
applied
sciences

Article

Joint Computation Offloading and Data Caching Based on
Cooperation of Mobile-Edge-Computing-Enabled Base Stations

Tian Liu 1, Wenhao Fan 2,*, Fan Wu 2, Wei Xie 1 and Wen Yuan 2

����������
�������

Citation: Liu, T.; Fan, W.; Wu, F.; Xie,

W.; Yuan, W. Joint Computation

Offloading and Data Caching Based

on Cooperation of Mobile-Edge-

Computing-Enabled Base Stations.

Appl. Sci. 2021, 11, 5802. https://

doi.org/10.3390/app11135802

Academic Editor: Luis Javier Garcia

Villalba

Received: 24 May 2021

Accepted: 18 June 2021

Published: 22 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Southwest China Institute of Electronic Technology, Chengdu 610036, China; Ti_Liu@126.com (T.L.);
raysheik@foxmail.com (W.X.)

2 Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering,
Beijing University of Posts and Telecommunications, Beijing 100876, China; wufanwww@bupt.edu.cn (F.W.);
laurasugar@sina.com (W.Y.)

* Correspondence: whfan@bupt.edu.cn

Abstract: Mobile terminal applications with high computing complexity and high time delay sen-
sitivity are developing quite fast today, which aggravates the load of mobile cloud computing and
storage and further leads to network congestion and service quality decline. Mobile edge computing
(MEC) is a way of breaking through the limits of computing and storage resources of mobile cloud
and alleviating the load of mobile cloud. Computing time costs and transmission time costs are
considered to be the main issues for the mobile cloud when carrying out computing offloading and
data caching. Therefore, an efficient resource management strategy, which could minimize the system
delay, is proposed in this paper. The new scheme offloads reasonably computing tasks and caches the
tasks’ data from the mobile cloud to mobile edge computing-enabled base stations. An intelligence
algorithm, genetic algorithm, is being used to solve the global optimization problem which would
cause transmission delay and computing resources occupation, and to determine the computing
offloading and data caching probability. The simulation of the system using MATLAB is conducted
in 8 different scenarios with different parameters. The results show that our new scheme improves
the system computing speed and optimizes the user experience in all scenarios, compared with the
scheme without data caching and the scheme without computing offloading and data caching.

Keywords: mobile edge computing; resource allocation; computing offloading; data caching; optimization

1. Introduction

With the rapid development of the mobile Internet and the Internet of things in recent
years, the functions of the mobile terminals (MTs) are becoming much more rich than ever
before. The character of mobile terminals has gradually evolved from a simple communica-
tion tool to a powerful station integrating communication, computing, entertainment and
office. Various applications, such as augmented reality, virtual reality, and location-based
service (LBS), have been contained in one mobile terminal as required by the consumers.
These typical applications with high computing complexity and long time delay sensitivity
not only aggravate the load of the mobile cloud (C) in computing and storage resources,
but they also lead to system network congestion and service quality decline.

In order to alleviate the computing load of the mobile cloud, the concept of Mobile
Edge Computation (MEC) is proposed [1], which provides the IT service environment
and the cloud computing capability on the mobile network edge [2]. By deploying the
mobile edge computing-enabled base station (MEC-BS) of MTs in a community and the
neighbor mobile edge computing-enabled base stations of the MEC-BS (MEC-NBS) on
the edge of the mobile network, the computing can sink to the mobile edge node, which
can effectively reduce the load of the mobile cloud and reduce the demand for the data
transmission bandwidth.

Appl. Sci. 2021, 11, 5802. https://doi.org/10.3390/app11135802 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11135802
https://doi.org/10.3390/app11135802
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11135802
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11135802?type=check_update&version=2

Appl. Sci. 2021, 11, 5802 2 of 25

In our research, we define the MEC stations consists of five units: (1) receiving unit:
which is used to receive service requests from its covering MTs and the surrounding MEC
stations; (2) control unit: which is used to determine whether the received task is further
offloaded and whether cache the data required for the corresponding task from C based
on the Cooperative Resource Management Algorithm; (3) caching unit: which is used to
cache the data required for the corresponding task based on the Cooperative Resource
Management Algorithm to reduce the time delay in data access to C; (4) computing unit:
which is used to calculate the computing tasks offloading from its covering MTs; (5) sending
unit: which is used to send the calculation result to the MT, send the offloading request
to further MEC stations and send the data request of the corresponding task to C. It is
worth noting that MEC stations have limited computation and storage resources, so that
they cannot provide computing and caching services for all the tasks like C. However, the
MEC-BS will be still overloaded if there are too many tasks offloaded from the MTs. In
existing algorithms, they try to ease the load of MEC stations through refusing, delaying or
queuing the offloading requests of MTs. However, these algorithms will lead to poor QoS
of the system. Thus, a new model of resource management is urgently needed.

In this paper, our research is concerned with a local system under mobile cloud, which
includes a mobile edge computing-enabled base station (MEC-BS), the mobile terminals
covered by this MEC-BS, and the neighbor mobile edge computing-enabled base stations
within a certain distance from MEC-BS. Our goal is to offload the mobile cloud computing
and storage pressure through MEC stations. Because of the poor computing capability
of every MTs, we ignore MT as a offloading object to guarantee the quality of service.
All tasks of MT need to go through the MT’s MEC-BS to offload to mobile cloud or any
neighbor mobile edge computing-enabled base station. Figure 1 is the overall architecture
of our model.

Virtual Reality
Augmented Reality

Pattern Recognition Automatic Pilot Intelligent Transportation

MEC-BS

Cloud

MEC-BS

MEC-BS

DA-REQ DA-RSP

OL-REQ

OL-RSP

OL-REQ

OL-RSP

Video Acceleration Video Surveillance Smart Home Indoor Positioning

Remote Medical
Surgery

Unmanned Aerial
Vehicle Control

Online Live
and Interaction

Smart Building

OL-REQ

OL-RSP

OL-RSP

OL-REQ

Figure 1. Offloading to MEC-BS, offloading to MEC-NBS, and executing in C.

Appl. Sci. 2021, 11, 5802 3 of 25

As shown in Figure 1, the mobile edge computing can enhance the performance of
multiple computation-intensive and delay-sensitive applications, such as virtual reality,
augmented reality, pattern recognition, automatic pilot, intelligent transportation, video
acceleration, video surveillance, smart home, indoor positioning, remote medical surgery,
unmanned aerial vehicle control, online live and interaction, smart building, etc. The
users can experience higher real-time performance of applications, and run more complex
applications in their resource-constrained MTs. The steps for computing offloading and
data caching under the mobile edge computing environments are as follows: (1) when
MT has a new computing task, it will upload the offloading request (OL-REQ) to its MEC-
BS; (2) if the task is determined to be executed in MEC-BS by the Cooperative Resource
Management Algorithm and MEC-BS has cached data of the task, the task will be executed
directly in MEC-BS, then the offloading response (OL-RSP) will be returned to MT; (3) if
the task is determined to be executed in MEC-BS and there is no cached data in it, MEC-BS
will send the data request (DA-REQ) of the task to C, then C will return the data response
(DA-RSP) to MEC-BS. The next process of executing and delivering is the same as 2); (4) if
the task is decided to be executed in MEC-NBS by the algorithm, MEC-BS will send the
offloading request to a MEC-NBS. If MEC-NBS has cached the computing data before, it
will execute the task and return the offloading response to MEC-BS, and then MEC-BS will
return the offloading response to MT; (5) if MEC-NBS is decided to execute the task and it
has not cached the computing data of the task in advance, it will send the data request to
C, then C will return the data response to it. The next process of executing and delivering
is the same as (4); (6) if the task is resolved to be offloaded to C by the algorithm, MEC-BS
will send the offloading request to C, then C will execute the task and return the offloading
response to MEC-BS, and then the offloading response will be returned to MT.

Our research work can be described briefly by a block diagram, as shown in Figure 2.

A joint computation offloading and data caching based on
cooperation of multiple MEC-BSs is modeled

According to the
computation offloading

decision, a task is offloaded
to its MEC-BS or a neighbor

MEC-BS

An optimization problem is formulated to minimize the total
time consumption of all MTs in the system

According to the data
caching decision, the data
of a task is or is not cached

in its MEC-BS

A genetic-based algorithm is designed to obtain the solution
to the optimization problem, and give optimal computation

offloading and data caching decision for each task

The superiority of our scheme is demonstrated by extensive
simulations with different scenarios, and comparisons with

other algorithms

Our research work can efficiently enhance the performance
of multiple computation-intensive and delay-sensitive

applications.
The users can experience higher real-time performance of
applications, and run more complex applications in their

resource-constrained MTs.

Figure 2. Brief introduction of the research work in our paper.

Appl. Sci. 2021, 11, 5802 4 of 25

2. Related Works

The research work of MEC mainly focuses on the research of computing offloading
system. It can be divided into architecture design, protocol design, resource management,
and application in concept. It involves many fields, such as computing, communication,
and security. The accumulated research results laid a foundation for the engineering
implementation and theoretical system of mobile edge computing [3–6]. Resource manage-
ment technology is one of the core technologies of mobile edge computing. It optimally
uses system resources to optimize system performance. At present, the existing research
work and main problems of resource management technology in MEC are as follows: A.
computing resources and storage resources are independently disposed. Existing joint
resource management only considers computing and wireless resources; B. the base station
resources are optimized separately, lack of a unified multi base station collaboration mode
and the corresponding resource management technology; C. existing offloading/caching
decision algorithms lack algorithm cost optimization, high complexity and poor real-time
performance, that affect the real-time performance of decision execution; D. lack of resource
management technology for cloud computing server load and network load optimization.

2.1. Existing Computing Resources and Storage Resources

In the existing research based on mobile communication network scenarios, most
of the research work only takes into accounting the problem of computing offloading
(such as References [7,8]), or data caching (such as References [9,10]). In joint resource
management, computing offloading is only combined with radio resource optimization
(such as References [11–14]). For example, in the literature [11], the author proposes an
effective radio and computing resource allocation scheme to minimize the total processing
time of multiple tasks. Considering the local processing, each mobile user divides the
computing task into unloading task and local task, which realizes the effective utilization of
wireless power resources and computing resources. In the literature [12], the cache decision
and radio and computing resource allocation of video service in mobile edge computing
(MEC) are optimized to maximize the system revenue. In order to tolerate the uncertainty
of network traffic and avoid the “hard constraint” based on constant content request
rate, this paper uses robust optimization to obtain the optimal cache decision, and then
allocates radio and computing resources for video trans-coding. In Reference [13], an online
combined wireless and computing resource management algorithm for multi-user mobile
edge computing system is proposed, which reduces the terminal energy consumption by
assigning the CPU frequency, transmitting power and bandwidth of the mobile terminal.

In most mobile applications, the computing and storage requirements of the terminal
are tightly coupled. That is, both of the computing process work and the data access work
are included in one task, and the two are interrelated. Therefore, the joint optimization of
computing and storage resources needs to be further explored in the research of resource
management technology.

2.2. The Base Station Resources Are Optimized Separately

In the existing research work, most of the documents are based on the mobile edge
of single base station to compute resource management, including single user and multi
user problems in single base station environment. Specifically, in Reference [13], the
authors mainly consider the computing offloading problem of multi terminal users in
single base station environment, which are not aimed at multi base stations environment.
In Reference [8], the problem of single user computing offloading is considered, in which
MEC resources are not limited. In Reference [15], a MEC system composed of mobile
devices and heterogeneous edge servers supporting various wireless access technologies is
studied. In Reference [16], the problem of partial offload scheduling and resource allocation
in multi task MEC system is studied, and the problem of partial offload scheduling and
power allocation in single user MEC system is proposed. In Reference [17,18], although
the authors take into account the computing offloading of mobile users in multiple cells,

Appl. Sci. 2021, 11, 5802 5 of 25

the main work is focused on the allocation of wireless and computing resources within
one base station, without consideration of resource sharing and assistance between the
base stations.

The authors of Reference [19] studied the single terminal user scheduling its comput-
ing task into a number of smart devices in a number of adjacent environments, and the
execution of the task depends on the coordination of multiple devices. The above research
work does not focus on the mobile communication network environment, the proposed
cooperation concept is limited to the end user centric collaboration, and there is no resource
sharing and joint allocation among the intelligent devices.

The architecture design of the future mobile communication system covers the coop-
erative function between the base stations. Through close collaboration, the base stations
in the network can be virtualized as a resource whole and serve each end user flexibly in
distributed computing and distributed storage. Therefore, the cooperation between base
stations needs to be studied in depth. The technology of resource management improves
the utilization ratio of the whole network resources and improves the service quality
of users.

2.3. Existing Offloading / Caching Decision Algorithms

In Reference [20], the author considers the multi-user computation offloading prob-
lem in MEC system as an evolutionary game model, and proposes an evolutionary game
algorithm based on reinforcement learning to achieve efficient computing offloading. How-
ever, IoT devices need to adjust their own strategies through continuous evolution and
trial and error to maximize the fitness value, which will cause the time complexity of the
algorithm is relatively high. Similarly, there are also some problems in the research of
literature [21,22] based on game theory. In addition, a large number of mobile edge com-
puting resources managements based on convex optimization (such as References [23,24]),
non convex optimization (such as References [25,26]), combinatorial optimization (such as
Referencse [27,28]), evolutionary algorithm (such as Reference [29]), etc. Although some
of the authors, besides the basic algorithms, also provide approximate and simplified
algorithms (such as Reference [24]), these algorithms still need to occupy a certain amount
of computing time, especially in large-scale users and large-scale tasks environment, the
algorithm cost is still the main problem that affects the real time of decision-making.

The resource management algorithm determines the computing offloading requests
and data caching requests in the execution terminal, and the algorithm’s own overhead
will directly affect the real-time performance of the decision, especially for the time delay
sensitive task processing.

2.4. Lack of Resource Management Technology for Cloud

The high cloud server load will seriously reduce the performance and user experience
of the mobile edge computing system. Most of the research work on cloud loss mainly
focuses on the distributed cloud computing field. Cloud resource optimization mainly
considers the load balancing questions between multiple cloud servers and clusters, mainly
focusing on the virtualization of multiple clouds and resource sharing technology [30–33].

As for the resource optimization for mobile edge computing with the aim of reducing
mobile cloud load, only Reference [34] studies the load reduction method under the
high cloud server load, and two load recovery strategies are proposed in the engineering
perspective. However, the author only considers the task offloading strategy when the
server load is too high or damaged, and does not study the load balance in the multi server
computing, storage sharing, and the network transmission equilibrium.

In spite of this, the research on mobile communication network environment is still
relatively scarce. In mobile communication network environment, the base station is the
edge node of the cloud server. The problems of cloud oriented resource management needs
to be solved mainly by: (1) how to use the computing resources of the base station to divert
the cloud computing task into the base station; (2) how to use the storage resources of

Appl. Sci. 2021, 11, 5802 6 of 25

the base station to divert the cloud data storage to the base station cache, so as to reduce
the cloud computing and storage load, reduce the network data transmission load and
improve the system performance.

3. System Model

We assume the number of all MTs and MEC-NBS is M and K, respectively. The ith
(i ∈ M = {1, 2, . . . , M}) MT is defined as mi, and kth (k ∈ K = {1, 2, . . . , K}) MEC-NBS
is defined as nk. An MT can run multiple mobile applications at the same time, and each
application may contain multiple tasks. The number of all types of tasks is assumed to be
R, the jth (j ∈ R = {1, 2, . . . , R}) type of tasks is defined as rj. Moreover, the data storage
of MEC-BS and nk is defined as d and dk (k ∈ K), respectively.

We consider that the request from each MT is a Poisson process, and εi represents the
request rate of mi, that is, εi tasks are generated by mi per second. The request ratio of mi to
the task rj is pi,j (pi,j ∈ [0, 1]), and the proportion is different for different tasks. Note that
∑j∈R pi,j = 1 because pi,j actually represents the proportion of rj in the tasks generated
by mi.

We assume that the request message length and the response message length are
fixed and roughly equal in the offloading signal transmission or data caching transmission
among the MT, MEC-BS, MEC-NBS, and C. Each task rj is profiled by an ordered vector
< cj, vj, wj, zj, qj >, which is characterized by: (1) cj, the amount of computation needed
to complete rj; (2) vj, the size of the offloading request (including necessary description
and parameters of rj) for rj; (3) wj, the size of the offloading response (including the result
of rj’s execution) for rj; (4) zj, the size of the data caching request (including necessary
description and parameters of the data required to execute rj) for rj; (5) qj, the size of the
data caching response (including the data required to execute rj) for rj.

The computing task rj has 2 ways to completing : execute it at C or offload it to MEC
stations. If task rj is determined to execute at C, it will increase the computing load of
the mobile cloud and affect the performance of the cloud server. It will also suffer the
offloading-signal transmission delay from the MT to the MEC-BS and the MEC-BS to C.
If the MEC-BS chooses to offload rj to MEC stations, it will greatly alleviate the cloud
pressure, and MEC stations have a certain degree of computational power, the efficiency
of the computing task can also be guaranteed, but, at the same time, it may suffer from
the time consumption caused by data request and response transmission between MEC
stations and C. If the MEC-BS chooses to cache the data at MEC stations in advance, it
will avoid the time consumption of the offloading-signal and data-signal transmission.
However, data caching will take time, and MEC stations have limited storage space.

When rj is offloaded to MEC stations, it can be executed at MEC-BS, or be further
offloaded to a MEC-NBS(the offloading probability of all the nk is equal). For task rj, we
define the offloading probability from mi to MEC-BS as αi,j|(i ∈ M, j ∈ R) and from mi
to nk as βi,j,k|(i ∈ M, j ∈ R, k ∈ K), so that the offloading probability from mi to C is
(1− αi,j −∑k∈K βi,j,k). Moreover, we define the caching probability from C to MEC-BS as
σj|(j ∈ R), from C to MEC-NBS as πj,k|(j ∈ R, k ∈ K).

There are many symbols used by our system model, so we add notions to distinguish
them. “O” means “Offloading”, “D” means “Data caching”, and “2” means “to”. For
example, “ONBS2BS” expresses the symbol is related to the issue “computation Offloading
from a MEC-NBS to the MEC-BS”. “DC2NBS” expresses the symbol is related to the issue
“Data caching from the Cloud to a MEC-NBS”.

3.1. Computation Model

(1) Execution at C
All the tasks which executed at C share the computation resources of it.

Appl. Sci. 2021, 11, 5802 7 of 25

By defining the service rate of C as η, if rj is selected to be executed at C, the time
consumed by completing rj is

tC
i,j =

pi,jεici,j

η −∑i∈M ∑j∈R
(
(1− αi,j −∑k∈K βi,j,k)pi,jλicj

) , (1)

where the denominator is the stable processing speed [35] (amount of computation pro-
cessed per second) of C. ∑i∈M ∑j∈R

(
(1− αi,j −∑k∈K βi,j,k)pi,jεicj

)
is the total amount of

computation of C’s tasks executed per second which was determined to be offloaded to
C. It can be observed that, with the increase of the tasks executed at C, the processing
speed of C is decreasing. Note that η −∑i∈M ∑j∈R

(
(1− αi,j −∑k∈K βi,j,k)pi,jεicj

)
> 0 is

the hard constraint [35] of Formula (3), which means the tasks’ arriving rate cannot exceed
C’s service rate.

(2) Execution at MEC-BS
All the tasks which offloaded to a MEC-BS from C share the computation resources of

the MEC-BS.
By defining the service rate of MEC-BS as φ, if rj is selected to be executed at MEC-BS,

the time consumed by completing rj is

tBS
i,j =

pi,jεici,j

φ−∑i∈M ∑j∈R(αi,j pi,jεicj)
, (2)

where the denominator is the stable processing speed [35] (amount of computation pro-
cessed per second) of MEC-BS. ∑i∈M ∑j∈R(αi,j pi,jεicj) is the total amount of computation
of MEC-BS’s tasks executed per second which was determined to be offloaded to MEC-BS.
It can be observed that, with the increase of the tasks executed at the MEC-BS, the pro-
cessing speed of MEC-BS is decreasing. Note that φ−∑i∈M ∑j∈R(αi,j pi,jεicj) > 0 is the
hard constraint [35] of Formula (3), which means the tasks’ arriving rate cannot exceed
MEC-BS’s service rate.

(3) Execution at MEC-NBS
All the tasks which offloaded to a MEC-NBS from C share the computation resources

of the MEC-NBS.
By defining the service rate of nk as φk, if rj is selected to be executed at nk, the time

consumed by completing rj is

tNBS
i,j,k =

pi,jεici,j

φk −∑i∈M ∑j∈R(βi,j,k pi,jεicj)
, (3)

where the denominator is the stable processing speed [35] (amount of computation pro-
cessed per second) of nk. ∑i∈M ∑j∈R(βi,j,k pi,jεicj) is the total amount of computation of
nk’s tasks executed per second which was determined to be offloaded to MEC-NBS. It
can be observed that, with the increase of the tasks executed at the MEC-NBS, the pro-
cessing speed of nk is decreasing. Note that φk −∑i∈M ∑j∈R(βi,j,k pi,jεicj) > 0 is the hard
constraint [35] of Formula (3), which means the tasks’ arriving rate cannot exceed nk’s
service rate.

3.2. Transmission Model

(1) Communications between C and MEC-BS
All the MEC stations, including MEC-BS and MEC-NBS, under a C’s coverage share

the wireless resources of it. In this paper, the impacts of inter-station and intra-station
interferences caused by computation offloading have been ignored because of the extremely
tiny sizes of them. There are two types of communications between C and MEC-BS
(offloading-signal transmission and data-signal transmission, respectively).

Appl. Sci. 2021, 11, 5802 8 of 25

We define the data-signal transmission rate from MEC-BS to C as sBS2C
i . Then, the

time consumed by sending the offloading request of rj from MEC-BS to C can be defined
as follows, if rj is selected to be offloaded.

tOBS2C
i,j =

pi,jεivj

sBS2C
i

. (4)

The data transmission rate from C to MEC-BS is denoted by sC2BS
i . Then, we have the

time consumed by receiving the offloading response of rj from C to MEC-BS:

tOC2BS
i,j =

pi,jεiwj

sC2BS
i

. (5)

As for data caching transmission, MEC-BS uses the Cooperative Resource Manage-
ment Algorithm to determine the most profitable data caching which is required by task
rj, the time consumed by sending the data caching request of rj from MEC-BS to C can be
defined as follows:

tDBS2C
i,j =

pi,jεizj

sBS2C
i

. (6)

Similarly,we have the time consumed by receiving the data caching response of rj
from C to MEC-BS:

tDC2BS
i,j =

pi,jεiqj

sC2BS
i

. (7)

(2) Communications between C and MEC-NBS
MEC-NBS can also use the Cooperative Resource Management Algorithm to deter-

mine the most profitable data caching which is required by task rj. We define the data-signal
transmission rate from nk to C as sNBS2C

k the time consumed by sending the data caching
request of rj from nk to C can be defined as follows:

tDNBS2C
i,j,k =

pi,jεizj

sNBS2C
k

. (8)

The data transmission rate from C to nk is denoted by sC2NBS
k . Then, we have the time

consumed by receiving the data caching response of rj from C to nk:

tDC2NBS
i,j,k =

pi,jεiqj

sC2NBS
k

. (9)

(3) Communications between MEC-BS and MEC-NBS
For the sake of data security, we assume that data-signal cannot be transmitted

between the MEC stations, including MEC-BS and MEC-NBS. Accordingly, there is only
one type of communications between MEC-BS and nk, which is the offloading-signal
transmission. We define the offloading-signal transmission rate from MEC-BS to nk through
the wired connection between them as sBS2NBS

k . Reversely, sNBS2BS
k represents the offloading-

signal transmission rate from nk to MEC-BS through the connection.
The time consumed by transmitting the offloading request of rj from MEC-BS to nk is

expressed as

tOBS2NBS
i,j,k =

pi,jεivj

sBS2NBS
k

. (10)

Similarly, the time consumed by transmitting the offloading response of rj from nk to
MEC-BS is expressed as

tONBS2BS
i,j,k =

pi,jεiwj

sNBS2BS
k

. (11)

(4) Communications between MEC-BS and MTs

Appl. Sci. 2021, 11, 5802 9 of 25

All the MTs under a MEC-BS’s coverage share the wireless resources of it. In this
paper, we ignore the computing power of every MTs, so that there is only one type of com-
munications between MTs and MEC-BS which is the offloading-signal data transmission.

We define the uplink data transmission rate from mi to MEC-BS as sMT2BS
i . Then, the

time consumed by sending the offloading request of rj from mi to MEC-BS can be defined
as follows, if rj is selected to be offloaded.

tOMT2BS
i,j =

pi,jεivj

sMT2BS
i

. (12)

The downlink data transmission rate from MEC-BS to mi is denoted by sBS2MT
i . Then,

we have the time consumed by receiving the offloading response of rj from MEC-BS to mi:

tOBS2MT
i,j =

pi,jεiwj

sBS2MT
i

. (13)

3.3. Optimization Model

The total time consumption for completing rj includes: (1) the time consumed by
executing in the mobile cloud, if rj is selected to be executed at C; (2) the time consumed by
computation offloading, if rj is selected to be offloaded to MEC-BS; (3) the time consumed
by computation offloading, if rj is selected to be further offloaded to nk, ∀k ∈ K.

In (1), the time consumption is generated by transmitting the offloading request of rj
from mi to MEC-BS, transmitting the offloading request of rj from MEC-BS to C, executing
rj at C, transmitting the offloading response of rj from C to MEC-BS, and transmitting
the offloading response of rj from MEC-BS to mi, that is, (1−∑k∈K βi,j,k − αi,j)(tOMT2BS

i,j +

tOBS2C
i,j + tC

i,j + tOC2BS
i,j + tOBS2MT

i,j).
In (2), the time consumption needs to be divided into two situations: (1) MEC-BS has

the data caching required by task rj; (2) MEC-BS does not have the data caching required
by task rj, and it needs to send the data caching request to C to get the data. The two cases
are discussed separately as follows:

(1) The time consumption is generated by transmitting the offloading request of rj
from mi to MEC-BS, executing rj at MEC-BS, and transmitting the offloading response of rj

from MEC-BS to mi, that is, αi,jσj(tOMT2BS
i,j + tBS

i,j + tOBS2MT
i,j).

(2) The time consumption is generated by transmitting the offloading request of rj from
mi to MEC-BS, transmitting the data caching request of rj from MEC-BS to C, transmitting
the data caching response of rj from C to MEC-BS, executing rj at MEC-BS, and transmitting
the offloading response of rj from MEC-BS to mi, that is, αi,j(1− σj)(tOMT2BS

i,j + tDBS2C
i,j +

tDC2BS
i,j + tBS

i,j + tOBS2MT
i,j).

In (3), the time consumption needs to be divided into two situations: (1) nk has the
data caching required by task rj; (2) nk does not have the data caching required by task
rj, and it needs to send the data caching request to C to get the data. The two cases are
discussed separately as follows:

(1) The time consumption is generated by transmitting the offloading request of rj
from mi to MEC-BS, transmitting the offloading request of rj from MEC-BS to nk, executing
rj at nk, transmitting the offloading response of rj from nk to MEC-BS, and transmitting the
offloading response of rj from MEC-BS to mi, that is, ∑k∈K βi,j,kπj,k(tOMT2BS

i,j + tOBS2NBS
i,j,k +

tNBS
i,j,k + tONBS2BS

i,j,k + tOBS2MT
i,j).

(2) The time consumption is generated by transmitting the offloading request of rj from
mi to MEC-BS, transmitting the offloading request of rj from MEC-BS to nk, transmitting
the data caching request of rj from nk to C, transmitting the data caching response of
rj from C to nk, executing hi,j at bk, transmitting the offloading response of hi,j from
bk to bs, and transmitting the offloading response of hi,j from MEC-BS to mi, that is,
∑k∈K βi,j,k(1−πj,k)(tOMT2BS

i,j + tOBS2NBS
i,j,k + tDNBS2C

i,j,k + tDC2NBS
i,j,k + tNBS

i,j,k + tONBS2BS
i,j,k + tOBS2MT

i,j).

Appl. Sci. 2021, 11, 5802 10 of 25

In summary, we have the total time consumption for completing rj:

ti,j =(1− αi,j − ∑
k∈K

βi,j,k)tC
i,j + αi,jtBS

i,j + ∑
k∈K

βi,j,ktNBS
i,j,k

+ αi,j(1− σj)(tDBS2C
i,j + tDC2BS

i,j) + (1− αi,j

− ∑
k∈K

βi,j,k)(tOBS2C
i,j + tOC2BS

i,j) + ∑
k∈K

βi,j,k(

tOBS2NBS
i,j,k + tONBS2BS

i,j,k) + ∑
k∈K

βi,j,k(1− πj,k)(

tDNBS2C
i,j,k + tDC2NBS

i,j,k) + tOMT2BS
i,j + tOBS2MT

i,j

. (14)

Therefore, the total time consumption of all MTs covered by MEC-BS can be formulated
as t:

t = ∑
i∈M

∑
j∈R

ti,j. (15)

4. Cooperative Resource Management Algorithm
4.1. Optimization Problem

The aim of our algorithm is to minimize the total time consumption t gained by
all MTs inM, while ensuring all constraints are not violated. Thus, the corresponding
optimization problem can be formulated as

minimize
α,β,σ,π

t, (16)

subject to αi,j ∈ [0, 1], ∀i ∈ M, ∀j ∈ R, (17)

βi,j,k ∈ [0, 1], ∀i ∈ M, ∀j ∈ R, ∀k ∈ K, (18)

αi,j + ∑
k∈K

βi,j,k ∈ [0, 1], ∀i ∈ M, ∀j ∈ R, (19)

σj ∈ [0, 1], ∀j ∈ R, (20)

πj,k ∈ [0, 1], ∀j ∈ R, ∀k ∈ K, (21)

η − ∑
i∈M

∑
j∈R

(
(1− αi,j − ∑

k∈K
βi,j,k)pi,jεicj

)
> 0, (22)

µ− ∑
i∈M

∑
j∈R

(αi,j pi,jεicj) > 0, (23)

µk − ∑
i∈M

∑
j∈R

(βi,j,k pi,jεicj) > 0, ∀k ∈ K, (24)

∑
j∈R

(cjσj) 6 s, (25)

∑
j∈R

(cjπj,k) 6 sk, ∀k ∈ K, (26)

where constraint (17) is the value range of each αi,j, constraint (18) is the value range of
each βi,j,k, constraint (20) is the value range of each σj, and constraint (21) is the value range
of each πj,k. As aforementioned, Constraint (19) is the value range of the total probability
that rj is offloaded from C. Constraint (22)–(24) is hard constraint of the offloading queuing
systems of C, MEC-BS, and nk, respectively. Constraint (25) and (26) is hard constraint of
the caching queuing systems of MEC-BS and nk, respectively.

Appl. Sci. 2021, 11, 5802 11 of 25

We define the total time consumption without computation offloading and data
caching as t̃, and we expand t̃ as

t̃ = ∑
i∈M

∑
j∈R

tC
i,j|αi,j = 0, βi,j,k = 0, σj = 0, πj,k = 0

= ∑
i∈M

∑
j∈R

(pi,jεici,j

η −∑i∈M ∑j∈R(pi,jεicj)

) . (27)

We can come to this conclusion that the sufficient condition of t̃ is that η−∑i∈M ∑j∈R
(pi,jεicj) > 0 must hold. By comparing the condition with constraint (22), we have

η − ∑
i∈M

∑
j∈R

(
(1− αi,j − ∑

k∈K
βi,j,k)pi,jεicj

)
>

η − ∑
i∈M

∑
j∈R

(pi,jεicj) > 0. (28)

Thus, constraint (22) always holds.

4.2. Optimization Algorithm Using Genetic algorithm

To determine the feasible domain of the problem, we transform all the independent vari-
ables into one-dimensional column vectors and combine them into a whole one-dimensional
column vector. Thus, αi,j is converted to a vector αi (i ∈ {1, 2, . . . , M ∗R}). Similarly, βi,j,k
= βi(i ∈ {1, 2, . . . , M ∗R ∗K}), σj = σi(i ∈ {1, 2, . . . , R}), πj,k = πi(i ∈ {1, 2, . . . , R ∗K}).
So, we can combine them into Hi (i ∈ {1, 2, . . . , M ∗R + M ∗R ∗K + R +R ∗K}) in order
of α, β, σ, π, where H is the feasible region of the problem.

In combination with (16) and constraints above, we derive the convexity and concavity
of (16). By splitting (16) and judging the positive definiteness of each part of Hessian matrix,
we obtain that (16) is a non-convex and non-concave function due to the existence of several
saddle points. Therefore, if we use the traditional numerical optimization algorithm (such
as interior point method) to get the optimal solution of (16), it is easy to fall into local
minimum. The “dead cycle” phenomenon occurs because of the minimal part trap, which
makes the iteration impossible, and only the local optimal solution is obtained instead of
global optimal solution.

Genetic algorithm overcomes this shortcoming very well, which is a global optimiza-
tion algorithm. Due to the evolutionary characteristics of genetic algorithm, the intrinsic
properties of the optimization problem in the process of searching element have little effect
on the final optimization result. Moreover, the ergodicity of the evolutionary operator
of genetic algorithm makes it very effective to search element with probabilistic global
significance, which matches the optimization object and optimization goal of our paper
very well.

In addition, compared with the accurate algorithm, the approximate algorithm has
less time consumption and space consumption, so that it can guarantee the overall system
performance. In this paper, we choose the genetic algorithm to solve the optimization problem.

We use H = 0 as the initial generation, and H should strictly adhere to the
above constraints.

Now, we can give the optimization algorithm using Genetic algorithm, which is shown
in Algorithm 1.

Appl. Sci. 2021, 11, 5802 12 of 25

Algorithm 1 Algorithm Solving Optimization Problem
Parameters - Population Size = 150

- GA Generations = 100
- Crossover ratio = 1.2

Selection Function: Chooses parents by simulating a roulette wheel, in which the area of
the section of the wheel corresponding to an individual is proportional to the individual’s
expectation. The algorithm uses a random number to select one of the sections with a
probability equal to its area.
Crossover Function: Returns a child that lies on the line containing the two parents, a
small distance away from the parent with the better fitness value in the direction away
from the parent with the worse fitness value. You can specify how far the child is from
the better parent by the parameter Ratio, which appears when you select Heuristic. The
default value of Ratio is 1.2.
Mutate Function: Randomly generate directions that are adaptive with respect to the last
successful or unsuccessful generation. The mutation chooses a direction and step length
that satisfies bounds and linear.
Begin

T = 0;
Initialize H(t) ;
Evaluate H(t);
While not finished do
Begin

T = t + 1;
Select H(t) from H(t − 1);
Crossover in H(t);
Mutate in H(t);
Evaluate H(t);

End
End

4.3. Cooperative Resource Management Algorithm

The data cached from C and the computation offloading for each MT is managed by
MEC-BS using Cooperative Resource Management Algorithm, which is responsible for
monitoring and collecting the information (computation offloading requests and responses,
data caching requests and responses, parameters of MTs, MEC-NBS, and C), running the
optimization algorithm, and sending the optimization result to C and each MT.

MEC-BS will send the selection probability in the optimization result to the MT and C
to determine the place (C, MEC-BS, or MEC-NBS), which is selected to execute the task
or cache the data. At initialization of the system, all MTs in M upload their required
parameters, including ∀i ∈ M, ∀j ∈ R, pi,j, sMT2BS

i , sBS2MT
i , εi, and the information of all

its tasks (< cj, vj, wj, zj, qj >), to MEC-BS. MEC-BS also collects the required parameters of
MEC-NBS, including ∀k ∈ K, φk, sBS2NBS

k , and sNBS2BS
k . The required paramenters of C need

to be sent to MEC-BS, as well, including eta, sBS2C
i , and sC2BS

i , and parameters between C
and MEC-NBS sNBS2C

k and sC2NBS
k should also be sent.

During the system running, as for MTs, MEC-NBS, and C, once the value of any
parameters of them has changed, they need to report the new value to MEC-BS. So, it can
ensure the real-time and correctness of the parameter values in MEC-BS.

MEC-BS monitors periodic observation of changes in all parameters. It will run
Algorithm 1 in the next period, if any parameter has changed. Periodic monitoring reduces
the execution frequency of the algorithm, while ensuring the timeliness of the optimiza-
tion results.

The flowchart of the Cooperative Resource Management Algorithm is shown in
Figure 3. The details of the algorithm are described in Algorithm 2 for MT side, Algorithm 3
for C side, Algorithm 4 for MEC-NBS side, and Algorithm 5 for MEC-BS side. The four

Appl. Sci. 2021, 11, 5802 13 of 25

algorithms are composed of twelve loops, L1-L12; these loops are deployed into separate
processes and executed in parallel during the running period of the system.

The MEC-BS decides the

destination of each offloaded task

Start

Execute at MEC-NBSs

Execute at C

Execute

at MEC-BS

MTs generate computing tasks, and

send offloading requests of these tasks

to the MEC-BS covering them

Data of the

task is cached at

MEC-BS?

Send a data request

to C, then C returns

data, and decides

whether to cache the

data

Data of the

task is cached at an

MEC-NBS?

The task is executed, and the

result is return to the MT through

the MEC-BS

No No

Yes
Yes

End

Figure 3. Flowchart of the Cooperative Resource Management Algorithm.

Appl. Sci. 2021, 11, 5802 14 of 25

Algorithm 2 Cooperative Resource Management Algorithm at mi side

Initial: set H = 0, send pi,j, εi, sMT2BS
i , sBS2MT

i and the profiles of all its tasks to MEC-BS.
L1:
if any required parameters of mi changes then

mi sends the new value of the parameter to MEC-BS;
end if

L2:
if mi receives Hi from MEC-BS then

mi updates the value of Hi stored in H;
end if

L3:
if mi has a new rj then

mi generates a random number h ∈ [0, 1] based on Uniform distribution;
b1 = 0, b2 = 0;
for b = 1 to (M ∗ R + M ∗ R ∗ K) do

if h ≤ Hn then
if b ≤ (M ∗ R) then b1 = b;
else b2 = b;
end if
break;

end if
end for
if (b1 == 0)&(b2 == 0) then

mi executes rj at C;
else if (b1 ! = 0) then

mi offloads rj to MEC-BS;
else

mi offloads rj to nb2;
end if

L4:
if mi has a new rj then

mi generates a random number c ∈ [0, 1] based on Uniform distribution;
b3 = 0, b4 = 0;
for b=(M ∗ R + M ∗ R ∗ K) to (M ∗ R + M ∗ R ∗ K + R + R ∗ K) do
if c ≤ Hb then

if b ≤ (M ∗ R + M ∗ R ∗ K + R) then b3 = b;
else b4 = b;
end if
break;

end if
end for
if (b3 == 0)&(b4 == 0) then

the data required by rj does not be cached anywhere;
else if (b3 ! = 0) then

the data required by rj is cached in MEC-BS from C;
else

the data required by rj is cached in nb4 from C;
end if

end if

Appl. Sci. 2021, 11, 5802 15 of 25

Algorithm 3 Cooperative Resource Management Algorithm at C side

Initial: send η, sBS2C
i , sC2BS

i , sNBS2C
k and sC2NBS

k to MEC-BS.
L5:
if any required parameters of C changes then
C sends the new value of the parameter to MEC-BS;

end if

L6:
if rj is decided to be offloaded to C then

C executes rj;
C returns the offloading response of rj to MEC-BS;

end if

L7:
if the data required by rj should be cached in MEC-BS from C then

MEC-BS sends the data caching request of rj to C;
C returns the data caching response of rj to MEC-BS;

end if

L8:
if the data required by rj should be cached in nk from C then

nk sends the data caching request of rj to C;
C returns the data caching response of rj to nk;

end if

Algorithm 4 Cooperative Resource Management Algorithm at nk side (k ∈ K)

Initial: send φk, sNBS2BS
k and sBS2NBS

k to MEC-BS.
L9:
if any required parameters of nk changes then

nk sends the new value of the parameter to MEC-BS;
end if

L10:
if rj is decided to be offload to nk and nk cached the data of rj in advance then

nk executes rj;
nk returns the offloading response of rj to MEC-BS;

else if rj is decided to be offload to nk and nk did not cache the data of rj in advance then
nk sends the data request of rj to C;
C returns the data response of rj to nk;
nk executes rj;
nk sends the offloading response of rj to MEC-BS;

end if
end if

Appl. Sci. 2021, 11, 5802 16 of 25

Algorithm 5 Cooperative Resource Management Algorithm at MEC-BS side
Initial: collect required parameters from MTs, MEC-NBS, C, and itself, then store their
values. L11 (runs periodically): if MEC-BS receives a new value of the required parameters
then

MEC-BS runs Algorithm 1 and get optimal result H;
for each Hi in H do
if the value of Hi is updated then

MEC-BS sends the new value of Hi to mi;
end if

end for
end if

L12:
if MEC-BS receives the offloading request of rj from mi then
if rj is decided to be offload to MEC-BS and MEC-BS cached the data of rj in advance then

MEC-BS executes rj;
MEC-BS sends the offloading response of rj to mi;

else if rj is decided to be offload to MEC-BS and MEC-BS did not cache the data of rj in
advance then

MEC-BS sends the data request of rj to C;
C returns the data response of rj to MEC-BS;
MEC-BS executes rj;
MEC-BS sends the offloading response of rj to mi;

end if
end if

L13:
if MEC-BS receives the offloading response of rj sent from C then

MEC-BS forwards the offloading response to mi;
end if

L14:
if MEC-BS receives the offloading response of rj sent from nk (∀k ∈ K) then

MEC-BS forwards the offloading response to mi;
end if

(L1): if any one of pi,j, εi, sMT2BS
i , sBS2MT

i and the profiles of all its tasks to MEC-BS
changes, mi will send the new value of the parameter to MEC-BS;

(L2): if mi receives Hi from MEC-BS, it will update the value of Hi stored in H;
(L3): when mi has a new rj, as for computing offloading, firstly, it produces a random

number h ∈ [0, 1] based on Uniform distribution. Then, it compares h with the offloading
probabilities in H. If h falls into the interval representing b1, then mi will offload rj to
MEC-BS by sending offloading request and receiving offloading response. Similarly, if h
falls into the interval representing b2, then mi will offload rj to nk. Else, rj will be offloaded
to C.

(L4): when mi has a new rj, as for data caching, firstly, it produces a random number
c ∈ [0, 1] based on Uniform distribution. Then, it compares c with the data caching
probabilities in H. If c falls into the interval representing b3, then mi will cache the data
requested by rj in MEC-BS by sending data caching request and receiving data caching
response. Similarly, if c falls into the interval representing b4, then mi will cache the data
requested by rj in nk. Else, the data requested by rj will not be cached.

(L5): if any one of η, sBS2C
i , sC2BS

i , sNBS2C
k and sC2NBS

k changes, C will send the new
value of the parameter to MEC-BS;

(L6): if C receives the offloading request of rj from MEC-BS, C will execute rj, then
return the offloading response to MEC-BS;

Appl. Sci. 2021, 11, 5802 17 of 25

(L7): if C receives the data caching request of rj to MEC-BS, C will return the data
caching response of rj to MEC-BS;

(L8): if C receives the data caching request of rj to nk, C will return the data caching
response of rj to nk;

(L9): if any one of φk, sNBS2BS
k and sBS2NBS

k changes, nk will send the new value of the
parameter to MEC-BS;

(L10): if nk receives the offloading request of rj from MEC-BS and nk cached the data
of rj in advance, nk will execute rj, then return the offloading response to MEC-BS. If nk
receives the offloading request and nk did not cache the data of rj in advance, nk will send
the data request of rj to C, then C will return the data response of rj to nk. After that nk will
execute rj, then return the offloading response to MEC-BS.

(L11): L11 runs periodically. If MEC-BS receives any new values of the required
parameters from MTs, MEC-NBS, C, and itself, in last period, MEC-BS will run Algorithm 1
and obtains the optimal solution H. Then, MEC-BS checks each element in H. MEC-BS will
send the new value to the corresponding MT, if H is updated.

(L12): if MEC-BS receives the offloading request of rj offloaded from mi and MEC-BS
cached the data of rj before, MEC-BS will execute rj, then return the offloading response
to mi. If MEC-BS receives the offloading request and it did not cache the data of rj before,
MEC-BS will send the data request of rj to C, then C will return the data response of rj to
MEC-BS. After that MEC-BS will execute rj, then return the offloading response to mi.

(L13): if MEC-BS receives the offloading response of rj sent from C, MEC-BS will
forward the offloading response to mi.

(L14): if MEC-BS receives the offloading response of rj sent from nk (∀k ∈ K), MEC-BS
will forward the offloading response to mi.

5. Simulations and Performance Evaluations

We carried out extensive simulation of the system, and adopted the strategy of aver-
aging multiple sets of random data to eliminate the measurement errors in the simulation
process. We have adopted two contrasting strategies, one of which is the strategy without
data cache, and the other is the strategy of neither data cache nor computation offloading.
The three strategies are compared to analyze the effect of each strategy on the response
time delay of the system from (1) M, the number of MTs; (2) R, the number of a mi’s rj;
(3) K, the number of MEC-NBS; (4) φk, the service rate of nk, k ∈ K; (5) sC2NBS

k , ∀k ∈ K, data
transmission rate between C and MEC-NBS; (6) sNBS2C

k , ∀k ∈ K, data transmission rate
between MEC-NBS and C; (7) sBS2NBS

k and sNBS2BS
k , ∀k ∈ K, data transmission rate between

MEC-BS and MEC-NBS. The result in each of the 8 scenarios is obtained from 50 repeated
simulations using different random seeds. The simulation results verify the effectiveness
of our strategy. It can well meet the requirements of minimizing the service response delay
and improving the service quality of the resource scheduling.

Table 1 lists the settings of the parameters used in simulations. Parameter values are
configured based on the table unless stated clearly.

Table 1. The parameters used in simulations and their default values.

Name Value Name Value

M [30, 100] R [1, 8]

K [2, 9] pij [0, 1]

d 2.4 × 107 MB dk [2.2, 2.4] × 107 MB

εi [0.1, 1] /s ci,j [5, 9] × 104 MB

vj [10, 20] MB wj [10, 20] MB

zj [30, 55] MB qj [150, 360] MB

Appl. Sci. 2021, 11, 5802 18 of 25

Table 1. Cont.

Name Value Name Value

φk, k ∈ K [2.4, 2.7] × 106 MBPS φ 2.7 × 106 MBPS

η 3.5 × 106 MBPS sBS2C
i [20, 30] MB/S

sC2BS
i [60, 80] MB/s sNBS2C

k [20, 30] MB/s

sC2NBS
k [60, 80] MB/s sBS2NBS

k [20, 30] MB/s

sNBS2BS
k [20, 30] MB/s sMT2BS

i [10, 15] MB/s

sBS2MT
i [10, 15] MB/s

Table 2 lists the three schemes in MATLAB simulation. We use genetic algorithm to
get the minimum system delay of OMEC, and simulate the three strategies mentioned
above. The results of simulating are shown in the figures.

Table 2. The three schemes in MATLAB simulation.

Name Value

OCMEC Our offloading and caching strategy in MEC environment

OMEC Only offloading strategy in MEC environment

NMEC No MEC environment

5.1. Different Numbers of MTs

As shown in Figure 4, we measured the total time consumption by the system in
completing all tasks under the 3 strategies with different numbers of MTs. In simulations,
we increase M from 30 to 100, while other settings are listed in Table 1, except fixed
values R = 6, K = 5, φk = 2.4 × 106 MBPS, sC2NBS

k = 80 MB/s, sNBS2C
k = 30 MB/s,

sBS2NBS
k = sNBS2BS

k = 30 MB/s, ∀k ∈ K.

30 40 50 60 70 80 90 100
number of MT M

20

40

60

80

100

120

140

160

180

to
ta

l t
im

e(
s)

OCMEC
OMEC
NMEC

Figure 4. f gained by the 3 schemes with the increase of M.

When M increases, the total time for the system to complete the tasks increases
correspondingly, these 3 strategies are in accordance with the law. At the same time, the
total time consumed by OMEC and OCMEC is always lower than NMEC, OCMEC is
always lower than OMEC. So, computing offloading and data caching can reduce the
system delay.

With the increase of M, the total load of the system increases. When M ∈ {30, 40, 50},
because of the low task load, the gain effect of OCMEC on reducing the delay is relatively

Appl. Sci. 2021, 11, 5802 19 of 25

low; when M ∈ {50, 60, 70, 80}, the task load increases continuously, and the total time-
consuming gap between OCMEC and NMEC is increasing, and the gain effect of reducing
the delay is getting better and better. When M ∈ {80, 90, 100}, the total load exceeds the
capacity of MEC-BS and MEC-NBS, and they cannot fully meet the calculation requirements
of the tasks, so the total time gap gradually narrows, and the gain effect for reducing the
delay gradually decreases.

5.2. Different Numbers of MTs’ Tasks

As shown in Figure 5, we measured the total time consumption by the system in
completing all tasks under the 3 strategies with different numbers of MTs’ Tasks. In
simulations, we increase R from 1 to 8, while other settings are listed in Table 1, except
fixed values M = 60, K = 7, φk = 2.4× 106 MBPS, sC2NBS

k = 80 MB/s, sNBS2C
k = 30 MB/s,

sBS2NBS
k = sNBS2BS

k = 30 MB/s, ∀k ∈ K. When R increases, the total time for the system to
complete the tasks increases correspondingly, these 3 strategies are in accordance with the
law. At the same time, the total time consumed by OMEC and OCMEC is always lower
than NMEC, and OCMEC is always lower than OMEC. So, computing offloading and data
caching can reduce the system delay.

1 2 3 4 5 6 7 8
number of MTs tasks R

20

40

60

80

100

120

140

to
ta

l t
im

e
(s

)

OCMEC
OMEC
NMEC

Figure 5. f gained by the 3 schemes with the increase of R.

With the increase of R, the total load of the system increases. When R ∈ {1, 2, 3}, be-
cause of the low task load, the gain effect of OCMEC on reducing the delay is relatively low;
when R ∈ {3, 4, 5, 6}, the task load increases continuously, and the total time-consuming
gap between OCMEC and NMEC is increasing, and the gain effect of reducing the delay
is getting better and better. When R ∈ {6, 7, 8}, the total load exceeds the capacity of
MEC-BS and MEC-NBS, and they cannot fully meet the calculation requirements of the
tasks, so the total time gap gradually narrows, and the gain effect for reducing the delay
gradually decreases.

Therefore, the strategy proposed in this paper can perform better when the number of
users is larger, and the proposed base stations data caching and computational offloading
strategies can effectively reduce the end-user service response latency.

5.3. Different Numbers of MEC-NBS

As shown in Figure 6, we measured the total time consumption by the system in
completing all tasks under the 3 strategies with different numbers of MEC-NBS. In simu-
lations, we increase K from 2 to 9, while other settings are listed in Table 1, except fixed
values M = 60, R = 6, φk = 2.4× 106 MBPS, sC2NBS

k = 80 MB/s, sNBS2C
k = 30 MB/s,

sBS2NBS
k = sNBS2BS

k = 30 MB/s, ∀k ∈ K.

Appl. Sci. 2021, 11, 5802 20 of 25

2 3 4 5 6 7 8 9
number of MEC-NBS K

40

50

60

70

80

90

100

110

120

to
ta

l t
im

e
(s

)

OCMEC
OMEC
NMEC

Figure 6. f gained by the 3 schemes with the increase of K.

When K is increased, the total time to complete tasks is decreased correspondingly
under OMEC and OCMEC strategies. The curve of NMEC is flat since the further offloading
and data caching are disabled, so K has no effect on NMEC. At the same time, the total time
consumed by OMEC and OCMEC is always lower than NMEC, and OCMEC is always
lower than OMEC. So, computing offloading and data caching can reduce the system delay.

With the increase of K, the system can accept more tasks and provide better perfor-
mance through computing offloading and data caching, the total time-consuming gap
between OCMEC and NMEC is increasing, and the gain effect of reducing the delay is
getting better and better. But we still observe that, when the number of K increases to a
certain threshold, the optimization effect for time consumption slows down gradually.

5.4. Different Service Rates of MEC-NBS

As shown in Figure 7, we measured the total time consumption by the system in
completing all tasks under the 3 schemes with different service rates of MEC-NBS. In simu-
lations, we increase φk from 2.2 × 106 to 2.7 ×106 MIPS, while other settings are listed in
Table 1, except fixed values M = 60, R = 6, K = 6, sC2NBS

k = 80 MB/s, sNBS2C
k = 30 MB/s,

sBS2NBS
k = sNBS2BS

k = 30 MB/s, ∀k ∈ K.

2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7
service rates of MEC-NBS,n

k
(k K)

65

70

75

80

85

90

95

100

105

110

115

120

to
ta

l t
im

e
(s

)

OCMEC
OMEC
NMEC

×106

Figure 7. f gained by the 3 schemes with the increase of φk, the service rate of nk, k = 1, 2, . . . , K.

Appl. Sci. 2021, 11, 5802 21 of 25

φk represents the computation capability of MEC-NBS. Similar to Figure 6, when
φk is increased, total utilization time of the system is decreased under OMEC and OCMEC
strategies. The line of NMEC is straight since φk has no effect on it. The total time consumed
by OMEC and OCMEC is always lower than NMEC, OCMEC is always lower than OMEC.
So, computing offloading and data caching can reduce the system delay.

With the increase of φk, the system can accept more tasks and provide better perfor-
mance through computing offloading and data caching, the total time-consuming gap
between OCMEC and NMEC is increasing, and the gain effect of reducing the delay is
getting better and better. When φk increases to a certain threshold, the optimization effect
for time consumption slows down gradually.

It is worth noting that the gain of φk to total time optimization is far less than K.
Therefore, MEC-NBS can effectively reduce the system delay, in which the combination

of data caching and computational offloading than one separate computational offloading
brings more delay benefits.

5.5. Different Data Transmission Rates between C and MEC-NBS

As shown in Figure 8, we measured the total time consumption by the system in
completing all tasks under the 3 schemes with different data transmission rates between
C and MEC-NBS. In simulations, we increase the sC2NBS

k , ∀k ∈ K from 50 to 90 MB/s,
while other settings are listed in Table 1, except fixed values M = 60, R = 6, K = 6,
φk = 2.4× 106 MBPS, sNBS2C

k = 30 MB/s, sBS2NBS
k = sNBS2BS

k = 30 MB/s, ∀k ∈ K.
The data transmission rates between C and MEC-NBS impact the time consumptions

of transmission processes in further offloading and data caching. As the transmission rates
increase, the time consumptions decrease, so the time benefits gained by further offloading
and data caching grows. As shown in Figure 8, the curves of our scheme and OMEC appear
a downward trend as sC2NBS

k , ∀k ∈ K increase, whereas the curve of NMEC is unchanged
since further offloading and data caching are disabled.

50 55 60 65 70 75 80 85 90
data transmission rates between C and MEC-NBS

75

80

85

90

95

100

105

110

115

120

to
ta

l t
im

e
(s

)

OCMEC
OMEC
NMEC

Figure 8. f gained by the 3 schemes with the increase of sC2NBS
k , the data transmission rates between

C and MEC-NBS, k = 1, 2, . . . , K.

5.6. Different Data Transmission Rates between MEC-NBS and C

As shown in Figure 9, we measured the total time consumption by the system in
completing all tasks under the 3 schemes with different data transmission rates between
C and MEC-NBS. In simulations, we increase the sNBS2C

k , ∀k ∈ K from 10 to 40 MB/s,
while other settings are listed in Table 1, except fixed values M = 60, R = 6, K = 6,
φk = 2.4× 106 MBPS, sC2NBS

k = 80 MB/s, sBS2NBS
k = sNBS2BS

k = 30 MB/s, ∀k ∈ K.

Appl. Sci. 2021, 11, 5802 22 of 25

10 15 20 25 30 35 40
data transmission rates between MEC-NBS and C

75

80

85

90

95

100

105

110

115

120

to
ta

l t
im

e
(s

)

OCMEC
OMEC
NMEC

Figure 9. f gained by the 3 schemes with the increase of sNBS2C
k , the data transmission rates between

MEC-NBS and C, k = 1, 2, . . . , K.

Similar to the data transmission rates between C and MEC-NBS, sNBS2C
k , ∀k ∈ K

impacts the time consumptions of transmission processes in further offloading and data
caching. Although the curves of our scheme and OMEC are not very smooth, we can still
notice that the overall trend of the curves are decreasing. Similarly, the curve of NMEC is
still unchanged because further offloading and data caching are disabled.

5.7. Different Data Transmission Rates between MEC-BS and MEC-NBS

As shown in Figure 10, we measured the total time consumption by the system in
completing all tasks under the 3 schemes with different data transmission rates between
MEC-BS and MEC-NBS. In simulations, we increase the sBS2NBS

k and sNBS2BS
k , ∀k ∈ K from

10 to 40 MB/s, while other settings are listed in Table 1, except fixed values M = 60, R = 6,
K = 6, φk = 2.4× 106 MBPS, sC2NBS

k = 80 MB/s, sNBS2C
k = 30 MB/s, ∀k ∈ K.

10 15 20 25 30 35 40
data transmission rates between MEC-NBS and C

75

80

85

90

95

100

105

110

115

120

to
ta

l t
im

e
(s

)

OCMEC
OMEC
NMEC

Figure 10. f gained by the 3 schemes with the increase of sBS2NBS
k and sNBS2BS

k , the data transmission
rates between MEC-BS and MEC-NBS, k = 1, 2, . . . , K.

Similar to the data transmission rates between MEC-NBS and C, sBS2NBS
k and sNBS2BS

k ,
∀k ∈ K impacts the time consumptions of transmission processes in further offloading
and data caching. The overall trend of the curves of OCMEC and OMEC are decreasing.
Similarly, the curve of NMEC is still unchanged because further offloading and data caching
are disabled.

Appl. Sci. 2021, 11, 5802 23 of 25

5.8. Comparison with Other Optimization Algorithms

As shown in Figure 11, we compare our algorithm with two other ones, including the
Particle Swarm Optimization (PSO) algorithm and the Simulated Annealing (SA) algorithm.
The convergence speeds of the 3 algorithms are measured to find the solution of our
optimization problem with M = 70, R = 6, K = 5, φk = 2.4× 106 MBPS, sC2NBS

k = 80 MB/s,
sNBS2C

k = 30 MB/s, sBS2NBS
k = sNBS2BS

k = 30 MB/s, ∀k ∈ K, while other settings are listed in
Table 1. The simulation results show that although all of the 3 algorithm can converge after
multiple iterations, our Genetic algorithm has the fastest convergence speed (our Genetic
algorithm is converged at iteration 252, PSO algorithm is converged at iteration 281, and
SA algorithm is converged at iteration 297). It demonstrates that our algorithm is more
suitable for our optimization problem.

0 50 100 150 200 250 300
iteration

90

95

100

105

110

115

120

to
ta

l t
im

e
(s

)

Our Algorithm
PSO Algorithm
SA Algorithm

Figure 11. Convergence analysis of the 3 algorithms.

6. Conclusions

As one of the key research directions in the future mobile network, mobile edge
computing technology can effectively alleviate the computing pressure and data interaction
pressure of mobile cloud, reduce the response delay of mobile terminals, and improve the
overall efficiency of the system.

In this paper, the characteristics of computing offloading and data caching in mobile
edge computing are deeply studied, and a new resource management scheme based on the
cooperation of multiple MEC base stations is proposed. In our scheme, MEC-BS and MEC-
NBS can perform computational tasks offloaded from the cloud and cache the data needed
to compute tasks from the cloud, minimizing the time consumed to perform all tasks.

In our research, various computing tasks of mobile terminals are defined by computing
load and data load, and resource management problem is transformed into optimization
problem with the objective of minimizing system time consumption. The Cooperative
Resource Management Algorithm proposed in this paper consists of several separate and
parallel running cycles. The performance of our scheme is evaluated and compared with
the following two schemes: (1) schemes without data caching function; and (2) schemes
without data caching and computing offloading. Compared with the other two schemes,
our scheme shows obvious superiority in three different situations, and greatly improves
the performance of the system.

Our scheme provides a new resource management method leveraging the cooperation
of multiple MEC-BS. It can efficiently enhance the performance of computation-intensive
and delay-sensitive applications, and improve the user experience and device supports
on them.

In our future works, we plan to extend our research to the area of IoT applications, such
Internet of Vehicles, Industrial Internet of Things, etc. The joint computation offloading

Appl. Sci. 2021, 11, 5802 24 of 25

and data caching problem will be studied to efficiently exploit the joint utilization of
the resources of all BSs and the cloud to enhance the performance of task processing in
these applications.

Author Contributions: Conceptualization, T.L., W.F., F.W., W.X. and W.Y.; methodology, T.L., W.F.,
F.W., W.X. and W.Y.; software, T.L., W.F., F.W., W.X. and W.Y.; validation, T.L., W.F., F.W., W.X. and
W.Y.; formal analysis, T.L., W.F., F.W., W.X. and W.Y.; investigation, T.L., W.F., F.W. and W.X.; data
curation, T.L., W.F., F.W. and W.X.; writing—original draft preparation, T.L., W.F., F.W. and W.X.;
writing—review and editing, T.L., W.F. and W.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing: A key technology towards 5G. ETSI White Pap.

2015, 11, 1–16.
2. Ahmed, A.; Ahmed, E. A survey on mobile edge computing. In Proceedings of the 2016 10th International Conference on

Intelligent Systems and Control (ISCO), Coimbatore, India, 7–8 January 2016; pp. 1–8.
3. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE

Commun. Surv. Tutorials 2017, 19, 2322–2358. [CrossRef]
4. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv.

Tutorials 2017, 19, 1628–1656. [CrossRef]
5. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2017, 5, 450–465.

[CrossRef]
6. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing: A Survey of the Emerging

5G Network Edge Architecture & Orchestration. IEEE Commun. Surv. Tutorials 2017. [CrossRef]
7. Xu, X.; Zhang, X.; Gao, H.; Xue, Y.; Qi, L.; Dou, W. BeCome: Blockchain-enabled computation offloading for IoT in mobile edge

computing. IEEE Trans. Ind. Informatics 2019, 16, 4187–4195. [CrossRef]
8. Bista, B.B.; Wang, J.; Takata, T. A Probabilistic Offloading Approach in Mobile Edge Computing. In Proceedings of the International

Conference on Broadband and Wireless Computing, Communication and Applications, Antwerp, Belgium, 7–9 November 2019;
Springer: Berlin, Germany, 2019; pp. 266–278.

9. Gu, H.; Wang, H. A Distributed Caching Scheme Using Non-Cooperative Game for Mobile Edge Networks. IEEE Access 2020,
8, 142747–142757. [CrossRef]

10. Liu, Y.; He, Q.; Zheng, D.; Xia, X.; Chen, F.; Zhang, B. Data caching optimization in the edge computing environment. IEEE Trans.
Serv. Comput. 2020. [CrossRef]

11. Kobayashi, R.; Adachi, K. Radio and computing resource allocation for minimizing total processing completion time in mobile
edge computing. IEEE Access 2019, 7, 141119–141132. [CrossRef]

12. Wang, C.; Feng, D.; Zhang, S.; Chen, Q. Video Caching and Transcoding in Wireless Cellular Networks With Mobile Edge
Computing: A Robust Approach. IEEE Trans. Veh. Technol. 2020, 69, 9234–9238. [CrossRef]

13. Mao, Y.; Zhang, J.; Song, S.H.; Letaief, K.B. Stochastic Joint Radio and Computational Resource Management for Multi-User
Mobile-Edge Computing Systems. IEEE Trans. Wirel. Commun. 2017, 16, 5994–6009. [CrossRef]

14. Mao, Y.; Zhang, J.; Letaief, K.B. Joint Task Offloading Scheduling and Transmit Power Allocation for Mobile-Edge Comput-
ing Systems. In Proceedings of the Wireless Communications and NETWORKING Conference, San Francisco, CA, USA,
19–22 March 2017; pp. 1–6.

15. Yang, G.; Hou, L.; He, X.; He, D.; Chan, S.; Guizani, M. Offloading Time Optimization via Markov Decision Process in Mobile
Edge Computing. IEEE Internet Things J. 2020, 8, 2483–2493. [CrossRef]

16. Kuang, Z.; Li, L.; Gao, J.; Zhao, L.; Liu, A. Partial offloading scheduling and power allocation for mobile edge computing systems.
IEEE Internet Things J. 2019, 6, 6774–6785. [CrossRef]

17. Liang, B.; Fan, R.; Hu, H.; Zhang, Y.; Zhang, N.; Anpalagan, A. Nonlinear Pricing Based Distributed Offloading in Multi-User
Mobile Edge Computing. IEEE Trans. Veh. Technol. 2020, 70, 1077–1082. [CrossRef]

18. Pham, Q.V.; Le, L.B.; Chung, S.H.; Hwang, W.J. Mobile edge computing with wireless backhaul: Joint task offloading and resource
allocation. IEEE Access 2019, 7, 16444–16459. [CrossRef]

http://doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/COMST.2017.2705720
http://dx.doi.org/10.1109/TII.2019.2936869
http://dx.doi.org/10.1109/ACCESS.2020.3009683
http://dx.doi.org/10.1109/TSC.2020.3032724
http://dx.doi.org/10.1109/ACCESS.2019.2944184
http://dx.doi.org/10.1109/TVT.2020.2997344
http://dx.doi.org/10.1109/TWC.2017.2717986
http://dx.doi.org/10.1109/JIOT.2020.3033285
http://dx.doi.org/10.1109/JIOT.2019.2911455
http://dx.doi.org/10.1109/TVT.2020.3045473
http://dx.doi.org/10.1109/ACCESS.2018.2883692

Appl. Sci. 2021, 11, 5802 25 of 25

19. Fan, W.; Liu, Y.; Tang, B. Adaptive Application Component Mapping for Parallel Computation Offloading in Variable Environ-
ments. Ksii Trans. Internet Inf. Syst. 2015, 9, 4347–4366.

20. Cui, Y.; Zhang, D.; Zhang, T.; Chen, L.; Piao, M.; Zhu, H. Novel method of mobile edge computation offloading based on
evolutionary game strategy for IoT devices. AEU Int. J. Electron. Commun. 2020, 118, 153134. [CrossRef]

21. Eliodorou, M.; Psomas, C.; Krikidis, I.; Socratous, S. Energy efficiency for MEC offloading with NOMA through coalitional games.
In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019;
pp. 1–6.

22. Zhou, S.; Jadoon, W. Jointly Optimizing Offloading Decision and Bandwidth Allocation with Energy Constraint in Mobile Edge
Computing Environment. Computing 2021. [CrossRef]

23. Song, Z.; Liu, Y.; Sun, X. Joint Task Offloading and Resource Allocation for NOMA-Enabled Multi-Access Mobile Edge Computing.
IEEE Trans. Commun. 2020, 69, 1548–1564. [CrossRef]

24. You, C.; Huang, K.; Chae, H.; Kim, B.H. Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading. IEEE
Trans. Wirel. Commun. 2017, 16, 1397–1411. [CrossRef]

25. Wang, J.; Feng, D.; Zhang, S.; Liu, A.; Xia, X.G. Joint Computation Offloading and Resource Allocation for MEC-enabled IoT
Systems with Imperfect CSI. IEEE Internet Things J. 2020, 8, 3462–3475. [CrossRef]

26. Sardellitti, S.; Scutari, G.; Barbarossa, S. Joint Optimization of Radio and Computational Resources for Multicell Mobile-Edge
Computing. IEEE Trans. Signal Inf. Process. Over Netw. 2015, 1, 89–103. [CrossRef]

27. Liu, L.; Sun, B.; Tan, X.; Xiao, Y.S.; Tsang, D.H. Energy-efficient Resource Allocation and Channel Assignment for NOMA-based
Mobile Edge Computing. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC),
Marrakech, Morocco, 15–18 April 2019; pp. 1–6.

28. Wang, C.; Yu, F.R.; Liang, C.; Chen, Q.; Tang, L. Joint Computation Offloading and Interference Management in Wireless Cellular
Networks with Mobile Edge Computing. IEEE Trans. Veh. Technol. 2017, 66, 7432–7445. [CrossRef]

29. Song, F.; Xing, H.; Luo, S.; Zhan, D.; Dai, P.; Qu, R. A Multiobjective Computation Offloading Algorithm for Mobile-Edge
Computing. IEEE Internet Things J. 2020, 7, 8780–8799. [CrossRef]

30. Shekhar, C.A.; Sharvani, G. MTLBP: A Novel Framework to Assess Multi-Tenant Load Balance in Cloud Computing for
Cost-Effective Resource Allocation. Wirel. Pers. Commun. 2021. [CrossRef]

31. Yang, J.; Xiang, Z.; Mou, L.; Liu, S. Multimedia resource allocation strategy of wireless sensor networks using distributed heuristic
algorithm in cloud computing environment. Multimed. Tools Appl. 2020, 79, 35353–35367. [CrossRef]

32. Gharehpasha, S.; Masdari, M. A discrete chaotic multi-objective SCA-ALO optimization algorithm for an optimal virtual machine
placement in cloud data center. J. Ambient. Intell. Humaniz. Comput. 2020. [CrossRef]

33. Kong, L.; Mapetu, J.P.B.; Chen, Z. Heuristic load balancing based zero imbalance mechanism in cloud computing. J. Grid Comput.
2020, 18, 123–148. [CrossRef]

34. Satria, D.; Park, D.; Jo, M. Recovery for overloaded mobile edge computing. Future Gener. Comput. Syst. 2016, 70, 138–147.
[CrossRef]

35. Gross, D. Fundamentals of Queueing Theory; John Wiley & Sons: Hoboken, NJ, USA, 2008.

http://dx.doi.org/10.1016/j.aeue.2020.153134
http://dx.doi.org/10.1007/s00607-021-00931-z
http://dx.doi.org/10.1109/TCOMM.2020.3044085
http://dx.doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/JIOT.2020.3022802
http://dx.doi.org/10.1109/TSIPN.2015.2448520
http://dx.doi.org/10.1109/TVT.2017.2672701
http://dx.doi.org/10.1109/JIOT.2020.2996762
http://dx.doi.org/10.1007/s11277-021-08541-w
http://dx.doi.org/10.1007/s11042-019-07759-y
http://dx.doi.org/10.1007/s12652-020-02645-0
http://dx.doi.org/10.1007/s10723-019-09486-y
http://dx.doi.org/10.1016/j.future.2016.06.024

	Introduction
	Related Works
	Existing Computing Resources and Storage Resources
	The Base Station Resources Are Optimized Separately
	Existing Offloading / Caching Decision Algorithms
	Lack of Resource Management Technology for Cloud

	System Model
	Computation Model
	Transmission Model
	Optimization Model

	Cooperative Resource Management Algorithm
	Optimization Problem
	Optimization Algorithm Using Genetic algorithm
	Cooperative Resource Management Algorithm

	Simulations and Performance Evaluations
	Different Numbers of MTs
	Different Numbers of MTs' Tasks
	Different Numbers of MEC-NBS
	Different Service Rates of MEC-NBS
	Different Data Transmission Rates between C and MEC-NBS
	Different Data Transmission Rates between MEC-NBS and C
	Different Data Transmission Rates between MEC-BS and MEC-NBS
	Comparison with Other Optimization Algorithms

	Conclusions
	References

