As the
porosity can change due to chemical reactions of the ionic species with the cement matrix,
and those reactions depend directly on the concentration of the ions, the capillary pressure
may be expressed as a function of the concentration, rather than the porosity.

The advective mass flux (21) at the pore scale now reads:

Ji
A = ui

kl
νl
∇pc (43)

The averages of the mass fluxes are obtained by applying the average theorem
(Equation (9)) and the decomposition, as shown in Equation (4) to the fluxes defined
in Equations (20), (22)–(23) and (43):

〈Ji
D〉Ω =− Di

(
∇〈ui〉Ω +

1
Ω

∫
Al j

uinl jdA

)
(44)

〈Ji
A〉Ω = 〈ui〉Ωφ−1

l
kl
νl

(
∇〈pc〉Ω +

1
Ω

∫
Al j

pcnl jdA

)

+
kl
νl
〈ũi∇pc〉Ω (45)

〈Ji
M〉Ω =− ziF

RT
Di〈u〉Ωl

(
∇〈Φ〉Ω +

1
Ω

∫
Al j

Φnl jdA

)

− ziF
RT

Di〈ũ∇Φ〉Ω (46)

〈Ji
T〉Ω =− Di〈ui〉Ωl

(
∇〈ln γi〉Ω + 〈ln ai〉Ωl∇〈ln T〉Ω

+
1
Ω

∫
Al j

(
ln γi + 〈ln ai〉Ωl ln T

)
nl jdA

)
− Di〈ũi∇ ln γi +

(
ũi ln ai + 〈ui〉Ωl l̃n ai

)
∇ ln T〉Ω (47)

where the subscript j refers to the g- and s-phases.
Note that, in Equation (44), there is no need to calculate the average of the diffusion

coefficient. Indeed, D solely depends on temperature which is assumed to be constant in
the elementary volume. Furthermore, it should be noted that Equation (45) was obtained
by assuming that the deviations of ui within the elementary volume are sufficiently small
so that the dynamic viscosity νl can be assumed constant in the elementary volume. This
approximation can be expressed as follows:

νl(ui, T) = νl(〈ui〉Ωl + ũ, T) ' νl(〈ui〉Ωl , T) (48)

Substitution of the expressions (44)–(47) into Equation (40) yields the final transport
equation in the elementary volume:

∂

∂t
〈ui〉Ω +∇.

(
〈ui〉Ωφ−1

l
kl
νl

(
∇〈pc〉Ω +

1
Ω

∫
Al j

pcnl jdA

))

= Di∇.
(
∇〈ui〉Ω +

1
Ω

∫
Ali

uinl jdA
)

+
ziF
R
∇.

(
DiT−1〈ui〉Ωl

[
∇〈Φ〉Ω +

1
Ω

∫
Al j

Φnl jdA

])
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+∇.

(
Di〈ui〉Ωl

[
∇〈ln γi〉Ω + 〈ln ai〉Ωl∇〈ln T〉Ω

+
1
Ω

∫
Al j

(
ln γi + 〈ln ai〉Ωl ln T

)
nl jdA

])

+
ziF
R
∇.
(

DiT−1〈ũi∇Φ〉Ω
)
+∇.(Di〈ũi∇ ln γi〉Ω)

+∇.
(

Di〈
[
ũi ln ai + 〈ui〉Ωl l̃n ai

]
∇ ln T〉Ω

)
−∇.

(
kl
νl
〈ũi∇pc〉Ω

)
+ 〈ri〉Ω (49)

4.5. The Dispersion Terms

In this subsection, it is shown that the dispersion terms of Equation (49) can be
ignored in the REV. To that end, consider a quantity m related to the l-phase. According to
Equation (4), m can be decomposed as:

m = 〈m〉Ωl + m̃ (50)

Since the microscopic quantity m may vary significantly over a distance equal to the
characteristic length l, the magnitude of the deviation of m with respect to the average
〈m〉Ωl can be estimated as follows:

‖m̃‖ ' l ‖∇m‖ (51)

Furthermore, the magnitude of a quantity at the macroscale only varies significantly
over distances larger than L, which can be expressed as:

‖∇.〈·〉Ω‖ ' L−1 ‖d〈·〉Ω‖ (52)

Applying those approximations to Equation (49), and noting that the diffusion coeffi-
cient can change within the REV due to temperature variations, the final transport equation
in the REV is obtained:

∂

∂t
〈ui〉Ω̂ +∇.

(
〈ui〉Ω̂φ−1

l
kl
νl

[
∇〈pc〉Ω̂ +

1
Ω̂

∫
Âl j

pcnl jdA

])

= ∇.

(
Di

[
∇〈ui〉Ω̂ +

1
Ω̂

∫
Âl j

uinl jdA

])

+
ziF
R
∇.

(
DiT−1〈ui〉Ω̂

[
∇〈Φ〉Ω̂ +

1
Ω̂

∫
Âl j

Φnl jdA

])

+∇.

(
Di〈ui〉Ω̂

[
∇〈ln γi〉Ω̂ + 〈ln ai〉Ω̂l

∇〈ln T〉Ω̂

+
1
Ω̂

∫
Âl j

(
ln γi + 〈ln ai〉Ω̂l

ln T
)

nl jdA

])
+ 〈ri〉Ω̂ (53)

where Ω̂, Ω̂l and Â are related to the REV.

4.6. The Surface Integrals

From Equation (53), it may be observed that all the mass fluxes in the REV have
the form:

〈Ji〉Ω̂ = f

(
∇〈 · 〉Ω̂ +

1
Ω̂

∫
Âl j

· nl jdA

)
(54)

where Ji is a mass flux of species i and f is a scalar.
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In order to interprete the terms on the right-hand side of Equation (54), consider an
elementary volume with only one straight cylindrical pore. The REV can then be thought of
as a volume with a single cylindrical pore. In such case, the second term on the right-hand
side of Equation (54) is zero. Therefore, the first term can be interpreted as the mass flux
through the cylindrical pore. The second term corrects the mass flux by accounting for the
complex geometry of the porous medium as shown below for the diffusion flux. For the
sake of simplicity, the fluxes related to migration and chemical activity are neglected [5,27].

4.6.1. The Surface Integrals at the Pore Scale

The second term on the right-hand side of Equation (54) is often associated with the
tortuosity-connectivity of the porous medium. Generally, the more tortuous the porous
material is, the slower is the penetration of the ionic species. However, it should be noted
that the term which accounts for the geometry of the porous network does not slow down
the speed of the ionic species. To illustrate this, the simple diffusion equation at the pore
scale for some ionic species i is considered:

∂ui
∂t

= Di∆ui (55)

where ∆ is the Laplace operator.
Two kinds of pores are analyzed, namely a straight cylindrical pore and a tortuous

pore. The dimensions of the pores were chosen such that the length and volume of each
pore were equal.

A concentration of ui = 1 kg/m3 was imposed on the left boundary of the pores.
The remaining boundaries are taken to be the l − s interface, where a zero mass flux is
imposed. With the aim of nondimensionalizing Equation (56) the value of the diffusion
coefficient was chosen such that:

tsimDi
d2 = 1 (56)

where tsim refers to the total simulation time, and d the length of the pore.
The dimensionless form of Equation (55) was solved by means of the finite element

method. The results at time t = 0.38tsim are shown in Figures 2 and 3. It may be observed
that the ionic species reach the right boundary faster in the tortuous pore than in the
cylindrical pore. This shows that tortuosity-connectivity increases the average speed of
the ions.

Z10 0.5 X

Yu.pos

X

Y
0.5
u.pos

Z0 1

Figure 2. Concentration in the cylindrical pore.

X

Y
0.5
u.pos

Z0 1

Figure 3. Concentration in a tortuous pore.

In conclusion, the tortuous pore may be represented by means of a straight pore of
equal volume, orientated in the direction of the net mass flux, and of length equal to the
length of the tortuous pore projected onto the direction of the net mass flux. The latter
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will be referred to as the equivalent pore. The mass flux in the tortuous pore can then be
expressed as the sum of the diffusive flux in the equivalent pore and a term in the form
of a surface integral which accounts for the geometry of the tortuous pore, as stated in
Equation (54).

4.6.2. The Surface Integrals in the REV

In the REV, the porous network can be significantly more complex than the previously
defined tortuous pore. An equivalent pore of length L and volume φl can be constructed,
oriented in the direction of the net mass flux. The mass flux averaged over the equivalent
pore is then equal to the mass flux averaged over that part of the REV which contains
pore water:

〈Ji
D〉Ω̂eq

= −Di

(
∇〈ui〉Ω̂l

+
1

Ω̂l

∫
Âl j

ũinl jdA

)
(57)

where Ω̂eq refers to the volume of the equivalent pore.
Note that the average of the mass flux in the equivalent pore, as defined in Equation (57),

accounts for the tortuosity-connectivity of that part of the elementary volume which
contains pore water. The last term reduces the mass flux in the direction parallel to the
equivalent pore. Furthermore, the direction of the equivalent pore is parallel to the direction
of ∇〈ui〉Ωl . Taking this into account, Equation (57) can be approximated as:

〈Ji
D〉Ω̂eq

' −Di

(
∇〈ui〉Ω̂l

− σ∇〈ui〉Ω̂l

)
= −Di

(
[1− σ)∇〈ui〉Ω̂l

)
(58)

where σ is a dimensionless positive function which accounts for the reduction of the mass
flux in the direction of the equivalent pore.

Finally, the average of the mass flux in the REV is obtained by multiplying Equation (58)
by φl:

〈Ji
D〉Ω̂ = −φl Di[1− σ]∇〈ui〉Ω̂l

(59)

4.6.3. The Final Transport Equation in the Equivalent Pore

Based on the results obtained in Section 4.6.2, the transport equation in the equivalent
pore related to the REV is given by:

∂

∂t

(
φl〈ui〉Ω̂l

)
+∇.

(
〈ui〉Ω̂l

kl
νl
[1− σ]∇〈pc〉Ω̂l

)
= ∇.

(
φl Di[1− σ]∇〈ui〉Ω̂l

)
+

ziF
R
∇.
(

φl DiT−1〈ui〉Ω̂l
[1− σ]∇〈Φ〉Ω̂l

)
+∇.

(
φl Di〈ui〉Ω̂l

[1− σ]∇〈ln γi〉Ω̂l

)
+∇.

(
φl Di〈ui〉Ω̂l

〈ln ai〉Ω̂l
[1− σ]∇〈ln T〉Ω̂l

)
+ φl〈ri〉Ω̂l

(60)

Finally, defining the tortuosity-connectivity parameter as τ = 1− σ, the final transport
equation is obtained:
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∂

∂t

(
φl〈ui〉Ω̂l

)
+∇.

(
〈ui〉Ω̂l

kl
νl

τ∇〈pc〉Ω̂l

)
= ∇.

(
φl Diτ∇〈ui〉Ω̂l

)
+

ziF
R
∇.
(

φl DiT−1〈ui〉Ω̂l
τ∇〈Φ〉Ω̂l

)
+∇.

(
φl Di〈ui〉Ω̂l

τ∇〈ln γi〉Ω̂l

)
+∇.

(
φl Di〈ui〉Ω̂l

〈ln ai〉Ω̂l
τ∇〈ln T〉Ω̂l

)
+ φl〈ri〉Ω̂l

(61)

5. Determining the Tortuosity-Connectivity Parameter
5.1. Darcy versus Hagen–Poiseuille Flows

The tortuosity-connectivity parameter can be determined by comparing the Darcy
flux with the Hagen–Poiseuille fluxes in a cylindrical pore. The following analysis, it
should be noted, is valid only for homogeneous materials. Consider a homogeneous
material, partially saturated with pore water which is assumed to be continuously and
uniformly distributed. Then the equivalent pore related to the porous network which
contains pore water can be chosen to be a cylindrical pore of constant section. In that case,
the Darcy and Hagen–Poiseuille fluxes must coincide, which leads to the expression of the
tortuosity-connectivity as a function of the permeability of the porous medium.

Based on the obtained results, the Darcy flux in the equivalent pore can be expressed as:

〈Ji
Darcy〉Ω̂ = − k̂l

νl
∇〈pl〉Ω̂ (62)

where k̂l = τkl is now a macroscopic function which describes the permeability of the
complex and tortuous porous network.

The Hagen–Poiseuille flux in the equivalent pore reads:

〈Ji
H−P〉Ω̂ = −τ

r2

8νl
∇〈pl〉Ω̂ (63)

where r is the radius of the pore.
Setting Equations (62) and (63) equal, the tortuosity-connectivity parameter can be

written as a function of the permeability function:

τ(r) =
8k̂l
r2 (64)

The tortuosity-connectivity for a fully saturated homogeneous material can be calcu-
lated from Equation (64) with r = R, where R is the radius of the saturated equivalent pore
associated to a fully saturated REV:

τ(R) =
8k̂l
R2 (65)

The radii r and R are related according to the following expression:

r2 = R2 φl
φ

(66)

where φ is the porosity of the REV.
The tortuosity parameter can now be expressed as a function of the pore water content:

τ(φl) =
8k̂l
R2

φ

φl
(67)
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The permeability is often expressed as the product of an intrinsic permeability coef-
ficient K̂ (m2) and a permeability function relative to the l-phase k̂rl , which takes values
between 0 and 1. Equation (67) can then finally be rewritten as:

τ(φl) = τ(φ)
φ

φl
k̂rl(φl) (68)

5.2. Calculation of the Tortuosity-Connectivity Parameter

Experimental measurements of the tortuosity-connectivity would require determining
the ttortuosity-connectivity for various values of the pore water content, which should be
distributed uniformly within the material. Methods to obtain a uniformly distributed pore
water content in concrete can be found in research work [28–30].

According to Equation (68), the tortuosity-connectivity parameter of the porous
medium can be calculated if its permeability is known. The permeability is often modelled
by means of the van Genuchten model:

k̂l(φl) = K̂

√
φl
φ

1−
[

1−
(

φl
φ

) 1
e
]e (69)

where e is a material constant.
The expression for the tortuosity-connectivity parameter then becomes:

τ(φl) = τ(φ)

√
φ

φl

1−
[

1−
(

φl
φ

) 1
e
]e (70)

In order to calibrate this model with experimental results, Equation (70) was used
in this study, where the material constant e and the tortuosity-connectivity in saturated
conditions τ(φ) were measured for four different concretes, by fitting Darcy’s law to
experimentally obtained data.The procedure consists of solving the equation of mass flux
of the pore solution, based on the Darcy flow, which calculates a profile of water in the pores
(see [5] for more details). Then this profile has been integrated over the spatial domain
to obtain the total mass of water penetrated in thin concrete samples of 2 mm thickness.
As the Darcy flow depends on the tortuosity-connectivity model Equation (70), this mass
comparison has allowed us to determine the values of e and τ(φ). In order to determine
the hygroscopic properties of concrete, it is necessary to measure the intrinsic permeability
coefficient of the material, as well as the relation between relative humidity and water
content within the material. The permeability coefficients of the materials were indirectly
obtained by absorption tests. The relation between relative humidity and water content
was obtained for each material by means of absorption and desorption tests at different
relative humidities. The absorption and desorption tests were performed according to
the instructions of the standard test method EN ISO 12571 [31]. The test consists basically
in placing a concrete sample in some constant environment (constant temperature and
constant relative humidity) and weigh the sample when it is entirely in equilibrium with
its surroundings. The greater the concrete samples, the longer it takes them to reach
equilibrium. Therefore, very thin samples (aproximately 2 mm) were used.

The four concretes were designed in acordance with usual mixes used in agressive
environments to improve the impermeability and resistance against penetration of ionic
species. Concrete dosages are referred to as mat1, mat2, mat3 and mat. The cement type
used for materials mat1 (without additions), mat2 (with addition of 20% of fly ash) and
mat4 (with addition of of 10% of silica fume) is CEM I 42.5 R/SR according to the EN 197-1
Standard [32]. The cement employed for material mat3 contains 66% blast furnace slag and
its type is known as CEM III/B 42.5 L/SR, in agreement with the EN 197-1 Standard [32].
The properties of the materials are described in detail in [33]. The dosages of the materials
are given in Table 1.
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Table 1. Dosages of the studied materials.

Dosages (kg/m3)

Material mat1 mat2 mat3 mat4

Cement 380 357 380 304
Water 171 194 171 154
Fly ash 0 76 0 0
Silica fume 0 0 0 38
Aggregate 787 770 787 800
Sand 1022 966 1022 1067
Superplasticizer * 0.97 0.70 1.30 1.80
* % of cement weight.

The tortuosity-connectivity function of the materials, obtained from the experimen-
tal results, is plotted in Figure 4. It is shown that the tortuosity-connectivity parame-
ter decreases significantly for lower pore water contents, meaning that the mass fluxes
are significantly reduced in the direction of the net mass flux. In saturated conditions,
the tortuosity-connectivity functions reach their maxima. It can be observed that the
tortuosity-connectivity undergoes hysteresis, which is due to the fact that the pore water
can get trapped in ink-bottle shaped pores when the concrete is subjected to drying condi-
tions [5]. It is worth noting that this phenomenon has been found significantly greater for
mat1 and mat2, probably due to a significantly higher amount of bottleneck pores, being the
two mixtures with the higher total porosity as can be seen in [33]. Similarly, mat1 and mat2
presented the greater value of the tortuosity-connectivity parameter. In the case of mat3
and mat4, the tortuosity-connectivity parameter obtained was considerably lower, with also
a lower total porosity and average pore size [33] than the rest. This is coherent with the
results obtained by [33] for differential thermal analysis, mercury intrusion porosimetry,
water and gas permeability and mechanical properties of The materials, in which the
mixtures could be divided into two groups according to its similar behaviour, presenting
better performance for mixtures mat3 and mat4.
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0

0.002

0.004
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0.008

0.01

0.012

0.014
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 [m

3
/m

3
]

τ

Tortuosity−connectivity function

 

 

Material mat1

Material mat2
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Material mat4

Figure 4. The tortuosity as a function of the pore water content.

Using these tortuosity-connectivity functions, the diffusion coefficient for ionic species
τ(φl)φl Di can be obtained. Such coefficients were measured for chloride ions and for
several pore water contents. As can be deduced from Figure 4, the diffusion coefficient
τ(φl)φl Di increases with the pore water content.
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5.3. Closure Equations

As shown in [5], the terms in Equation (61) related to migration and chemical activity
can generally be ignored. For the sake of simplicity, the same assumptions are made in this
paper, yielding:

∂

∂t

(
φl〈ui〉Ω̂l

)
+∇.

(
〈ui〉Ω̂l

kl
νl

τ∇〈pc〉Ω̂l

)
=∇.

(
φl Diτ∇〈ui〉Ω̂l

)
+ φl〈ri〉Ω̂l

(71)

The capillary pressure 〈pc〉Ω̂l
was modelled by means of the capillary model proposed

in [5]:
〈pc〉Ω̂l

= A(atan(a[b− φl ]) + atan(a[φ− b])) (72)

where A (MPa) is the capillary modulus, and a and b are material constants.
The reaction term 〈ri〉Ω̂l

was modelled by means of the Langmuir adsorption equation,
which in this case can be expressed as [5]:

φl〈ri〉Ω̂l
= φl〈ûi〉Ω̂l

Ω̂−1
l keq

∂

∂t

(
φl〈ui〉Ω̂l

Ω̂l + keqφl〈ui〉Ω̂l

)
(73)

where keq (m3/kg) is a constant which describes the equilibrium between the free ions
and the bound ions, while 〈ûi〉Ω̂l

Ω̂−1
l (kg/m3) is the maximum density of reactants in

volume Ω̂l .
Substituting Equations (69), (70), (72) and (73) into Equation (71), the closure equations

are obtained. The closure equation for chloride ions was solved by means of the finite
element method. Some results are shown in the next section.

6. Numerical Simulations of Experimental Chloride Profiles
6.1. Overview of the Experimental Programme

Once the tortuosity-connectivity parameter had been calibrated with concretes widely
studied by the authors and its good fit had been verified to adequately simulate the experi-
mental results obtained, the model was tested by comparing the numerical simulations
with experimental chloride profiles obtained from two different concretes. The latter were
obtained from two different mixtures (referred to as mat5 and mat6) selected to represent the
two types of behaviour observed in the previous experimental campaign. This way, in the
new experimental campaign the reference concrete mat5 is a mixture without additions
representing the group mat1 and mat2, and mat6 is a mixture containing 10% of silica fume,
representing the group with the best general durable perfomance mat3 and mat4. Both
dosages were based on Portland cement. The water-cementitious materials ratios were 0.40
and 0.45 for the concrete with silica fume. More details are given in Table 2. These materials
were tested under several boundary conditions in order to experimentally simulate half
a year of service life of a concrete subjected to high mountain environment with melting
salts, which is a highly aggresive environment with chlorides. The initially fully saturated
concrete samples were subjected to five different aggressive environments for 180 days.
The first 75 days, the samples were exposed to a chloride solution of 100 g/L at a temper-
ature of 1 ◦C. This phase simulated the winter season in which chloride solutions were
sprayed over the roads and concrete structures in order to avoid the forming of ice patches
on the road surface. As a result, the chloride ions started to penetrate into the concrete.
On day 76, a thin layer (2 cm) of fresh water was poured onto the exposed surface at a
temperature of 10 ◦C, and was removed 30 days after. This phase corresponded to a rainy
spring. The rain eliminated chlorides from the concrete structures. In order to simulate a
drier summer, for the next 60 days, the concrete was dried at a relative humidity of 75%
and temperatures of T = 16 ◦C and T = 5 ◦C (30 days each). During that season, the chlo-
ride ions were transported towards the surface, where they started to precipitate. Finally,
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the samples were exposed once more to a chloride solution of 100 g/L at temperature 3 ◦C
for 15 days. A schematic representation is given in Table 3.

Table 2. Dosages of the studied materials.

Dosages (kg/m3)

Material mat5 mat6

Cement 400 320
Water 160 180
Silica fume 0 40
Ratio water/cementitious materials 0.40 0.45
Aggregate 970 1015.73
Sand 846 861.08
Superplasticizer * 1.5 1.5
* % of cement weight.

Table 3. The aggressive environments.

Aggressive Environments

Days Chloride Concentration (g/L) Relative Humidity (%) Temperature (◦C)

1–75 100 100 1
76–105 0 (at day 76) 100 10
106–135 - 75 16
136–165 - 75 5
166–180 100 100 3

6.2. Numerical Modelling

In order to account for the relative humidity and temperature, the transport model was
coupled to differential equations based on Darcy’s law (to solve for the pore water content)
and on Fourrier’s law (to solve for temperature). The coupled differential equations were
solved by means of the finite element method. A detailed description of the formulation
can be found in [5]. The model was then calibrated for the materials as described in [5].

The numerical results versus the experimental chloride profiles are plotted in Figures 5–7
for material mat5 and Figures 8–10 for material mat6. The vertical axis represents the chloride
profiles expressed in kg/m3 of concrete, while the horizontal axis represents the penetration
depth expressed in mm. It can be observed that a good fit was obtained as numerical simula-
tions reproduced the experimental results with a significantly good fit. The capillary model
enabled modelling of the pore water flow, accounting for the properties of the microstructure
of the material. The microstructure was characterized by the tortuosity-connectivity parameter
which was quantified in function of the pore radii for different materials.
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Figure 5. Experimental versus numerical solution for material mat5 and environments 1 (1–75 days) and 2 (76–105 days).
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Figure 8. Experimental versus numerical solution for material mat6 and environments 1 (1–75 days) 2 (76–105 days).
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Figure 9. Experimental versus numerical solution for material mat6 and environments 3 (106–135 days) and 4 (136–165 days).

! " # $ % &! &" &# &$ &% "!
!

"

#

$

%

&!

&"

&#

&$

&%

'()(*+,*-.)/0(1*2/3445

6
2
7.
+-
0
(
/1
+.
8-
7(
9

3:
;
<4

=
/.
8/
>
.
)
>
+(
*(
5

?,*(+-,7/$@/&$$ &%!/0,A9

/

/

BC1(+-4()*,7

?.0(7

Figure 10. Left: experimental versus numerical solution for material mat6 and environment 5 (166–180 days). Right:
measurements of the relative humidity within the concrete samples.



Appl. Sci. 2021, 11, 5812 18 of 19

7. Conclusions

The study carried out in this work led to the following conclusions:

1. In order to obtain the transport equations at the macroscopic scale, the microscopic equa-
tions were integrated over the REV by means of the well known averaging technique.

2. It was shown that the dispersion terms which arose from the averaging procedure
can be ignored.

3. The surface integrals which arose from the averaging technique were interpreted. It
was shown not only how they are related to the tortuosity-connectivity of the porous
network, but also how they influence the mass fluxes of the ionic species.

4. The transport equations in the REV were compared with the equations in an equiva-
lent pore, oriented in the direction of the net mass flux.

5. An explicit expression of the tortuosity-connectivity parameter was obtained by
comparing Darcy’s law and the Hagen–Poiseuille equations for the equivalent pore.

6. The proposed model accurately fits the results obtained from experimental tests
performed on concretes in non-saturated conditions.
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