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Abstract: An electrode switching device (ESD) is one of the most important components of electrical
resistivity tomography (ERT). It is a ligament and relay between a testing circuit and testing electrodes.
Existing ESD uses a plane structure to realize the interconnection between ports and testing electrodes.
Taking Wenner testing as an example, each electrode needs four additional switches. In this report,
a new hardware saving ESD (HESD) is made with a hierarchical structure for a single-channel
distributed ERT. HESD has two-layered switches to realize the conversion process. The first layer of
16 switches can realize four pairs of unrepeated connection between four ports—AMNB and four
Lines—L1–L4. The second layer establishes the non-overlapping joints between four lines—L1–L4
and four testing electrodes. Each electrode only needs one switch for an 1D test, which has been
wildly used in soil science, ocean probing, and contaminated surveys, and an odd number layer test.
With the newly designed HESD, three fourths of the cost of hardware (switch) was saved compared
with the conventional ESD. In addition, with two more switches, HESD was able to complete a
2D survey. The new two-layer HESD saves hardware costs and shows advantages in maintenance,
system tests, and miniaturization, especially when many electrodes are required in an ERT system,
which is very common in practice.

Keywords: hierarchy; electrode switching device; hardware saving; distributed ERT

1. Introduction

Electrical resistivity tomography (ERT) is a method for determining the electrical
resistivity distribution in a volume from discrete measurements of current and voltage
made within a volume or on its surface [1]. ERT conception was first proposed by Shima [2]
in 1987, and it has been widely used in China since 1990s as a programmable automatic
switching controller. Right now, distributed ERT is the most popular. The ERT method is a
commonly used geophysical prospecting manner which is widely applied in hydrology,
ocean exploration, engineering, and environment geological exploration and investiga-
tion [3,4]. Single-channel ERT has been used for many years [5]. Multi-channel ERT was
developed in the past twenty years or so but is not so widely employed. It is extremely
suitable for super higt density ERT. The ERT in this article refers to a single ERT system.
Multi-channel ERT can access all channel data at the same time and can obtain all possible
combination tests, therefore it is time saving and has high precision. Simultaneously, it
needs more complicated hardware and more fussy inversion calculations. It is normally
used in 3D tests with many electrode requests, which may take several hours for one
round of testing. Whereas for the ERT applications that do not have too many electrodes,
single-channel ERT has widely been employed [5], e.g., long-time ERT monitoring systems
with relatively minimal data requirements [4,6].

Substantially, the ERT system consists of the usual electric logging and electrode
switching device. Therefore, it is called a super multi-meter. Distributed ERT is the
most efficient ERT monitoring method at present. The electrode switching device (ESD)
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is an important component of ERT, and it is also a key differentiator between ERT and
conventional electrical resistivity. A monitoring instrument has been developed along with
the electronic technique. The development of ESD, to a great extent, affects the future of ERT.
In a conventional serial testing mode, each testing sample is sent to the main control end
of testing circuit for data acquisition based on a predetermined sequence [7]. Distributed
ERT significantly decreases the cost of cable-laying because it does not require a cable
for each electrode [8]. The parallel ERT instrument [9] began deployment in 2008 [8]. It
synchronizes multiple tests in a parallel method, which could save time dramatically [8–10].
However, effectiveness of the parallel testing needs further investigation [11].

In the past twenty years, research on ERT has mainly focused on operation efficiency
based on testing speed and data analysis [12,13]. However, very little attention has been
paid to save the hardware overhead on the ERT system, which means easy maintenance
and miniaturization. It is very important to note that the 1D test device is widely used
in a variety of fields, such as in soil science [14], ocean erosion [15,16] and contaminated
surveys [17], etc. For 1D tests, research has paid more attention to the test results and little
concern has been given to ESD [15,18–22]. ERT takes the same ESD with a 2D conventional
system and requires four switches for one electrode.

In this study, we designed a hierarchical ESD (HESD) for a distributed ERT, which
saved three fourths of the hardware overhead for the 1D test. In the HESD, a hierarchi-
cal electrode switch structure was used to set it apart from the conventional ESD. An
intermediate part, Line 1–Line 4, was added between the test parts (AMNB) and tested
electrodes. The elaborate hierarchical structures were designed and rooted before and after
the intermediate of the two layers, respectively. HESD only requires one switch for one
electrode when conducting a 1D test or an odd layer monitor. Two extra switches for one
electrode are required when monitoring all layers. Only three switches were used in total.
Comparatively, HESD could save hardware expenditure for switches and corresponding
control circuits and lower the power dissipation. These are important for some ERT instru-
ments conducting field in-situ tests or long-term positioned tests. The following section
gives the overall structure of an ESD and the abstract structure model of the pre-existing
ESD. Then, the design of the HESD is descripted in detail. Finally, we analyze the amount
of hardware used in HESD and in traditional ESDs, as well as the disadvantages of HESD.

2. Pre-Existing Circuit Structures of ESD for Distributed ERT System
2.1. Overall Structure of Distributed ERT System

A distributed ERT instrument is usually comprised of one main control structure and
multiple distributed structures with the same architecture. For discussion convenience,
we used a Wenner test as an example, however other tests are similar. Details are shown
in Figure 1. The ports AMNB exist in the main control structure, and the electrodes exist
in the distributed structures. The two parties interrelate with each other through the bus,
consisting of four lines. To accomplish a single test, the four testing electrodes must be
connected to AMNB in the correct order. The complete ERT survey is composed of back-
to-back single resistivity tests. The task of ESD is to set up all test connections one by one
in predetermined order. ESD is composed of many switch structures (SS). They exist in
two parities, the main control and the distributed structure, as shown in Figure 1. They are
respectively called SS1 and SS2. Herein, SS1 is responsible for access of AMNB to the bus
and SS2 is responsible for access of the four testing electrodes to the bus. Then, via the bus,
two elements, AMNB and four testing electrodes, are interconnected.
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Figure 1. Structure of ESD for the distributed ERT system.

2.2. Present ESDs

In 2004, Zheng Cai-jun designed an ESD for a distributed ERT, which is the most used
model. Figure 2 shows a SS1 schematic. It takes SPDT (Single Pole Double-Throw) and
DPDT (Double Pole Double-Throw) switches to connect/disconnect the four ports of the
AMNB to the bus lines. Figure 3 is the connection map of one of the electrodes in one
distributed structure. It shows that four switches are required for each electrode. J1 in
Figure 2 is connected to J1 in Figure 3 through bus lines (Figure 1), and J2 is connected to J1
of the next electrode through the bus. Via this manner, all the electrodes are lapped to bus.
Four switches are responsible for the connection between the electrode and one of the four
connectors (AI, BI, MI, NI), and via the bus they set up a connection relationship with one
of AMNB [23].

Figure 2. Power supply interface schematic for ERT in ESD, designed by Zheng Cai-Jun [23].

Figure 3. Circuit schematic for one electrode connection in the ESD, designed by Zheng Cai-Jun [23].
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As shown in Figure 1, present traditional ESDs (TESD) have the same bus [23–25]. The
four lines on the bus are just one-to-one corresponding to AMNB four ports. In other words,
SS1 just has the function of on and off, which is not a real structure. In SS2, an electrode
must have four switches to choose one of the four lines (i.e., four ports). Analyzing all the
information above, to improve the system structure SS1 must has its own function and not
just act as a simple on-off to AMNB. It needs to set AMNB to not be directly connected
to the fixed lines on the bus. Thus, it is possible that SS2 has other options, such as one
electrode with less switches. This would divide the whole structure into two layers, which
is completely different from the existing scheme. Accordingly, the newly designed ESD
was named hierarchical ESD (HESD).

3. HESD Structure Design for ERT

HESD was realized through two-level topology. First, this section contrasts HESD to
TESD, and further gives the hierarchical topology of HESD. Then, the detailed design of
the two layers of the novel HESD is illustrated.

3.1. System Analyzing

Figure 4a shows the topology structure of TESD. Four lines—L1, L2, L3, and L4
(L1–L4) —correspond to AMNB, and every electrode has four switches to control on/off.
For instance, the four black lines from E1 need four switches to implement the make-and-
break with AMNB. This means that one line has one switch.

Figure 4. System structure of ESD and the system structure of TESD (a) [24]; desire to realize the system structure of
HESD (b). (a), Each group of colored lines represents the connection to each electrode, respectively. (b), SS1: switch
structures 1; SS2: switch structures 2.

As shown in Figure 4b, the make-and-break operation between AMNB and each
electrode is conducted through the bus (composed of L1–L4) as an intermediate instead of
conducted directly. By employing this process, the whole ESD is divided into two layers,
SS1 and SS2. The first layer SS1 performs on-off management between AMNB and L1–L4.
To implement a test, an unrepeated link relationship must be set up between AMNB and
L1–L4. For instance, A connects to L1 (A-L1), M–L3, N-L4, and B-L2. The second layer SS2
performs on-off management between L1–L4 and the four testing electrodes, i.e., L1-E1,
L3-E2, L4-E3, and L2-E4. The two steps establish the connection between AMNB and the
testing electrode E1–E4 as A-L1-E1, M-L3-E2, N-L4-E3, and B-L2-E4.

3.2. The First Layer SS1: Between AMNB and L1–L4

Figure 5 gives the topology structure of ESD in the main control, including TESD and
the newly designed HESD. The TESD is constructed with one switch per port and one
port directly corresponds with one line (Figure 5a), while the first layer for HESD includes
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16 switches (Figure 5b). According to Section 3.1, SS1 is transformed first. There is one
switch per any of the ports for AMNB and the four lines (L1–L4), respectively. Herein,
each port requires four switches, which will be treated as a single group. Four ports need
16 switches total (K1 to K16, called Series K). When testing, one of the four switches closes
to connect the port to the line. With this setup, each line is able to connect to any port
instead of connecting to a specific port. Therefore, the new HESD allows for choosing
any line without restriction. In a different test, L1–L4 are mapped with different AMNB
combinations. Each group of switches will set up one connection, e.g., A-K5-L2, M-K10-L3,
N-K3-L1, and B-K16-L4, which would turn L1–L4 into NAMB.

Figure 5. Topology of the distributed structure: TESD design (a) [24]; the first layer and the first stage of design of the
second layer in HESD (b); Switch control map for E1-A, E2-M, E3-N, and E4-B (c).

3.3. The Second Layer SS2: Between L1–L4 and Electrodes

This layer is located at the distributed structures, which is further separated into
two stages.

3.3.1. The First Stage (SS2-1): One-to-One Connection of Electrode and Line

Four I/O lines, L1–L4, come from main control parts and connect to distributed
structures. They are, as a group, called the bus.

The distributed structure is responsible for controlling the connection status between
lines and electrodes through Series D switches. Figure 5 give the topology structure
for the distributed parts of the TESD and the HESD. TESD needs four switches for one
electrode (Figure 5a), while HESD only needs one switch for one electrode (Figure 5b). One
distributed structure includes multiple electrodes, and four electrodes form a group. As
shown in Figure 5b, electrodes E1–E4 are connected successively to L1–L4 through switches
D1–D4, and E5–E8 are connected successively to L1–L4 through switches D5–D8. The rest
can be done in the same setting.

Implementing the first test in the ERT first layer (E1–E4 as testing electrodes connected
to AMNB) requires set up connections, as shown in Figure 5c. Close switch K1 to connect
L1 and A, close K6 to connect L2 and M, close K11 to connect L3 and N, and close K4
to connect L4 and B. At the same time, close D1–D4 connects E1–E4 with L1–L4. In this
way, through L1–L4, E1–E4 are linked together with AMNB ports. In this test, the whole
concatenated relations are E1-D1-L1-K1-A, E2-D2-L2-K6-M, E3-D3-L3-K11-N, and E4-D4-
L4-K16-B. The subsequent tests will be conducted in similar fashion. For example, the
next test is the second test in the ERT first layer, and the connections are E2-D2-L2-K5-A,
E3-D3-L3-K10-M, E4–D4-L4-K15-N, E5-D1-L1-K4-B, etc.

The circuit design scheme is acquired easily based on the structure in Figure 5c. The
circuit for HESD in each distributed structure or cell is shown in Figure 6 (four electrodes in
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a cell) as an example, and the structure for eight electrodes in a cell is likely. Conventionally,
the most common plan is eight electrodes in one cell. Therefore, the distributed cell (struc-
ture) must contain an integer times four electrodes, which could be 4, 8, or 12 electrodes in
a cell. In Figure 6, the switch RELAY1 controls the 1IN to connect to 1OUT/E1. Connect to
1OUT means E1 need not connect to L1 and L1 will be left to subsequent cells, whereas
connect to E1 means E1 connects to L1. In accordance with this process, the structure
described above can finish the first layer test. However, whether it is able to complete any
layer’s test needs to be studied.

Figure 6. Distributed cell structure for four electrodes in one cell [23].

HESD has the same SS1. Therefore, one switch is added for one additional electrode
in SS2. This means that one electrode could likely only be connected to one predetermined
line, e.g., E1 only to L1, E2 only to L2, etc. (Figure 5c). This condition is denoted as a
connection condition determined by the designed topology structure. It is noteworthy that
the system tests claim that four testing electrodes must be one-to-one connected to four
lines (L1–L4). Any two or more testing electrodes cannot be linked to the same line. This
condition is denoted as the test condition. Obviously, the connection condition is acceptable
or correct when it meets the test condition. To indicate if the two conditions are matched
to each other, electrodes and their relevant lines are shown in Table 1 for the foremost
four tests in layer 1–layer 8 (the condition of other layers can be deduced from Table 1).
In Table 1, in odd layers each electrode pairs with one line, e.g., the testing electrodes are
connected to four different lines—L1, L4, L3, and L2 in the first test of the third layer.
They fulfill the request. But in even layers, this is not the case. In the first and the third
test of the second layer, four electrodes are paired with L1, L3, L1, and L3, respectively.
Apparently, four testing electrodes in the even layers match to two lines (blue color) or
one line (red color), but not four lines. These tests do not meet the test condition. It is
demonstrated that the HESD with the first stage only works for tests of odd layers or the
1D test. Accordingly, we named it HESD-O. As described in Section 1, the 1D test is very
important and has wide applications. That means that a second stage of SS2 is required for
HESD to be suitable for all conditions.
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Table 1. Testing electrodes and the corresponding lines.

Layer n First Test Second Test Third Test Fourth Test

layer 1 electrode E1 E2 E3 E4 E2 E3 E4 E5 E3 E4 E5 E6 E4 E5 E6 E7
Line L1 L2 L3 L4 L2 L3 L4 L1 L3 L4 L1 L2 L4 L1 L2 L3

layer 2 Electrode E1 E3 E5 E7 E2 E4 E6 E8 E3 E5 E7 E9 E4 E6 E8 E10
Line L1 L3 L1 L3 L2 L4 L2 L4 L3 L1 L3 L1 L4 L2 L4 L2

layer 3 electrode E1 E4 E7 E10 E2 E5 E8 E11 E3 E6 E9 E12 E4 E7 E10 E14
Line L1 L4 L3 L2 L2 L1 L4 L3 L3 L2 L1 L4 L4 L3 L2 L1

layer 4 electrode E1 E5 E9 E13 E2 E6 E10 E14 E3 E7 E11 E15 E4 E8 E12 E16
Line L1 L1 L1 L1 L2 L2 L2 L2 L3 L3 L3 L3 L4 L4 L4 L4

layer 5 electrode E1 E6 E11 E16 E2 E7 E12 E17 E3 E8 E13 E18 E4 E9 E14 E19
Line L1 L2 L3 L4 L2 L3 L4 L1 L3 L4 L1 L2 L4 L1 L2 L3

layer 6 electrode E1 E7 E13 E19 E2 E8 E14 E20 E3 E9 E15 E21 E4 E10 E16 E22
Line L1 L3 L1 L3 L2 L4 L2 L4 L3 L1 L3 L1 L4 L2 L4 L2

layer 7 electrode E1 E8 E15 E22 E2 E9 E16 E23 E3 E10 E17 E24 E4 E11 E18 E25
Line L1 L4 L3 L2 L2 L1 L4 L3 L3 L2 L1 L4 L4 L3 L2 L1

layer 8 electrode E1 E9 E17 E25 E2 E10 E18 E26 E3 E11 E19 E27 E4 E12 E20 E28
Line L1 L1 L1 L1 L2 L2 L2 L2 L3 L3 L3 L3 L4 L4 L4 L4

3.3.2. The Second Stage (SS-2): One-to-Four Connection of Electrodes and Lines

The improved HESD will work for any layer tests. To implement this task, the
electrode can choose any line to connect with. The HESD is realized through adding
switches in Series J and Series A (Figure 7).

Figure 7. Topology structure of ESD for implementing all layer tests.
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Series J is a series of switches designed to solve the problem of L1L3L1L3. In
Section 3.3.1, the problem in the first and the third test of layer two is the so-called L1L3
problem. Every four electrodes are added to four Series J switches. E1–E4 add J1–J4, in
which J1 makes E3 connected to L1, and J2–J4 makes E1 connected to L2–L4. With these
improvements, the L1L3 problem is solved by switching one pair of L1L3 to L2L4, so four
testing electrodes will be connected to four lines of L1–L4, respectively. In this pattern,
realization for the first test in the second layer is: E1-J2-L2, E3-J1-L1, E5-J8-L4, and E7-D7-L3.
All L1L3 problems can be solved with the same mode.

Based on series J, Series A is designed to further solve the L2L4 problem and one-line
problem. The L2L4 problem appears at the second test in layer 2, where four testing
electrodes correspond to L2L4L2L4, which means that two electrodes are linked to the
same line. The one-line problem is that four testing electrodes all match with one line. The
above two problems could be settled by adding four Series A switches for four electrodes.
Taking E1–E4 cell as an example, switches A1–A4 are added as shown in Figure 7. A1 links
E4 to L1. A2–A4 link E2–E4 to E1, and D1 through to J2–J4 connect to any line of L1–L4.
When the L2L4 problem happens, one pair of electrodes corresponding to L2L4 is adapted
to L1L3 via Series A and Series J switches. A L2L4 problem for the second test in layer 4 is
solved as: E2-A2-D1-L1, E6-D6-L2, E10-A10-J11-L3, and E14-A14-J16-L4. When a one-line
problem appears, a similar mode is fixed. The specific schematic for distributed cells is
described in Figure 8, which takes four electrodes as a cell or group.

Figure 8. Schematic diagram of I/O ports and electrode connections with the distributed cell.

In the second stage of SS2 in the distributed ERT system, Series J and Series A switches
are added to solve problems that emerged in even layers. This helps the whole system
adapt to any conditions (HESD-A), including the odd layers or 1D test.

With SS2 having been added to HESD-O, the entire HESD is finished and can be
applied to any condition. The ERT profile is shown in Appendix A (Figure A1).

4. Results

The number of electrodes can be calculated as 16 + e*1 for HESD-O applications
and as 16 + e*3 for HESD-A, whereas TESD is computed as 4 + e*4. In these formulas, e
indicates the number of electrodes. Table 2 lists the results to compare different requests in
different ESD designs. When e > 4, HESD-O needs less switches than TESD, and when e
> 16, HESD-A needs less switches than TESD. In most ERT systems, several hundreds of
electrodes are employed [26,27].
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Table 2. The comparison of different electrodes required in various ESD designs.

ESD 4 8 16 32 48 64 128

traditional 4 + e*4 20 36 68 132 196 260 516
HESD-O 16 + e*1 20 24 32 48 64 80 144
HESD-A 16 + e*3 28 40 64 112 160 148 400

The results in this article were employed in a real ERT system. The HESD-O structure
was used to construct a ERT testing system (with 100 electrodes) to realize seabed sediment
and suspended sediment testing [16,28]. The main control circuit is shown in Figure 9a and
the distributed circuit encased in the testing probe is shown in Figure 9b.

Figure 9. Actual instrument: main control circuit (a); distributed circuit (b).

5. Discussion

The newly designed HESD for distributed ERT instrument saves hardware expen-
diture through the elaborate structure design in hardware, although the software that
controls HESD needs to be changed accordingly, which is rather simple. If the total number
of electrodes is less than eight, using the HESD is not recommended since will change both
the software and hardware design. In the future, using other kinds of switches with new
ideas, further research about more economic structures may be possible.

6. Conclusions

The article aimed to solve the hardware expenditure problem. Based on analyzing the
pre-existing switching devices, a novelty electrode switching device HESD was developed
for a distributed ERT instrument. It employs a new design style completely different from
the conventional one. It uses a hierarchical structure in which the connections between
electrodes and AMNB ports are not conducted directly, but instead it employs the four
lines of L1–L4 as intermediates. The integrated HESD is composed of Series K, Series D,
Series J and Series A switches, which belong to two layers: SS1 and SS2. In this article, the
whole design is divided into three parts: SS1, SS2-1 and SS2-2.

First is the SS1 structure or first layer design. Series K belongs to SS1. With 16 switches,
they can connect AMNB to any combination of L1–L4. Other series all belong to SS2,
which achieve the links between L1–L4 and four testing electrodes. The SS2 is divided into
two stages.
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Then there is the SS2-1 design. SS2-1 contains four switches of Series D for a four-
electrode cell, which takes one electrode to one line. Applying SS1 and the first stage of SS2,
HESD-O easily facilitated the electrode connection for the 1D profile test or odd layer’s
test. This could save up to three fourths the number of switches and related expenditure,
including related hardware, power, and volume. It is especially beneficial in-situ tests and
portable instruments.

The third part is SS2-2. SS2-2 fixes the L1L3 problem, L2L4 problem, and one-line
problem, and possesses a complex frame. Furthermore, applying the entire plan of HESD-
A, all layers’ 2D ERT tests can be settled, which also saves one fourth the number of
switches. A saved hardware plan for the ESD design is provided in the article. The two
designs of HESD, HESD-O and HESD-A, are suitable for different demands, respectively.
Although they may bring new software designs, they significantly save on hardware
expenditure and are more miniature, especially for multi-electrodes, e.g., several dozen or
more single-channel ERT systems.

7. Patents

There are patents resulting from the work reported in this manuscript.
Xin Xia. An electrode switching device (ESD) suitable for a kind of layered electrical

resistivity tomography (ERT): China, CN201510585837.1 [P], 2016-05-18.
Xin Xia. Electrode switching device (ESD) for distributed cycling electrical resistivity

tomography (ERT): China, CN201120276534.9[P]. 2012-4-4.
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