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Abstract: Mankind has long been fascinated by emergence in complex systems. With the rapidly
accumulating big data in almost every branch of science, engineering, and society, a golden age for
the study of complex systems and emergence has arisen. Among the many values of big data are
to detect changes in system dynamics and to help science to extend its reach, and most desirably,
to possibly uncover new fundamental laws. Unfortunately, these goals are hard to achieve using
black-box machine-learning based approaches for big data analysis. Especially, when systems
are not functioning properly, their dynamics must be highly nonlinear, and as long as abnormal
behaviors occur rarely, relevant data for abnormal behaviors cannot be expected to be abundant
enough to be adequately tackled by machine-learning based approaches. To better cope with these
situations, we advocate to synergistically use mainstream machine learning based approaches and
multiscale approaches from complexity science. The latter are very useful for finding key parameters
characterizing the evolution of a dynamical system, including malfunctioning of the system. One
of the many uses of such parameters is to design simpler but more accurate unsupervised machine
learning schemes. To illustrate the ideas, we will first provide a tutorial introduction to complex
systems and emergence, then we present two multiscale approaches. One is based on adaptive
filtering, which is excellent at trend analysis, noise reduction, and (multi)fractal analysis. The
other originates from chaos theory and can unify the major complexity measures that have been
developed in recent decades. To make the ideas and methods better accessed by a wider audience,
the paper is designed as a tutorial survey, emphasizing the connections among the different concepts
from complexity science. Many original discussions, arguments, and results pertinent to real-world
applications are also presented so that readers can be best stimulated to apply and further develop the
ideas and methods covered in the article to solve their own problems. This article is purported both as
a tutorial and a survey. It can be used as course material, including summer extensive training courses.
When the material is used for teaching purposes, it will be beneficial to motivate students to have
hands-on experiences with the many methods discussed in the paper. Instructors as well as readers
interested in the computer analysis programs are welcome to contact the corresponding author.

Keywords: complexity; emergence; chaos; fractal; power-law; multiscale analysis; social complexity

1. Introduction

The ever increasing amount of big data in science, engineering, and society, includ-
ing meteorological, hydrological, ecological, environmental, as well as various kinds of
biomedical, manufacturing, e-commerce, and government management data, has fueled
enormous optimism among researchers, entrepreneurs, government officials, the media,
and the general public [1,2]. It is now hoped that by recording and analyzing the errors
of all the components of a sophisticated machine, one can quickly diagnose and then
fix its malfunctioning. When one is sick, one hopes that in the near future, with all the
increasingly detailed data about oneself, including genomic, cellular, clinical, psychological,
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and environmental data, one may promptly get optimized treatment. One also hopes to
identify the most promising stocks by collecting and analyzing all the relevant economic
data and then investing on them.

Such optimism is not entirely unfounded, as big data indeed has brought some
pleasant surprises to science and society. For example, a good online shopping system
can quickly and fairly accurately infer what an online shopper is looking for by analyzing
the shopper’s online behavior in real time. By analyzing the tweets about major natural
disasters, key information of disasters can be accurately obtained [3]. Google Flu Trends
did an impressive job in predicting the 2008 influenza [4].

While the big data showcase does not stop at the above successful examples, it is
important that one is not carried away by those successes. In fact, many more not so
successful cases also exist. For example, right after 2008, Google Flu Trends over-predicted
influenza outbreaks, and by 2012, the error was by as much as a factor of two [5], which
then prompted Google to give up the predictor. The box office price of the film “Golden
Times”, which was first released in China during the National Holiday, 1 October 2014,
was only slightly more than 40 million, while Baidu, the leading Chinese web services
company, predicted it to be about 200–230 million. The poor prediction by Baidu made a
reviewer of the film to lament that big data may not be dependable [6]. Of course, we have
to add the failed prediction of the Trump presidency in 2016 by many predictors, whose
implications to the Americas, and even the world’s politics, are almost unfathomable.

Among the most important values of big data analysis are to detect changes in system
dynamics (e.g., detect and understand abnormal behaviors ) and to help science to extend
its reach (and most desirably, to possibly uncover new fundamental laws). This includes
timely diagnosis and treatment of various kinds of diseases in health care, proper predic-
tion of regime changes in weather and climate patterns, timely forewarning of natural
disasters, and timely detection and fixing of malfunctioning of various kinds of devices,
infrastructure, and software in the field of operation and maintenance [7–10], among many
others. Understandably, abnormal behaviors cannot be expected to occur frequently, and
thus the relevant data may not be so abundant that direct application of machine-learning
based approaches will always be very rewarding. In those situations, the systems often gen-
erate data with complex characteristics including long-range spatial–temporal correlations,
extreme variations (sometimes caused by small disturbances), time-varying mean and
variance, and multiscale analysis (i.e., different behavior depending on the scales at which
the data are examined). Such situations have been increasingly manifesting themselves
in science, engineering, and society. To adequately cope with these situations, it is often
beneficial to resort to complexity science to analyze the relevant data. In fact, when dealing
with such highly challenging situations, many analyses using machine-learning based
approaches may be considered pre-processing of the data or the first step that can facilitate
further application of complexity-based approaches, or as post-processing of the features
obtained through multiscale analysis. An excellent article along this line (more precisely,
study of segmental organization of the human genome by combining complexity with
machine learning approaches) has recently been reported by Karakatsanis et al. [11]. In
short, the complex behaviors in nature, science, engineering, and society must be infinite.
To help one to peek into the infinity of the complex behaviors, going beyond statistical
analysis and machine-learning by resorting to the type of mathematics that embodies an
element of infinity will often be beneficial.

At this point, it is important to pause for a moment to discuss a peculiar phenomenon:
while many consider complexity science to be very useful, some others doubt its relevance
to reality. Why is this so? The basic reason is that in complexity research, conceptual
thinking, simulational study, and applications have not been well connected. For example,
Science magazine dedicated the April 1999 issue to Complex Systems. A number of leading
experts in their respective fields, including chemistry, physics, economics, ecology, and
biology, expressed their views on the relevance/importance of complexity science in their
fields. While the special issue is influential in making some concepts of complex systems
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known to a wider research community and even the general public, it does little in teaching
readers how to solve real-world problems. This may have contributed to the waning of
enthusiasm in complexity science research in the subsequent years, as most readers cannot
see how complexity science can help solve their problems. Fortunately, the tide appears
to have been reversed (please see recent reviews on complexity theory and leadership
practice [12] and health [13]).

The purpose of this article is to convey how the many concepts in complexity science
can be effectively applied to help one formulate stimulating problems pertinent to the
data and the underlying system. We will particularly focus on multiscale approaches.
They are the key to find scaling laws from the data. With the scaling laws, we can then
find defining parameters/properties of the data and eliminate spurious causal relations
in the data. The latter can help to shed some light on a new generation of AI, which is
based on correlation/causality rather than pure probabilistic thinking [14]. To better serve
our goal, we will discuss various kinds of applications right after a concept/method is
introduced. Our goal here is to fully arouse readers’ interest in the materials covered, and
to equip them with a set of widely applicable concepts and methods to help solve their
own interesting problems.

2. Basics of Complex Systems and Emergence
2.1. Complex Systems and Emergence: Working Definitions

To better understand which systems can be considered complex, we first explain
how complexity is quantified. There are two major types of measures. One is called
Deterministic complexity, which increases with the degree of randomness. See Figure 1
(left). Widely used measures in this category include Shannon entropy [15], Kolmogorov–
Sinai (KS) entropy [16,17], Kolmogorov–Chaitin complexity [18–20], and the Lempel–Ziv
(LZ) complexity [21]. The other is called Structural complexity. Here, the measure attains a
maximal value for an intermediate level of randomness. See Figure 1 (right).

Figure 1. Deterministic vs. structural complexity.

Let us now examine the main features of a complex system. It is often thought that a
complex system must consist of many interconnecting components or parts. The individual
components together with their dynamics could be quite simple. The system as a whole,
however, must exhibit complex dynamics. Note that with this view, a pendulum with
chaotic behavior is no longer considered a complex system. In addition, note that some
researchers (e.g., Kastens et al. [22]) advocate to assign a complex system with many more
quantifiable features, such as feedback loops, multiple inputs and multiple outputs, non-
Gaussian distributions of the outputs, nonlinear interactions, multiple stable states, fractal
and chaotic behaviors, self-organized criticality, hierarchy, and so on. Our view is that
it is extremely rare for a single system to simultaneously possess so many distinguished
properties at the same time. Therefore, simpler definitions that give more room and
freedom to think and work could be more beneficial.

Complex systems often defy pure statistical analysis. To illustrate the idea, let us
discuss an author (JB)’s personal experience. JB worked at Guangxi University in Nanning
for a few years. The campus was full of natural wonders, with flowers blossoming and
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many kinds of tropical and subtropical fruits dangling on trees all year long. Thus, JB and
many of his friends truly enjoyed the campus. Approximately 100,000 people, including
University employees and students, lived on campus. JB used to buy vegetables and meat
at a farmer’s market in the east campus of the University. Although the farmer’s market
was a bit shabby, it was in a convenient location and was visited by a lot of customers
everyday. In the market, there was a pork meat seller who normally would sell out all
the meat within 2.5 h before 11 am in the morning. Around October 2017, the market was
relocated to a new place about 7 min walk from the original site. Surprisingly, the number
of customers to the market dropped considerably. As a result, the pork meat seller would
still be selling meat around 1–2 pm. After that, the seller had to take the meat to some
fast food restaurants, as otherwise the pork, not refrigerated, would become spoiled and
smelly. Surely, quite a few fruit and vegetable sellers eventually gave up. Such dramatic
drop in customer number is very difficult to predict with statistical models, however
sophisticated they are. One can readily see that to truly understand the phenomenon,
one has to systematically analyze the dynamics of the customer behavior by considering
diverse factors such as the variety, cost, and freshness of food; convenience of the market;
competitors of the market; and customer psychology.

Next, let us consider emergence in complex systems. Emergence is a bulk property
of the system involving many of the interacting components of the system [23,24]. As a
result, its scale usually is much larger than that of the individual component. Outstanding
examples of emergence include the spiral galaxy [25], the great red spot of Jupiter [26], hur-
ricanes, tornadoes, phase transitions and critical phenomena [27], bird flocking [28,29], fish
schooling [30–33], sand dunes [34], mass parades or protests, and bursts of anger (where
many neurons in certain regions of the brain fire synchronously). Less frequently men-
tioned examples of emergence that are of tremendous significance to our society include
the many innovations in technology, including Internet-enabled platform economy, where
large numbers of sellers and buyers interact and transact through the platform. Among the
important and fascinating questions concerning such platform-enabled emergent behaviors
are to identify the conditions under which such services will become attractive and widely
adopted, and to quantify the generic statistical properties underlying such services.

Often it is thought that for a system to exhibit an emergent behavior, it must have a
hierarchical structure. This thinking is, however, not quite consistent with the fact that
simple models with local interaction rules may simulate certain emergent behaviors quite
well, including bird flocking and fish schooling [28–33].

We now consider Complex giant systems, a notion that has been widely discussed in
many fields in China, including physics, mathematics, philosophy, and humanities. As fluid
motions including turbulence are considered not to belong to such systems, social systems
become the prototypical model here. While a big social system is certainly a giant system,
as it contains so many individuals and their interactions, it is not necessarily a complex
system. For example, in an autocratic state where governance is strictly hierarchical, from
top to bottom, and all means of feedback, such as election, parade protests, and so on, are
prohibited, the social dynamics of a specific layer are only directionally connected to its
nearest upper and lower layers (driven and driving, respectively). This is the consequence
of lacking a persistent negative feedback loop in the society. As a result, the complexities
of such societies cannot be considered very high, as those societies do not possess well-
developed dynamics that have to be enabled by feedback loops. In particular, they lack
many emergent behaviors that a democratic society has, such as parade protests instigated
by explosions in public opinion.

In the study of complex systems, different researchers may have different emphasis [35,36].
One school focuses on the mathematics and mechanics of complex systems. Here, one
is mainly concerned about rigorous mathematical analysis of the system under study,
most desirably starting from fundamental governing equations of the system, and using
mechanics (quantum, classical, and statistical) to analyze the system. While in principle
a living organism (e.g., the human body) may be modeled by a large set of differential
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equations with a lot of controlling parameters, with the values of the parameters indicating
healthy or diseased states, this may not be achieved in the near future. To better exploit
the unprecedented opportunities provided by the explosion of data in all areas of science,
technology, and society, in this article we adopt a data-driven approach to study complex
systems. Among the many techniques to analyze data is distribution analysis. As the
power law is a distribution with many interesting properties that are not shared by most
commonly used distributions in conventional statistical analysis, in the next subsection we
will discuss the power law and the related heavy-tailed distributions.

2.2. Power Law and Heavy-Tailed Distributions

In contrast to Gaussian, exponential, and other thin-tailed distributions that have a
well-defined scale, a power law distribution does not have a scale. It has been observed in
various kinds of physical, biological, technological, and and social systems. Well-known
examples include the distribution of word frequency, web hits, citations of scientific papers,
telephone calls, copies of books sold, diameter of moon craters, intensity of solar flares,
intensity of wars, magnitude of earthquakes, wealth of the richest people, and population
of cities [37].

A power law distribution can be expressed by its probability density function (PDF) [38]

f (x) ∼ x−α−1, x → ∞, (1)

or equivalently by the complementary cumulative distribution function (CCDF) [38]

P[X ≥ x] ∼ x−α, x → ∞. (2)

Notice here the emphasis that x → ∞. An interesting property of the power law distribution
is that for a given α, its moments with order higher than α do not exist. Therefore, when
0 < α < 2, the variance and all moments higher than the second order do not exist, and
when 0 < α ≤ 1, even the mean is infinite. When the power law relation extends to the
entire range of the allowable x, we have the Pareto distribution [39]:

P[X ≥ x] =
( b

x

)α
, x ≥ b > 0, α > 0, (3)

Here, α is the shape parameter, and b the location parameter. In the discrete case, the
Pareto distribution is called the Zipf distribution, which provides an excellent description
between the frequency of any word in a corpus of natural language and its rank in the
frequency table.

Somewhat related to the Zipf distribution is another distribution called Benford’s
law [40], which is about the probability of occurrence of leading digits d ∈ {1, 2, · · · , 9},

P(d) = log10(d + 1)− log10(d) = log10

(
1 +

1
d

)
(4)

A good mechanism for explaining the uneven distributions stipulated by Benford’s law
has been proposed in [41].

Benford’s law has been used for evaluating possible fraud in accounting data [42],
legal status [43], election data [44–46], macroeconomic data [47], price data [48], etc. From
Equation (4), we observe that beyond the small digits, the probability approximately
approaches the Zipf distribution with α = 1,

P(d) = log10

(
1 +

1
d

)
∼ d−1/ ln(10), d = 3, 4, · · · , 9 (5)

2.2.1. Pareto Principle or the 80/20 Rule

The 80/20 rule or the Pareto principle was first put foreword by the Italian economist
Vilfredo Pareto in 1896: approximately 80% of the land in Italy was owned by 20% of the
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population. The rule later more generally applies, as approximately 80% of the wealth in a
society is owned by 20% of the population. It can be derived from the Pareto distribution
with a specific parameter α. To see this, we can demonstrate as follows.

Suppose in a society the number of people with wealth at least x follows a power law:

N(X ≥ x) = Ax−α (6)

where A is some coefficient. If the minimal wealth of a person is x0, then the total number
of people in the society can be denoted as N(X ≥ xo), and

N(X ≥ x0) = Ax−α
0 (7)

Their ratio gives the percentage of rich people with wealth at least x and is equal to( x
x0

)−α
(8)

The proability density function for a person to have wealth of x is

f (x) = αx−α−1 (9)

Thus, the society’s total wealth is ∫ ∞

x0

αx−α−1xdx (10)

and the total wealth of rich people with at least wealth x is given by∫ ∞

x
αx−α−1xdx (11)

Note these two integrals are from x0 to ∞ and x to ∞, respectively. The ratio between
the latter and the former is given by ( x

x0

)1−α
(12)

Solving for α by letting the ratios given by Equations (8) and (12) to be 0.2 and 0.8,
respectively, we find

α = ln 5/ ln 4 ≈ 1.16 (13)

As a non-wealthy person might not be in a good mood or even become cynical when
hearing about the 80/20 rule, it is good to be reminded of one of two insights offered by
Will Durant and Ariel Durant, the famed authors of the prominent history book The Story
of Civilization: “For in modern states the men who can manage men manage the men who
can manage only things; and the men who can manage money manage all [49]. . . . As
everywhere, the majority of abilities was contained in a minority of men, and led to a
concentration of wealth” [50] The lesson here is that whatever one does, if one does not
want to be one of the 80% of the people, then one cannot be a follower; instead, one has
to strive to do new things, as only in those situations, can one have 80% rewards with
20% efforts.

2.2.2. Simulation and Parameter Estimation

To simulate a Pareto distributed random variable U, we can associate U with an
outcome of a random experiment. The same outcome may also be represented by the
value of another random variable X. The probability of an event of the experiment is then
either dFU(u) = fU(u)du or dFX(x) = fX(x)dx, where FU(u) and FX(x) are the cumulative
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distribution functions (CDFs) for the U and X, while fU(u) and fX(x) are the PDFs. Then
we have ∫ X

a
dFX(x) =

∫ U

0
du. (14)

Since FX(x) is monotonically nondecreasing, its inverse function exists. We then have

X = F−1
X (U). (15)

Now suppose U is a uniform [0, 1] random variable, while X is a Pareto random
variable, then

X = bU−
1
α . (16)

The most important parameter of the Pareto distribution is the exponent α. To estimate
it, we only need to notice that ln P[X ≥ x] vs. ln x is a linear function, with the slope being
−α. When estimating α from a finite set of data points, it is important to first take the
logarithm of x, then estimate the CCDF for ln x, and finally check if the logarithm of CCDF
has a linear relation with ln x. If one straightforwardly estimates a PDF or CCDF for
the original data, then take log-log of both axes to estimate α, one will often get a very
inaccurate or even wrong estimation. The reason is many of the small intervals used for
counting the number of data points x falling within them will be empty.

2.2.3. Reasons Why the Power Law Is Favored in Modeling

Two reasons make the power law extremely important in complexity science. One
reason is that it embodies the notion of self-similarity, and thus is the natural mathematical
tool for describing fractal phenomena. The other reason is that it often signifies great risk,
due to infinite variance or even mean. To understand the first reason, imagine a large room
with a lot of balls flying around. See Figure 2.

Figure 2. Pareto-distributed balls, where α = 1.8.

Assume the size of the balls follows a power law distribution,

p(r) ∼ r−α. (17)

When we observe the balls with our naked eyes, we normally will only pay more
attention to the balls of certain size ranges—large balls will block our vision, and very
small balls cannot be seen. Now assume that our eyes are comfortable with the scales r0,
2r0, r0/2, etc. Our perception is determined by the relevant abundance or the ratio of the
balls of sizes 2r0, r0, and r0/2:

p(2r0)/p(r0) = p(r0)/p(r0/2) = 2−α. (18)



Appl. Sci. 2021, 11, 5736 8 of 62

It is independent of r0. Now suppose we view the balls through a microscope with
a magnifying power of 100, so now our eyes will be focusing on the balls with scales
2r0/100, r0/100, r0/200, etc. The ratio of the balls on those scales will again be independent
of the scale r0/100. A perception independent of the scale is the essence of self-similarity.

The second reason that the power law is associated with higher risks is easier to
understand, since a power law distribution has infinite variance when 0 < α < 2 and even
infinite mean when 0 < α ≤ 1. Here, on one hand, one has to have some awe with the
power law, as otherwise the cost could be tremendous. For example, during financial crises
or economic downturns, the loss of the listed companies follows a power law distribution
that is even heavier than the distribution of the gains of all profitable companies [51,52].
As further examples, the size of forest fires and volcanic eruptions also follow power
law distributions (see Figures 3 and 4), which has obvious implications for fire fighting
or observation of volcanoes—going too close to the sites could easily lead to casualties.
However, on the other hand, one also has to be mindful that having infinite variance
or mean is not always associated with the severity of natural disasters. An important
counterexample is flooding, as it has been found that stream flow of rivers in dry seasons
(especially in desert areas) is better described by power law distributions, while that in
wet seasons is better described by log-normal distributions [53]. In deserts, surely flooding
does not constitute a major risk.

5 5.5 6
log

10
(A)

-2.5

-2

-1.5

-1

-0.5

0

lo
g 10

P
(A

 
 a

)

1
 = -1.576

2
 = -3.796

(a) USA

0 2 4 6
log

10
(A)

-2.5

-2

-1.5

-1

-0.5

0
lo

g 10
P

(A
 

 a
)

2
 = -1.03

(b) China

Figure 3. Complementary cumulative distribution function (CCDF) for the forest fires in USA and
China, where the size of a fire is measured by its area A. The data for USA are the sizes of individual
fires from 1997 to 2018, while those for China are the total annual size of forest fires in the 30 provinces
from 1998 to 2017.
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2.2.4. Mechanisms for Power Laws

The prevalence of power laws calls for development of models to explain the mecha-
nism. Various models have been proposed, including Tsallis non-extensive statistics [55–57].
For a systematic discussion, we refer to Chapter 11 of [38]. Here, we note two of them,
which appear to be relevant to many different scenarios and thus may better stimulate
readers to readily find mechanisms when they find power laws from their data. One model
is related to spatial heterogeneity and resource allocation (or availability). It is provided by
the model that superposition of exponential distributions with different parameters can
give rise to power law distributions. The other reflects the underlying local dynamics of
the problem to some degree, and thus is in some sense more thought-provoking. The most
well-known example of this class is perhaps the scale-free power law network model [58].
Another example is related to social segregation and crimes in a society: distributions of
the ratio between sex offenders and the total population in the states of Ohio and New
York in the USA follow power laws, as shown in Figure 5 [59]. While intuitively this must
be driven by crimes (more concretely, sexual offenses) and instigated by laws preventing
crimes, so far, however, a concrete model is still lacking. Such a model is surely worth
developing in the future.

−5 −4 −3 −2 −1

−3

−2

−1

0

α=1.87

(a) Ohio

log
10

 r

lo
g 10

P
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 ≥
 r
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−1

0

α=1.70

(b) New York

log
10

 r

Figure 5. Distribution for the ratio between sex offenders and the total population in (a) Ohio and
(b) New York (adapted from [59]).

2.3. Essentials of Chaos Theory

Many readers can easily recall observing a sinusoidal signal with an oscilloscope.
Assume we are examining some production line through monitoring of some signal. An
aperiodic, highly irregular time series pops up. Is the signal simply some kind of noise?
Very unlikely, since our system is deterministic. Can a seemingly random signal come from
a deterministic system which can be described by only a few variables instead of a random
system with infinite numbers of degrees of freedom? Yes, a chaotic system can do that! Not
only so, many universal behaviors behind chaos have been uncovered. These findings have
fundamental, far-reaching implications in science and engineering, and thus chaos theory,
relativity, and quantum mechanics are considered the three most revolutionary scientific
theories of the twentieth century.

To facilitate understanding of the essentials of chaos theory, in this section, we first ex-
plain the notion of phase space and transformation, then we present the basic properties of
chaos. To satisfy curious minds, we will also give a flavor of analytical thinking. Finally, we
explain how to reconstruct a proper phase space from a single variable (scalar time series)
and estimate the few basic metrics (called invariants) that characterize a chaotic system.

2.3.1. Phase Space and Transformation

Phase space is the arena for the evolution of a dynamical system to unfold. It is
spanned by all the variables needed to fully characterize the evolution of the system. To
help one to better understand the idea, let us start from a system characterized by only
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two state variables, X1 and X2. Monitoring the system often amounts to examining the
waveforms of X1(t) and X2(t). One may instead try to examine the trajectory defined
by (X1(t), X2(t)), where t now is treated as an implicit parameter. The space spanned by
X1 and X2 is the phase space (or state space) we are discussing. They could be position
and velocity, for example. Employing phase space facilitates one to study the dynamics
of a complicated system with a geometrical viewpoint. For some dynamical systems,
irrespective of initial conditions, the trajectory eventually approaches a single point; this
is called a globally stable fixed point solution. Of course, the situation could be more
complicated. For example, the trajectory may converge to a closed loop, again irrespective
of where the trajectory starts. This is called a globally stable limit cycle. The discrete counter
part of a limit cycle is a periodic motion with certain period (say N): the corresponding
attractor consists of N points, and the trajectory amounts to hopping among the N points
with a definite order.

To be more familiar with the concept of phase space, it is useful to examine certain
experience in daily life. To illustrate the idea, suppose we were going to a meeting by a
taxi. On our way, there was a traffic jam, and the taxi got stuck. Afraid of being late, we
decided to call the organizer. How would we describe our situation? Usually, we would
tell the organizer where we got stuck and how quickly or slowly the taxi was moving.
In other words, we actually have been using the concept of phase space as part of our
daily language.

Although the concept of phase space is among the most basic in dynamical systems
theory, its usefulness in geographical science has yet to be seriously explored [60]. To
accelerate the coming of a time that phase space becomes as basic in geographical science
as in complexity science, it is helpful to discuss two potential applications of phase space
in geographical science. One application is top-down, that is, to systematically think
about how many independent variables are needed to fully characterize an interesting and
important problem in geographical science, and how each variable can be measured. The
other application is bottom-up. It is easiest to illustrate the idea by using some variables in
the World Value Survey (WVS, accessed on 17 April 2021, http://www.worldvaluessurvey.
org/wvs.jsp) as an example. WVS is an interesting project that explores values and beliefs of
people around the globe, how the values and beliefs evolve with time, and what social and
political implications they may have. Since 1981, researchers have conducted representative
national surveys in almost 100 countries. During the survey, a lot of variables have been
deduced. We show here that phase space offers a convenient geometrical way to visualize
the data and identify co-variations of the variables. For this purpose, we choose a variable
that gives three levels of religious participation for people in the nations surveyed. The
other variable we choose is happiness, which is given in four levels. How are the two
variables related? How different are people in different countries in terms of these two
variables? To gain insights into these interesting questions, we can form a phase space
spanned by these two variables. The format of the survey data determines that people
surveyed in a nation will belong to one of the 12 different categories. To fully utilize
the notion of space, we can associate each category with a box. Instead of putting every
person belonging to that category at one single point (e.g., the center of the box), we can
generate two uniformly distributed random variables as the coordinate of the person in
the corresponding box. Please see Figure 6. With such a visualization, one can immediately
see the abundance of each category. When WVS data of different waves (times) are used,
one can then examine variation of the percentage of people in each category over time
for a nation, compare among different nations, deduce functional relationships between
these two variables, and classify nations in the world into different clusters. Note Figure 6
may be called phase space ensemble based visualization, where an ensemble amounts to a
participant in the survey.

http://www.worldvaluessurvey.org/wvs.jsp
http://www.worldvaluessurvey.org/wvs.jsp
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Figure 6. Phase space diagram of religious participation vs. happiness for the USA based on wave 7 of the World Value
Survey Data.

Next, let us consider transformations in phase space. A good way to grasp the idea is
to imagine the following situation: on a very weedy day, a little boy went outside with a
sheet of paper in his hand. He grabbed a handful of sand and put it on the paper. Then
he released the paper in the air. How would the sand be swept across the sky? One could
even think that originally the boy had arranged the sand to resemble the face of a person.
How would the face be twisted by the wind? To make this discussion more concrete, we
can consider how a unit circle is transformed by the Henon map [61]:

xn+1 = 1− ax2
n + yn,

yn+1 = bxn, (19)

where a = 1.4, b = 0.3. Figure 7 shows the successive (from left to right and top to bottom)
images of the unit circle after n = 1, · · · , 5 iterations. Note that the fifth image is basically
the Henon attractor one can find in textbooks, journal papers, or certain web sites. It is
usually obtained by choosing an arbitrary initial condition and iterate the Henon map long
enough. If the trajectory does not diverge, then after removing the transient points (which
are the first few points here), the remaining trajectory (not connected by lines) will be very
similar to the fifth image shown here. In our ensemble scenario, we observe that just after
one iteration, the unit circle is already changed to a very different shape, and by the fourth
iteration, the shape of the image is already very similar to the Henon attractor. By now,
one could easily understand that the Henon attractor can either be readily obtained from
an arbitrarily shaped phase space region (discarding initial conditions which lead to the
divergence of the iterations) or by iterating a single arbitrary initial condition many times.
The equivalence of the two approaches, one based on the evolution of ensembles in the
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phase space, the other based on long-time iterations, is a clear manifestation of the ergodic
property of the Henon map (and more generally, chaotic systems).
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Figure 7. Successive transformation of a unit circle by the Henon map. The unit circle is represented
by 36,000 points with equal arc spacing. These points are then taken as initial conditions for the
Henon map. Successive (i = 1, 2, . . . , 5) images of the unit circle (discarding initial conditions which
lead to divergence of the iterations) are shown from left to right and top to bottom in the figure.

To enhance our understanding of the materials discussed so far, let us visually observe
how chaos manifests itself in the chaotic Lorenz system:

dx/dt = −16(x− y),
dy/dt = −xz + 45.92x− y,
dz/dt = xy− 4z.

(20)

For this purpose, let us arbitrarily choose an initial condition, (−17.3432, −24.5966,
40.1096), perturb it 2500 times using standard Gaussian random variables with very small
variance, and monitor the evolution of all those points. These initial conditions are shown
in Figure 8 as a magenta block centered at our chosen initial condition. After 2 units of
time, these initial conditions spread to the points labeled as red in the Figure. After another
2 units of time, the red points further evolve to the points labeled as green. Two more
units of time later, the green points become the blue points. By that time, the shape of the
points already resembles the chaotic Lorenz attractor we usually see in books, papers, and
on the Internet.
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Figure 8. Evolution of point clouds in the chaotic Lorenz system: magenta, red, green, and blue
correspond to t = 0, 2, 4, 6, respectively.

2.3.2. Defining Properties of Chaotic Systems

The most important property of chaos is sensitive dependence on initial conditions.
It means that a very small difference in the initial condition may lead to a completely
different trajectory. To appreciate this property, one may imagine a butterfly flapping its
wings sometime on a day in the Amazon rain forest. This contributes to a minor change in
the global air currents. If the motion on that day is chaotic, then sunny weather in some
city, say Ney York, could have been replaced by a rainy weather not long after the flapping
of the butterfly’s wings. One may contrast this feature with a the traditional view, largely
drawn from the study of linear systems, that small disturbances only produce proportional
effects. Under the latter scenario, in order for the motion of the system to be random, the
number of degrees of freedom has to be infinite.

Being the most important property of chaos, sensitive dependence on initial conditions
has to be quantified. This is achieved by equating this property with an exponential
divergence of nearby trajectories in the phase space. Let d(0) be the small distance between
two arbitrary trajectories at time 0, and let d(t) be the distance between them at time t.
Then, for true low-dimensional deterministic chaos, we have

d(t) ∼ d(0)eλ1t (21)

where λ1 is called the largest positive Lyapunov exponent. This property of sensitive
dependence on initial conditions of chaos can be conveniently illustrated by the chaotic
Logistic map:

xn+1 = µxn(1− xn), (22)

where µ = 4. We can generate, for example, 100 initial conditions by using uniformly
distributed random numbers, and iterate the Logistic map to get 100 trajectories. We
then perturb each of the initial conditions by a small error of 10−4 and regenerate the
100 trajectories. The evolution of the errors between the original and the perturbed tra-
jectories is shown in Figure 9. Clearly we observe that the logarithm of the errors first
increases with time linearly to about a time of n = 25, then is saturated. Linear growth in a
logarithmic scale amounts to exponential growth. By visual inspection, we can identify
that λ1 here is close to 0.7 (more precisely, ln 2, which will be explained shortly). That
errors very soon saturate is due to the fact that x defined by the logistic map is in the unit
internal, as is the absolute value of the errors.
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Figure 9. Error growth in the logistic map.

The largest positive Lyapunov exponent for the Henon map and the chaotic Lorenz
system we discussed in Section 2.3.1 can also be conveniently computed based on time
series data. This will be discussed shortly.

The trajectories of a chaotic attractor are bounded in the phase space. This is another
fundamental property of the chaotic attractor. The ceaseless stretching due to exponential
divergence of nearby trajectories, and folding from time to time due to boundedness of the
attractor, make the chaotic attractor a fractal, characterized by

N(ε) ∼ ε−D, ε→ 0 , (23)

where N(ε) represents the (minimal) number of boxes, with linear length not larger than ε,
needed to completely cover the attractor in the phase space. D is called the box-counting
dimension of the attractor. Typically, it is a nonintegral number. For the chaotic Henon and
Lorenz attractor, D is 1.2 and 2.05, respectively.

2.3.3. A Taste of Analysis

In order to better understand the key concept of chaotic dynamics, the sensitive
dependence on initial conditions, let us engage in some analytic analysis. In practice, if one
can identify from the problem a transformation similar to the following map, then one can
be more than excited,

xn+1 = 2xn mod 1, (24)

This is a map on the unit interval, where x is positive, and mod 1 means that only the
fractional part of 2xn is retained as xn+1. The map can also be written as

xn+1 =

{
2xn, 0 ≤ xn < 1/2
2xn − 1, 1/2 ≤ xn < 1,

(25)

This map in fact acts as a Bernoulli shift [62], or binary shift, since if we represent an
initial condition x0 in binary form

x0 = 0.a1a2a3 · · · =
∞

∑
j=1

2−jaj, (26)

then
x1 = 0.a2a3a4 · · · ,

x2 = 0.a3a4a5 · · · ,

and so on, where each of the digits aj is either 1 or 0. Now it is clear that when x0 is a
rational number, the trajectory is periodic. In fact, we can easily find cycles of any length.
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For example, if x0 is a 3-bit repeating sequence, such as x0 = 0.001001001 · · · , then the
trajectory is periodic with period 3. Since there are infinitely more irrational numbers than
rational numbers in [0, 1), an arbitrary initial condition x0 will be an irrational number
with probability 1, and will almost surely generate an aperiodic, chaotic trajectory. Since
after each iteration the map shifts one bit, a digit that is initially very unimportant, say
the 80th digit (corresponding to 2−80 ≈ 10−24), becomes the first and the most important
digit after 80 iterations. This is a vivid example that a small change in the initial condition
makes a profound change in xn. Clearly, the largest Lyapunov exponent λ1 here is ln 2.

Next, let us re-consider the logistic map with µ = 4. If we make a transformation,

xn = sin2(2πyn) (27)

then the logistic map becomes the Bernoulli shift map discussed above. Therefore, the largest
Lyapunov exponent λ1 for the logistic map with µ = 4 is also ln 2, as we already mentioned.

Now that we have gained some understanding by considering simple model systems,
we can discuss how to characterize general chaotic systems. For a chaotic dynamical
system with dimensions higher than 1, first we need to realize that exponential divergence
can occur in more than one direction, and possibly in many directions. That means we
have multiple positive Lyapunov exponents. We denote them by λ+, among them, the
largest one is usually denoted as λ1. How are these Lyapunov exponents related to
the rate of creation of new information, or in other words, loss of prior knowledge, in
the system? To find the answer, we may partition the phase space into boxes of size ε,
compute the probability pi that the trajectory visits box i, and finally calculate the Shannon
entropy I = −∑ pi ln pi. For many systems, when ε→ 0, information increases with time
linearly [63]

I(ε, t) = I0 + Kt (28)

Here, I0 is the initial entropy, and K is the celebrated Kolmogorov–Sinai (K-S)
entropy [16,17]. Now let us consider the situation that all the initial conditions of the
system are confined in a small region in the phase space. In this case, the initial probability
in the chosen small region is 1, and 0 in all other regions. Therefore, I0 = 0. For a chaotic
system, because of the exponential divergence, the number of phase space regions visited
by the system after a time of T is N ∝ e(∑ λ+)T , where λ+ are the positive Lyapunov expo-
nents we have already explained. If all these regions are visited by the trajectories with
equal probability, then pi(T) ∼ 1/N, and the information function becomes

I(T) = −
N

∑
i=1

pi(T) ln pi(T) = (∑ λ+)T (29)

We thus have K = ∑ λ+. In general, if these phase space regions are not visited equally
likely, then

K ≤∑ λ+ (30)

Grassberger and Procaccia suggest that equality usually holds [64].

2.3.4. Bifurcations, Routes to Chaos, and Universality

In practice, whenever one has a dynamical system model described by discrete maps
or differential equations, then the first thing one needs to consider is if the model has
a unique fixed point solution, and if yes, if the solution is locally or globally stable. If
the model contains some controlling parameter(s), then one also has to consider if the
qualitative feature of the solution changes with the parameter(s), and if yes, find out what
kind of changes they are. One can also think if any features of the system are shared by
systems in other fields. The last point is the universality issue. These considerations make
it clear that studies of bifurcations, routes to chaos, and universality are of fundamental
importance to the study of dynamical systems.
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Fixed point solutions are one of the the limiting behaviors of dynamical systems. It
turns out the limiting behaviors of dynamical systems are very rich. In order of increas-
ing complexity, they are fixed points, limit cycles, torus, chaos, turbulence, and random
motions [38]. Fixed points correspond to motions without any change; limit cycles cor-
respond to periodic motions. We have already mentioned these two in the beginning of
this section. Torus corresponds to quasi-periodic motions, i.e., the motion is characterized
by two or more independent frequencies. Periodic and quasi-periodic motions may be
associated with crystals and quasi-crystals, finding of the latter won Professor Daniel
Shechtman a Nobel Prize in Chemistry in 2011. Fixed points, limit cycles, and torus all
belong to regular motions.

Since chaotic and regular motions appear almost everywhere, we should ask if a
chaotic motion may arise from a regular motion, and vice versa. Interestingly, the answer
can be found by studying bifurcations and routes to chaos in dynamical systems. Here, it
is critical to realize that the qualitative behaviors of the dynamics of a system may change
when one or more controlling parameters are changed. The parameter values that cause
such qualitative changes are called bifurcation points.

To better understand the notion of transitioning from one state to another, let us
briefly consider the anti-globalization movement. As often reported in the media, anti-
globalization activities are often accompanied with grandeur and truly praiseworthy ideals
such as better democratic representation, advancement of human rights, fair trade, and
sustainable development. However, this is only part of the story. The more fundamental
cause of the anti-globalization movement is the flipping of power ranking among the par-
ticipating countries—a country afraid of losing competitive edges or even being demoted
to a lower position in the power ranking would attribute that to unfair trade, infringement
of intellectual property rights, etc. While these concerns are not entirely unfounded, one
has to realize that reward to countries participating in economic globalization cannot be
linearly proportional to their ranking. As a result, rearrangement of the power ranking
surely will occur. Here, the basic parameter controlling the transition from globalization
to anti-globalization is associated with the rearrangement of the (relative) power ranking
among the participating countries.

To understand bifurcations, let us analyze the logistic map described by Equation (22)
again. Let us set µ = 2 and iterate the map starting with an initial condition x0 = 0.3. With
simple calculations, we can easily find that xn soon equals 0.5 after a few iterations. If we
choose x0 = 0.5, then x1 = x2 = · · · = 0.5. This means that 0.5 is a stable, fixed-point
solution. While it is easy to prove this statement rigorously [38], here, let us resort to
simulations: For any µ, where µ ∈ [2, 4], we choose an arbitrary initial value of x0, and
iterate Equation (22). After discarding the initial iterations so that the solution of the map
has stabilized, we retain a large number (say, 100) of the value of the iterations, and form
a scatter plot of those values with µ. When the map has a globally attracting fixed-point
solution, then the recorded values of xn will all become the same since the transients have
been discarded. In this situation, one only observes a single point with the horizontal axis
being the chosen µ and the vertical axis being the converged value of xn. For a periodic
solution with period m, one can observe m distinct points on the vertical axis. When the
motion becomes chaotic, one observes on the vertical axis as many distinct points as one
records (100 in our example). Figure 10a shows the bifurcation diagram for the logistic
map—the interesting structure is the celebrated period-doubling bifurcation to chaos.
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Figure 10. Bifurcation diagram for the logistic map; (b) is an enlargement of the little rectangular box
indicated by the arrow in (a).

Figure 10a embodies more structures than one could comprehend by a simple glance.
For example, if one enlarges Figure 10a the small rectangular region containing the period-3
window, then one obtains Figure 10b. We have again observed a period-doubling route to
chaos! (To truly understanding the presentations here, it is beneficial for readers new to
chaos theory to write a simple program to reproduce Figure 10a,b).

Having been observed in many diverse fields, period-doubling bifurcation to chaos is
one of the most studied and most celebrated routes to chaos [65]. To better comprehend
this universality, it is worth noting that it also underlies the bifurcations in the Henon map
(see Figure 11) and the Lorenz system. In fact, the notion of universality can be quantified
for the period-doubling bifurcation to chaos, through the Feigenbaum constant defined by

δ = lim
k→∞

µk − µk−1
µk+1 − µk

= 4.669201 · · · . (31)

Other routes to chaos also exist. They include the well-known quasi-periodicity
route [66] and the intermittency route [67]. The former refers to when a controlling param-
eter is changed, the motion of the system changes from a periodic motion with one basic
frequency, a quasi-periodic motion with two or more basic frequencies, to chaotic motions.
This route has been observed in many mechanical and physical systems, including fluid
systems. A bit surprisingly, this route has also manifested itself in the Internet transport
dynamics (concretely, a variable amounting to the round-trip time of a message transmit-
ting through the Internet can change from periodic and quasi-periodic motion to chaos
when the congestion level increases [68]). The third classic route to chaos, intermittency,
refers to the behavior that the motion of the system alters between smooth and chaotic
modes, again when a controlling parameter is changed. This route to chaos is very relevant
to many nonstationary phenomena in nature, including river flow dynamics, which are
very different in wet and dry seasons.
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Figure 11. Bifurcation diagram for the Henon map.

2.3.5. Chaotic Time Series Analysis

In this big data era, data of all kinds, including time series data, have been accu-
mulating explosively. Many techniques developed in the context of chaotic time series
analysis will be of tremendous value for the analysis of all kinds of complex time series data
whenever linear approaches are not sufficient. Below, we explain briefly but systematically
all the main components of chaotic time series analysis.

A. Optimal embedding

Often, a complicated dynamical system described by d~U/dt = f (~U) lives in a high-
dimensional phase space, where ~U is a vector. In many situations, we may only be able to
access a single variable, say x, instead of many components of ~U. In the simplest case, x is
just a component of ~U, say U1. In general, x may be a function of ~U. From x(t), how much
can we deduce the behavior of the dynamical system? The answer is a lot can be learned
from x, thanks to the Takens embedding theorem. The basic procedure is to construct
vectors according to the following equation [69–71],

Vi = [x(i), x(i + L), ..., x(i + (m− 1)L)], (32)

where m is the embedding dimension and L the delay time. More explicitly, we have

V1 = [x(t1), x(t1 + τ), x(t1 + 2τ), ..., x(t1 + (m− 1)τ],

V2 = [x(t2), x(t2 + τ), x(t2 + 2τ), ..., x(t2 + (m− 1)τ],
...

Vj = [x(tj), x(tj + τ), x(tj + 2τ), ..., x(tj + (m− 1)τ], (33)
...

where ti+1− ti = ∆t and τ = L∆t. We thus obtain a discrete dynamical system (i.e., a map),

Vn+1 = M(Vn). (34)

If the original dynamical system has an attractor with a boxing counting dimension D
defined by Equation (23), then so long as m > 2D, topologically the dynamics of the original
system described by d~U/dt = f (~U) are equivalent to that described by Equation (34). In
this case, the procedure using the delay coordinates is called an embedding. In proving this
theorem, two properties of differential equations play key roles: (1) for any initial condition,
a set of ODEs has a unique solution, and this ensures that trajectories corresponding to
different initial conditions in the phase space do not intersect in the phase space; (2) a
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trajectory corresponding to a specific initial condition does not self-intersect in the phase
space; when m is sufficiently large, self-intersection will be fully eliminated.

In practical applications, m and L have to be determined according to some optimiza-
tion procedure. To appreciate the issue, let us consider the harmonic oscillator described
below, which is among the simplest dynamical systems:

d2x
dt2 = −ωx. (35)

Of course, we can also write it as

dx
dt

= y,
dy
dt

= −ωx, (36)

The general solution is

x(t) = A cos(ωt + φ0), y(t) = A sin(ωt + φ0). (37)

Here, the phase space is a 2D plane with coordinates x and y. Now consider the case
that we can only measure x(t). Using the embedding procedure with m = 2, we obtain
V(t) = [x(t), x(t + τ)]. Figure 12 shows embeddings with τ = T/40, T/8, T/4, where
T = 2π/ω is the period of the oscillation. When τ = T/4, the difference between the
two components, x(t) and x(t + τ), in terms of angle is π/2. With this angle difference, the
cosine function becomes the sine function. That is, x(t + τ) becomes y(t)). Therefore, the
reconstructed dynamical system is the same as the original one. In this simple example, the
minimal embedding dimension m is 2, and the optimal delay time L is 1/4 of the period.
The consequence of using this optimal delay time is that the motion in the reconstructed
phase plane is the most uniform—the phase velocity is the same everywhere in the case of
Figure 12c, but not in those of Figure 12a,b.

Figure 12. Embedding of the harmonic oscillator.

Since the 1980s, a number of excellent methods have been proposed to optimally
determine m and τ. Below we describe two approaches, which have been extensively
tested and are very systematic.

(1) False nearest-neighbor method: This is a geometrical method. Consider the situation
in which an m0-dimensional delay reconstruction is embedded but an (m0 − 1)-
dimensional reconstruction is not. Passing from m0 − 1 to m0, self-intersection in the
reconstructed trajectory is eliminated. This feature can be quantified by the sharp
decrease in the number of nearest neighbors when m is increased from m0 − 1 to m0.
Therefore, the optimal value of m is m0. More precisely, for each reconstructed vector
V(m)

i = [x(ti), x(ti + τ), x(ti + 2τ), · · · , x(ti + (m− 1)τ)], its nearest neighbor V(m)
j is

found (to ensure unambiguity, here the superscript (m) is used to emphasize that this
is an m-dimensional reconstruction). If m is not large enough, then V(m)

j may be a

false neighbor of V(m)
i (something like both the north and south poles are mapped

to the center of the equator, or multiple different objects have the same shadow). If
embedding can be achieved by increasing m by 1, then the embedding vectors become
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V(m+1)
i = [x(ti), x(ti + τ), x(ti + 2τ), · · · , x(ti + (m− 1)τ, x(ti + mτ)] = [V(m)

i , x(ti +

mτ)] and V(m+1)
j = [V(m)

j , x(tj + mτ)], and they will no longer be close neighbors.
Instead, they will be far apart. The criterion for optimal embedding is then

R f =
|x(ti + mτ)− x(tj + mτ)|

||V(m)
i −V(m)

j ||
> RT , (38)

where RT is a heuristic threshold value. Abarbanel [72] recommends RT = 15.
After m is determined, τ can be obtained by minimizing R f .
While this method is intuitively appealing, it should be pointed out that it works less
effectively in the noisy case. Partly, this is because nearest neighbors may not be well
defined when data have noise.

(2) Time-dependent exponent curves: This is a dynamical method developed by Gao
and Zheng [73,74]. The basic idea is that false neighbors will fly apart rapidly if we
follow them on the trajectory. Denote the reconstructed trajectory by V(m)

1 , V(m)
2 , · · · .

If V(m)
i and V(m)

j are false neighbors, then it is unlikely that points V(m)
i+k , V(m)

j+k , where
k is the evolution time, will remain close neighbors. That is, the distance between
V(m)

i+k and V(m)
j+k will be much larger than that between V(m)

i and V(m)
j if the delay

reconstruction is not an embedding. The metric recommended by Gao and Zheng is

Λ(m, L, k) =

〈
ln

(
‖Vi+k −Vj+k‖
‖Vi −Vj‖

)〉
. (39)

Here, for simplicity, the superscript (m) in the reconstructed vectors is no longer
indicated. The angle brackets denote the average of all possible (Vi, Vj) pairs satisfying
the condition

εi ≤ ‖Vi −Vj‖ ≤ εi + ∆εi, i = 1, 2, 3, · · · , (40)

where εi and ∆εi are more or less arbitrarily chosen small distances. Geometrically
speaking, Equation (40) defines a shell, with εi being the diameter of the shell and ∆εi
the thickness of the shell. When εk = 0, the shell becomes a ball; in particular, if the
embedding dimension m is 2, then the ball is a circle. Note that the computation is
carried out for a series of shells, i = 1, 2, 3, · · · , and ∆εi may depend on the index i.
With this approach, the effect of noise can be greatly suppressed.

As a rule of thumb, Gao and Zheng find that for a fixed small k, the minimal m is
such that when further increasing m, Λ(m, L, k) no longer decreases significantly. After m
is determined, L can be chosen by minimizing Λ(m, L, k).

Now that we have determined an optimal embedding, we can discuss how to esti-
mate the largest positive Lyapunov exponent, dimension, and Kolmogorov entropy of
chaotic attractors.

B. Estimation of the largest positive Lyapunov exponent

A number of algorithms for estimating the Lyapunov exponents have been developed.
A classic method is Wolf et al.’s algorithm [75]. The basic idea is to select a fiducial trajectory
and monitor how the deviation from it grows with time. Let the distance between the two
trajectories at time ti and ti+1 be d′i and di+1. The rate of the exponential divergence over
this time period is given by

ln(di+1/d′i)
ti+1 − ti

.

To ensure exponential divergence, the distance between the two trajectories has to be
always small. Therefore, when di+1 exceeds a certain chosen threshold value, something
has to be done: a new point in the direction of the vector of di+1 is used so that d′i+1 is very
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small compared to the size of the attractor. This procedure is called normalization. After n
repetitions of the procedure, we obtain

λ1 =
n−1

∑
i=1

[
ti+1 − ti

∑n−1
i=1 (ti+1 − ti)

][
ln(di+1/d′i)

ti+1 − ti

]
=

∑n−1
i=1 ln(di+1/d′i)

tn − t1
. (41)

Note the normalization procedure is where the novelty of the algorithm lies. The
necessity of this step can be best understood by resorting to Figure 9: The computation
from ti to ti+1 amounts to one curve in Figure 9—when error saturates, a new round of
computation has to begin; renormalization along the direction of the latest vector ensures
that the evaluation of the largest positive Lyapunov exponent is along the most unstable
dynamics of the data. This is especially important for high-dimensional cases, where there
are multiple unstable directions (and therefore multiple positive Lyapunov exponents).

Unfortunately, the Wolf’s algorithm suffers from two serious problems. One is that it
does not and cannot tell how to determine a threshold value suitable for the normalization
procedure. The other is even more serious: it assumes but does not test exponential
divergence. As a consequence of the second problem, a positive λ1 could arise from any
type of noisy data, including independent identically distributed (IID) random variables,
as long as all the distances used in the computation are small. Therefore, the approach can
often interpret a noisy process as a chaotic motion. To see why this is so, consider the case
that d′i is small. At the next time, di+1 usually will be larger than d′i. This may be called
that evolution would move d′i to the most probable spacing. In the case of fully random
sequence and without embedding, this “evolution” will be completed in just one time step;
when embedding is used, embedding vectors automatically incorporate correlations, and
this “evolution” will be completed in m time steps, where m is the embedding dimension.
In both situations, di+1, being in the middle step evolving from d′i, typically will be larger
than d′i; consequently, a quantity computed using Equation (41) will be positive.

While a positive λ1 is more likely to be produced by Wolf’s algorithm, it should also be
noted that certain implementations of the algorithm, such as that based on neural networks,
may have to choose an initial spacing of d′i larger than the most probable spacing, so that the
computation can return a nonempty result—this is more so when noise is stronger. In that
case, λ1 estimated will be negative, enticing one to interpret the data under investigation
to be non-chaotic when the data contain more noise. Of course, this interpretation is also
incorrect since, in principle, entropy for noisy systems is infinite, but not negative (for more
details on this issue, we refer to [76]).

To overcome the problems with Wolf’s algorithm, a number of methods have been pro-
posed. One algorithm is independently developed by Rosenstein et al. [77] and Kantz [78].
Another algorithm is developed by Gao and Zheng [73,74,79], published at about the same
time. We first describe the former.

With the method of Rosenstein et al. [77] and Kantz [78], one first chooses a reference
point and finds its ε-neighbors Vj. One then follows the evolution of all these points and
computes an average distance after a certain time. Finally, one chooses many reference
points and takes another average. Following the notation of Equation (39), these steps can
be described by

Λ(k) =
〈

ln
〈
‖Vi+k −Vj+k‖

〉
average over j

〉
average over i

, (42)

where Vi is a reference point and Vj are neighbors to Vi, satisfying the condition ‖Vi −Vj‖ < ε.
If Λ(k) ∼ k for a certain intermediate range of k, then the slope is the largest Lyapunov
exponent. This is the most fundamental part of the algorithm: it explicitly tests whether
the dynamics of the data possess exponential divergence or not.

While in principle this method can distinguish chaos from noise, with finite noisy
data it may not function as desired. One of the major reasons is that in order for the
average over j to be well defined, ε has to be small. In fact, sometimes the ε-neighborhood
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of Vi is replaced by the nearest neighbor of Vi. For this reason, the method cannot handle
short, noisy time series well.

Gao and Zheng’s algorithm [73,74,79] contains three basic ingredients:
Equations (39) and (40), and the condition

|i− j| > w. (43)

Equation (39) plays the same role as but is simpler than Equation (42), since it elim-
inates the necessity of performing two rounds of averages. More important are the con-
ditions specified by two Inequalities (40) and (43). The condition specifying the series
of shells makes the method a direct test for deterministic chaos, which will be explained
momentarily. The condition specified by Inequality (43) ensures that tangential motions
corresponding to the condition that Vi and Vj follow each other along the orbit are re-
moved. Tangential motions contribute a Lyapunov exponent of zero and, hence, severely
underestimate the positive Lyapunov exponent. An example is exhibited in Figure 13. We
find that when w = 1, the slope of the curve severely underestimates the largest positive
Lyapunov exponent, while w = 54 solves the problem. In practice, w can be chosen to
be larger than one orbital time, when orbital times are defined in the dynamical system
(Lorenz and Rossler attractor are such systems). If an orbital time cannot be defined, it can
be more or less arbitrarily set to be a large integer if the dataset is not too small.

Figure 13. Λ(k) vs. k curves for the Lorenz system. When w = 1, the slope of the curve severely
underestimates the largest Lyapunov exponent. When w is increased to 54, the slope correctly
estimates the largest Lyapunov exponent (reproduced from [74]).

To see how the condition specifying the series of shells gives rise to a direct test for
deterministic chaos, we can compare the behavior of the time-dependent exponent curves
for truly chaotic data and independent, identically distributed random variables. The
basic results are illustrated in Figure 14. We observe that for true chaotic signals, the
time-dependent exponent curves from different shells not only grow linearly for some
intermediate range of the evolution time k, but form a common envelope. As one expects,
the slope of the common envelope gives an accurate estimation of the largest positive
Lyapunov exponent. Such a common envelope does not exist for IID random variables. In
fact, the behavior of the IID random variables vividly illustrates the problems with Wolf’s
algorithm: Λ(k)/kδt amounts to the largest positive Lyapunov exponent; the very fact that
it critically depends on k and the size of the shells is a clear manifestation that the data
under study are random.
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Figure 14. Time-dependent exponent curves for the chaotic Lorenz data (left) and IID ran-
dom variables (right), where the curves, from bottom up, correspond to shells (2−(i+1)/2, 2−i/2),
1 = 1, 2, · · · , 9) (adapted from [74]).

As one can anticipate, when a chaotic signal is contaminated by noise, the common
envelope will gradually disappear with an increasing amount of noise. In general, this is
true for both measurement noise and dynamical noise, where measurement noise is the
noise superimposed onto a signal during a measurement process, while dynamical noise is
a noise that actively participates in the dynamics of the system (i.e., appears in the basic
equation(s) of the dynamical system). When a system dynamic is oscillatory and character-
ized by a limit cycle, with dynamical noise, in certain situations, a stochastic oscillator will
arise, with the frequency of the oscillation still close to that of the original limit cycle, but
the amplitude differs from that of the original limit cycle considerably. In a phase space, it is
characterized by a diffused limit cycle. An example is shown in Figure 15 (left) for essential
tremor [80]. Such behavior has also been observed for Parkinsonian tremor [80], fluid
dynamics in wakes behind circular cylinders in low Reynolds numbers and semiconductor
lasers [81,82], and atomic force microscopy [83]. As chemical reactions are often oscillatory,
one can also anticipate that stochastic oscillations are abundant in chemical reactions. Are
stochastic oscillators also characterized by exponential divergence in the phase space, just
as true chaos? Often, this is not the case. Instead, they are characterized by diffusional
processes characterized by

ln ‖Vi+k −Vj+k‖ = ln ‖Vi −Vj‖+ Λ(k) ∼ ln kα (44)

where the parameter α signifies what kind of diffusion the dynamic executes: the dynamic
is called sub-diffusion, normal diffusion, and super-diffusion when 0 < α < 1/2, α ≈ 1/2,
and 1/2 < α, respectively. In the case of tremors, the dynamics basically are normal
diffusions [80]. Typical Λ(k) curves for normal diffusions are of the shape shown in
Figure 15 (right), which are also true for the fluid dynamics in wakes behind circular
cylinders in low Reynolds numbers [81,82]. Other types of diffusions, although rarer, are
also possible. We will return to this issue later when we consider chaos communications.

Figure 15. 2D phase diagram for essential tremor data (left) and time-dependent exponent curves
(right), where the curves, from bottom up, correspond to shells (2−(i+1)/2, 2−i/2, 1 = 1, 2, · · · , 9)
(adapted from [80]).
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C. Estimation of fractal dimension and Kolmogorov entropy

There is an elegant algorithm, the Grassberger–Procaccia algorithm [64,84], that takes
care of both. To fully understand the algorithm, we first extend the box-counting dimension
defined in Equation (23). Recall that when we defined the box-counting or capacity
dimension of a chaotic attractor, we partitioned the phase space where the attractor locates
into many small regions called cells or boxes of linear size ε, and we counted the number
of non-empty cells or boxes. We can monitor the non-empty boxes more precisely by
counting how many points of the attractor have fallen into each of them. We can then
assign a probability pi to the ith cell that is not empty. The simplest way to compute pi is
by using ni/N, where ni is the number of points that fall within the ith cell, and N is the
total number of points. Then

Dq =
1

q− 1
lim
ε→0

(
log ∑n

i=1 pq
i

log ε

)
, (45)

where n is the total number of nonempty cells, and q is real. Generally speaking, Dq is a
nonincreasing function of q. D0 is the very box-counting or capacity dimension we have
already discussed, since ∑n

i=1 pq
i = n. D1 gives the information dimension DI ,

DI = lim
ε→0

∑n
i=1 pi log pi

log ε
. (46)

Typically, DI is equivalent to the pointwise dimension α defined as

p(l) ∼ lα, l → 0, (47)

where p(l) is the measure (i.e., probability) for the trajectory to fall within a neighborhood
of size l centered at a reference point. D2 is called the correlation dimension. It is what the
Grassberger–Procaccia algorithm calculates. It involves computing the correlation integral

C(ε) = lim
N→∞

1
N2

N

∑
i,j=1

H(ε− ||Vi −Vj||), (48)

where Vi and Vj are the embedding vectors, H(y) is the Heaviside function, which is 1 if
y ≥ 0 and 0 if y < 0. N is the number of points randomly chosen from the reconstructed
vectors. The term involving the Heaviside function amounts to counting the number of
points falling within a cell of radius ε that is centered around Vi. Therefore, C(ε) estimates
the average fraction of points within a distance of ε. One then checks the following
scaling behavior:

C(ε) ∼ εD2 , as ε→ 0. (49)

When calculating the correlation integral, one may compute pairwise distances, ex-
cluding points Vi and Vj that are too close in time (i.e., i and j are too close). A rule of
thumb suggested by Theiler [85] is to remove the decorrelation time, which is equivalent
to Inequality (43). This issue is best understood dynamically [74]: when Vi and Vj are close
in time, they may be on the same orbit. The dimension corresponding to such tangential
motion is 1, while the Lyapunov exponent is 0. Without removing them, the correlation
dimension will be underestimated.

Next we consider entropy. First, let us precisely define the KS entropy. To be general,
we consider a high dimensional dynamical system with F degrees of freedom. We partition
the F-dimensional phase space into boxes of size εF. Assume the system has an attractor in
the phase space. Let us focus on a transient-free trajectory ~x(t). Concretely, let us monitor
the the state of the system at times τ, 2τ, 3τ, · · · . Let p(i1, i2, · · · , id) be the joint probability
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that the trajectory is in box i1 at time τ, in box i2 at time 2τ, · · · , and in box id at time dτ.
The KS entropy is then

K = − lim
τ→0

lim
ε→0

lim
d→∞

1
dτ ∑

i1,··· ,id
p(i1, · · · , id) ln p(i1, · · · , id) . (50)

where K characterizes the rate of creation of entropy. To see this, we can start from the
block entropy:

Hd(ε, τ) = − ∑
i1,··· ,id

p(i1, · · · , id) ln p(i1, · · · , id). (51)

It is on the order of dτK. The difference between Hd+1(ε, τ) and Hd(ε, τ) gives the rate:

hd(ε, τ) =
1
τ
[Hd+1(ε, τ)− Hd(ε, τ)]. (52)

Let
h(ε, τ) = lim

d→∞
hd(ε, τ). (53)

Taking proper limits in Equation (53), we obtain the KS entropy:

K = lim
τ→0

lim
ε→0

h(ε, τ) = lim
τ→0

lim
ε→0

lim
d→∞

1
τ
[Hd+1(ε, τ)− Hd(ε, τ)]. (54)

The KS entropy can be generalized to the order-q Renyi entropies:

Kq = − lim
τ→0

lim
ε→0

lim
d→∞

1
dτ

1
q− 1

ln ∑
i1,··· ,id

pq(i1, · · · , id). (55)

When q→ 1, Kq → K. Like the correlation dimension, the correlation entropy K2 can
be computed by the Grassberger–Procaccia algorithm by the following equation:

Cm(ε) ∼ εD2 e−mτK2 , (56)

where τ = Lδt is the actual delay time. The above equation can also be expressed as

K2 = lim
τ→0

lim
ε→0

lim
m→∞

1
τ
[ln Cm(ε)− ln Cm+1(ε)]. (57)

Although the above equations involve taking limits, in practice, data are of finite
length, and one really looks for power-law scaling behaviors between Cm(ε) and ε when
m is changed. When power law relations hold, in log-log scale, one should observe a
series of curves, which are straight over a significant range of ε, and the curves for smaller
embedding dimension m lie above those for larger m. In certain applications, one may just
fix ε to some small value ε∗, say 10% or 15% of the standard deviation of the original time
series, then compute K2(ε

∗). This K2(ε
∗) is called sample entropy, which has been widely

used in various kinds of physiological data analyses. Sample entropy can also be computed
for filtered data. When the filter is simply the moving average, which is the simplest ever
known, the resulting series of entropies corresponding to different parameters for the
moving average is called multiscale entropy. For more details, we refer to [86].

Before ending this subsection, we note a simple but very interesting and useful
technique for testing nonlinearity. It is called the surrogate data approach [87,88]. The basic
idea is to examine whether the original time series is distinctly different from a random
time series sharing some basic properties of the original time series, such as the distribution
or the power-spectral density. In the former case, the random time series can be readily
obtained by simply shuffling the original time series. In the latter case, one can randomize
the phase of the Fourier transform of the original time series and take the inverse transform.
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2.3.6. Chaos-Based Communications and Effect of Noise on Dynamical Systems

Among the most promising applications of chaos theory is the exploitation of the
short-term deterministic and long-term unpredictable aspects of chaotic behavior for the de-
velopment of chaos-based communication systems. The actual research in this area goes in
two directions. One, started in the early 1990s, is chaos-based secure communications [89].
The other, which is more recent, is to use chaos to rapidly generate random bits in physical
devices, for a range of applications in cryptography and secure communication [90–99].
The potential of each direction is dictated by the role of noise played in the corresponding
dynamical systems, which we will explain here.

In chaos-based secure communications, the most extensively studied is the scheme ex-
ploiting synchronization of chaos in two similar and coupled nonlinear systems [100–111].
The unpredictable behavior of chaos provides a means of security since chaotic signals
are hard to decode by a third party (called an eavesdropper). The chaotic signal is used
as a carrier to mask a message in the time or frequency domain. The synchronization
of a chaotic receiver with the chaotic emitter is then used to retrieve the message. In
mathematical notation,

• an emitter generates a chaotic signal x(t),
• a message signal s(t) is superimposed onto x(t),
• the signal r(t) = x(t) + s(t) + n(t) is sent to the receiver through the communication

channel,
• a receiver is synchronized to the emitter so that y(t) = x(t),
• signal s(t) is retrieved at the receiver by taking the difference between r(t) and y(t).

Secure chaos communication was first realized in nonlinear electronic circuits [89]. In
order to provide higher-speed encryption and be compatible with optical communication
networks [112], later efforts have been focused on optical systems. Among the many optical
systems studied in the field, the study of chaotic semiconductor diode lasers has been
most fruitful. This type of laser, which is the preferred light source in telecommunications,
has been an ideal test bed for many fundamental problems in nonlinear dynamics. The
state-of-the art cryptosystems using diode lasers are now able to transmit Gb/s messages
through a commercial fiber network of size 100 km [113].

The success of secure chaos communications depends on the realization of synchro-
nization in two chaotic systems. While synchronization of periodic oscillators has been
well-known since Huygens offered a mechanism in the seventeenth century, synchro-
nization of chaotic systems was quite a surprise initially, since most researchers thought
the exponential divergence in chaotic systems would prevent two chaotic systems from
synchronizing. Amazingly, chaos synchronization can be proven analytically and demon-
strated in laboratory experiments. To see the idea, let us consider two diffusively coupled
dynamical systems,

x′ = F(x) + α(y− x)x′ = F(x) + α(y− x)

y′ = F(y) + α(x− y)y′ = F(y) + α(x− y) (58)

Here, x and y are both vectors, x′ = F(x) is a chaotic system, and α is the parameter
that couples the system x and y. An invariant subspace of the coupled system is given by
x(t) = y(t). If this subspace is locally attractive, then the two systems can synchronize
perfectly. The role of α > 0 is to suppress the divergence between the x and the y systems:
in general, the larger the α, the easier the synchronization. To find the critical α, let us
focus on v = x − y. Assuming v to be small, we can then use Taylor series expansion.
Further assuming that higher order nonlinearities can be neglected, we obtain a linear
differential equation

v′ = DF(x(t))v− 2αv (59)
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Here, DF(x(t)) is the Jacobian of the vector field along the solution. When α = 0,
we have

u′ = DF(x(t))u, (60)

since the dynamics are chaotic, we have

‖u(t)‖ ≤ ‖u(0)‖eλ1t, (61)

where λ1 denotes the largest positive Lyapunov exponent of the isolated system.
Now letting

v = ue−2αt, (62)

we obtain
‖v(t)‖ ≤ ‖u(0)‖e(−2α+λ1)t (63)

therefore, the critical coupling strength is

αc = λ1/2. (64)

In general, when α > αc, and higher-order nonlinear terms in the Taylor series expan-
sion can indeed be ignored, then the coupled system will exhibit complete synchronization.
In building chaotic secure communication systems, the coupling is usually unidirectional,
and the two systems are called drive and response (or master and slave) systems—in the
example discussed here, if the term α(y− x) is dropped in the x system, then the x system
is the drive system, and the y system is the response system.

To better understand the potential of chaotic secure communications, it is important
to examine the effect of noise on dynamical systems. There are two types of noise, one
is measurement noise. In chaotic secure communications, the channel noise is a type of
measurement noise. The other type of noise is dynamical noise. It is in the equations
governing the dynamics of the system. The channel noise becomes part of the dynamical
noise for the response system (which can have additional dynamical noise sources). For
two chaotic systems to synchronize, dynamical noise in the response system has to be
small. This means the signal s(t) has to be small compared with the chaotic signal x(t).
As a consequence, power consumption in chaotic secure communications is larger than
traditional communication systems. This may be considered a cost for achieving better
security.

Although in most situations noise is detrimental in chaotic secure communications,
there are a few fortunate situations where noise is beneficial. This is enabled by an inter-
esting phenomenon, the noise-induced chaos. The existence of the phenomenon can be
demonstrated via a driven nonlinear oscillator [114], or the noisy logistic map [115], or other
systems [116,117]. A mechanism for the phenomenon has also been developed [82,118].
The phenomenon is still a hot topic today, see for example [119,120].

Here we explain the basic properties of and the mechanism for noise-induced chaos
via the noisy logistic map:

xn+1 = µxn(1− xn) + Pn, 0 < xn < 1, (65)

Here, µ is the bifurcation parameter, and Pn is a zero-mean Gaussian random variable
with standard deviation σ. When Pn = 0, the map generates periodic orbits with periods
8, 6, 5, and 3 at parameter values µ = 3.55, 3.63, 3.74, and 3.83, respectively. The period-8
motion at µ = 3.55 is on the main 2n cascade, and the period-3 motion at µ = 3.83 is on
the period(3)-doubling cascade (see Figure 10). For the case of µ = 3.55, with a fairly large
noise of σ = 0.01, the noisy trajectory is still very similar to the clean period-8 trajectory,
as one can clearly see from Figure 16a. The case of µ = 3.74 is very different. With σ
as small as 0.0003, the noisy trajectory is already completely different from the original
clean period-5 trajectory, as shown in Figure 16b. In fact, this noisy trajectory is chaotic,
as shown by the time-dependent exponent curves shown in Figure 17c. In contrast, the
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noisy dynamics at µ = 3.55 are definitely not chaotic, as shown by Figure 17a. The noisy
dynamics at µ = 3.63 and 3.83 are also chaos-like, though not as well defined as at µ = 3.74.
The mechanism for noise-induced chaos can be found by examining how a small amount
of noise affects the dynamics. In general, the noisy dynamics when noise is very small is a
diffusion characterized by Equation (44). The normal diffusion with α ≈ 0.5 corresponds to
Brownian motions around the periodic orbit (or limit cycle), which is clear from Figure 16a.
The case of super diffusion with α > 0.5 is the very condition for noise-induced chaos
to occur. This is shown in Figure 18 and can be readily understood as follows: chaos,
which amounts to exponential divergence, can be more easily approached through larger α,
especially when α is larger than 1, for a tiny amount of noise.

Appl. Sci. 2021, 1, 1 29 of 67

Figure 16. Clean (open triangles) and noisy (filled circles) trajectory for (a) µ = 3.55, and (b) µ = 3.74
(reproduced from [119]).

Figure 16. Clean (open triangles) and noisy (filled circles) trajectories for (a) µ = 3.55 and (b) µ = 3.74
(reproduced from [118]).
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Figure 17: Time dependent exponent curves for the noisy Logistic map: (a) µ= 3.55, and σ= 0.01; (b) µ= 3.63,
and σ = 0.005; (c) µ = 3.74, and σ = 0.002; and (d) µ = 3.83, and σ = 0.005. Six curves, from bottom up,
correspond to shells (2−(i+1)/2,2−i/2) with i = 7, 8, 9, 10, 11, and 12 (reproduced from [119]).

sub-sequences, as well as recurrences of certain patterns are consistent with certain random distributions. The
degree of divergence of nearby trajectories characterized by the time dependent exponent curves offer additional
information [110]. This is best understood by referring to Fig. 17: the noise-induced chaos at µ = 3.74 and 3.83
is more suitable to be used as fast physical random bit generator than at µ = 3.63. The normal diffusion-like
process at µ = 3.55 will not pass the randomness test of NIST SP 800-22, since the dynamics are periodic-like.

Finally, as a side comment, we note that the pioneering works on chaos synchronization [101–112] are
not cited evenly. Rather, some were only cited a few times, while the largest citation goes to [101] which is
over 12000 times. To better appreciate this somewhat astonishing behavior, we have listed these works in the
reference not chronologically, but in descending order of the citations. The actual number of citations is shown
in Fig. 19, where the rank k from 1 to 12 denote references from [101] to [112]. Interestingly, the number
of citations decays exponentially. This is in stark contrast with the behavior of large scale citation network
mentioned earlier, which is power-law. This simple analysis has an interesting implication to using citation as
a critical measure of the significance of scientific works. The analysis presented here clearly suggests that such
a practice should not be taken too seriously, at least not taking citation as the sole measure of the significance
of scientific works. Also, there is an interesting lesson here: to enhance citations of one’s work, it is important
to get further involvement in the later development of a subject, after producing some pioneering work. For
example, Dr. Pecora and Carrol have been actively involved in fostering the development of chaotic secure
communications. And finally, there is an interesting question from this simple analysis: can we develop a
model to reconcile the exponential decay of citation to pioneering works with general power-law decay of
citations?

29

Figure 17. Time-dependent exponent curves for the noisy Logistic map: (a) µ = 3.55 and σ = 0.01; (b)
µ = 3.63 and σ = 0.005; (c) µ = 3.74 and σ = 0.002; and (d) µ = 3.83 and σ = 0.005. Six curves, from
the bottom up, correspond to shells (2−(i+1)/2, 2−i/2) with i = 7, 8, 9, 10, 11, and 12 (reproduced
from [118]).
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Figure 17. Time dependent exponent curves for the noisy Logistic map: (a) µ = 3.55, and σ = 0.01;
(b) µ = 3.63, and σ = 0.005; (c) µ = 3.74, and σ = 0.002; and (d) µ = 3.83, and σ = 0.005. Six curves,
from bottom up, correspond to shells (2−(i+1)/2, 2−i/2) with i = 7, 8, 9, 10, 11, and 12 (reproduced
from [119]).

Figure 18. Logarithmic displacement curves illustrating the mechanism for noise-induced chaos.
Each group actually consists of three curves, corresponding to shells (2−(i+1)/2, 2−i/2) with i=12,
13, and 14. They basically collapse on each other. The parameters for the 4 groups are (a) µ = 3.74,
and σ = 0.0003; (b) µ = 3.83, and σ = 0.001; (c) µ = 3.63, and σ = 0.0003; and (d) µ = 3.55, and
σ = 0.0005. To separate these four groups (a-d) of curves from each other, they are shifted by 2, 1,
-0.5, and -0.2 units, respectively, where a positive number indicates shifting upward, and a negative
number indicates shifting downward. All the 4 groups of curves are well modeled by ln kα with
α = 1.5, 1.0, 1.0, and 0.25 (reproduced from [119]).

Figure 18. Logarithmic displacement curves illustrating the mechanism for noise-induced chaos.
Each group actually consists of three curves, corresponding to shells (2−(i+1)/2, 2−i/2) with i = 12, 13,
and 14. They basically collapse on each other. The parameters for the four groups are (a) µ = 3.74 and
σ = 0.0003; (b) µ = 3.83 and σ = 0.001; (c) µ = 3.63 and σ = 0.0003; and (d) µ = 3.55 and σ = 0.0005.
To separate these four groups (a–d) of curves from each other, they are shifted by 2, 1, −0.5, and
−0.2 units, respectively, where a positive number indicates shifting upward, and a negative number
indicates shifting downward. All four groups of curves are well modeled by ln kα with α = 1.5, 1.0,
1.0, and 0.25 (reproduced from [118]).
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Let us now come back to chaotic secure communications. Although noise-induced
chaos can help with chaos synchronization, and thus chaos communication, the noise level
has to be small. Otherwise, chaotic systems will desynchronize, and we will not be able to
have any kind of communication at all [82].

In the beginning of this subsection, we have mentioned that recently there is a strong
interest in using chaos to rapidly generate random bits in physical devices, for use in
cryptography and secure communication. For this purpose, noise is always beneficial. The
key here is to test whether a generated sequence of 0’s and 1’s is truly random. The usual
tests for randomness, such as the widely used Statistical Test Suite for random number
generator of NIST SP 800-22, basically test whether the distributions of 0’s and 1’s in the
entire and the sub-sequences, as well as recurrences of certain patterns, are consistent with
certain random distributions. The degree of divergence of nearby trajectories characterized
by the time-dependent exponent curves offer additional information [109]. This is best
understood by referring to Figure 17: the noise-induced chaos at µ = 3.74 and 3.83 is more
suitable to be used as fast physical random bit generator than at µ = 3.63. The normal
diffusion-like process at µ = 3.55 will not pass the randomness test of NIST SP 800-22 since
the dynamics are periodic-like.

Finally, as a side comment, we note that the pioneering works on chaos synchroniza-
tion [100–111] are not cited evenly. Rather, some were only cited a few times, while the
largest citation goes to [100], which is over 12,000 times. To better appreciate this somewhat
astonishing behavior, we have listed these works in the reference not chronologically, but
in descending order of the citations. The actual number of citations is shown in Figure 19,
where the rank k from 1 to 12 denote references from [100–111]. Interestingly, the number of
citations decays exponentially. This is in stark contrast with the behavior of the large-scale
citation network mentioned earlier, which is a power law. This simple analysis has an
interesting implication to using citation as a critical measure of the significance of scientific
works. The analysis presented here clearly suggests that such a practice should not be
taken too seriously, at least not taking citation as the sole measure of the significance of
scientific works. In addition, there is an interesting lesson here: to enhance citations of
one’s work, it is important to get further involvement in the later development of a subject,
after producing some pioneering work. For example, Dr. Pecora and Carrol have been
actively involved in fostering the development of chaotic secure communications. Finally,
there is an interesting question from this simple analysis: Can we develop a model to
reconcile the exponential decay of citation to pioneering works with general power law
decay of citations?
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Figure 19. Number of citations of pioneering papers on chaos synchronization (data collected in
March 2019).
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2.4. Basics of Random Fractal Theory

In practice, many problems contain random elements. Random fractal theory is of
crucial importance for finding structures and regularities in the random data, especially
when the data involve a wide range of spatial and/or temporal scales (i.e., cover a long
period of time or a wide extent of space).

Chaos and fractal theories are often discussed together and thought to be the same
thing. This is a harmful perception because the part of fractal theory that is most useful for
signal processing is the random fractal theory, whose foundation is fundamentally different
from that of chaos theory. Chaos theory mainly studies irregular behaviors in nonlinear
dynamical systems with only a few degrees of freedom. Here, noise or intrinsic randomness
only has a minor role. Random fractal theory concerns systems that are inherently random.
When equating chaos theory with fractal theory, one then will fail to fully understand the
differences in the mathematics of the two theories, and fail to fully appreciate important
issues such as distinguishing chaos from noise—a newcomer tackling the issue would
think it sufficient to distinguish chaos from simple white noise. Unfortunately, this is not
the case. Only if we can distinguish chaos from all known models of random processes can
we say we can distinguish chaos from noise.

Below, we first discuss the basics of fractal theory, then we focus on random fractal
theory. We will resume discussion of distinguishing chaos from noise in Section 2.5.

2.4.1. Introduction to Fractal Theory

Euclidean geometry studies simple shapes, including lines, planes, triangles, squares,
cones, spheres, and so on. All these shapes are regular. Every one has seen clouds,
mountains, and other complex shapes in nature. How well can those complex shapes be
modeled by circles, spheres, cones, or other regular shapes? Very badly! When thinking
along this line, Mandelbrot has created a new field, the fractal geometry [121].

Let us first try to understand fractal intuitively. The key here is self-similarity, which
means that part of an object, when magnified, is similar to the whole. More concretely,
whether we magnify the object by 10 times or 100 times, we always observe similar objects.

When discussing power laws, we have emphasized that a power law embodies self-
similarity (please see Figure 2). Therefore, power law relations are natural mathematical
tools to characterize fractals. When plotted in double-logarithmic scale, power laws become
linear relations. To better appreciate the significance of power laws, imagine hiking on a
mountain trail. Unlike many manmade trails with hundreds of stairs in the mountains of
China, we assume the trail we are walking up is wild and irregular. How can we measure
the distance we have walked? Let us measure the total distance by our step size. Denote it
by ε. Note ε could be different for different hikers—one who rides a horse has a huge step
size, while a little baby surely only has a tiny step size. The distance we have walked up
is then

L = N(ε) · ε, (66)

where N(ε) is the number of intervals walked. Amazingly, N(ε) scales with ε as a power
law, just as described by Equation (23), where 1 < D < 2 is not an integer. Such a
nonintegral D is the celebrated fractal dimension of the hiking trail.

What is the meaning of a nonintegral D? To find the answer, we start from the
measurement of certain length, area, or volume. The basics of calculus teach us that we
can measure a curve, a surface area, or a volume using very small intervals, squares, or
cubes by properly covering the object we are interested to measure. Take the unit length,
unit area, or unit volume as the unit of measurement, with linear size ε. Now suppose
we measure the length of a straight line with length 1. What is the minimal number of
intervals of length ε needed to fully cover this unit length? We need at least N(ε) ∼ ε−1

intervals. Extending to 2D and 3D, when covering an area or volume by boxes with linear
length ε, we need at least N(ε) ∼ ε−2 squares to cover the area, and N(ε) ∼ ε−3 cubes to
cover the volume. The D in N(ε) ∼ ε−D here is called the topological dimension, which
is 1 for a line, 2 for an area, and 3 for a volume. For M isolated points, the scaling law
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becomes N(ε) = Mε−D, with D = 0. Therefore, the topological dimension D for isolated
points is zero. We thus see that when we call a point, a line, an area, and a volume 0− D,
1− D, 2− D, and 3− D objects, we are talking about their topological dimensions.

We can now discuss the consequence of 1 < D < 2 for an irregular mountain trail.
Combining Equations (23) and (66), we have

L = ε1−D, (67)

Therefore, when ε becomes smaller, L becomes larger. In fact, when ε → 0, L → ∞.
This property was actually first found by Lewis Richardson, a mathematician, meteo-
rologist, and pacifist who devoted himself in his later years to the study of the causes
of wars and ways to prevent them. However, we have to wait for Mandelbrot to find
the quantitative power law relation described by Equation (23), to create the new field
of fractal.

With Equation (67), we can actually deduce more by using some concrete numbers.
For example, let us take D = 1.25, and imagine a race between a hare and a tortoise. Taking
into account the physical difference between a hare and a tortoise, it it reasonable to assume
that the step size of the hare is 16 times that of the tortoise. Then we have

Lhare =
1
2

Ltortoise (68)

The tortoise has to crawl twice the distance that the hare runs! Based on this simple
calculation, we now understand when we walk along a wild trail, get tired, slow down, we
are actually shrinking our step sizes, so we will be walking out a longer trail!

Next, we consider the Cantor set, one of the prototypical fractal objects, so that we can
appreciate the concept of fractal dimension better.

The standard Cantor set is obtained by first partitioning a line segment into three
equal parts and deleting the middle one. This step is then repeated, deleting the middle
third of each remaining segment iteratively. See Figure 20a. Note that such a process
can be related to the iteration of a nonlinear discrete map. The removed middle thirds
can be related to the intervals that make the map diverge to infinity, while the remaining
structures are linked to the invariant points of the map. At the limiting stage, n→ ∞, the
Cantor set consists of infinitely many isolated points. Consistent with isolated point(s)
having dimension 0, the topological dimension here is 0. The length of the total segments
removed is

1
3
+ 2×

(1
3

)2
+ 4×

(1
3

)3
+ · · · = 1

2
× 2

3
+

1
2
×
(2

3

)2
+

1
2
×
(2

3

)3
+ · · · = 1 (69)

Therefore, the entire unit interval has been removed! Is the fractal dimension here the
same as the topological dimension, which is 0?

To find out, let us focus on stage n. One needs N(ε) = 2n boxes of length ε = ( 1
3 )

n to
cover the set. Hence, the fractal dimension for the Cantor set is

D = − ln N(ε)/ ln ε = ln 2/ ln 3. (70)

It is not zero!
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Figure 20. Standard Cantor set (a) and its variants (b–d). See the text for details.

The fractal dimension of the Cantor set can also be computed by employing the self-
similar feature. Denote the number of intervals needed to cover the Cantor set at a certain
stage with scale ε by N(ε). When the scale is reduced by 3, N(ε/3) is doubled. Since
N(ε/3)/N(ε) = 3D = 2, one immediately gets D = ln 2/ ln 3.

To better transit to random fractals, we note that the standard Cantor set can be made
random. One way is to divide each interval into three equal parts and randomly delete one
of them (see Figure 20b). An alternative way of obtaining a random Cantor set is to delete
a middle interval of random length at each stage (Figure 20c). Clearly, case (b) also has
dimension D = ln 2/ ln 3. When certain regulation is imposed on the length distribution
for the subintervals in case (c), the fractal dimension can also be readily computed. One
way of imposing such a regulation is to require that the ratio of the subinterval and its
immediate parent interval follows some distribution that is stage-independent. Such a
regulation is essentially a multifractal construction, which we will discuss soon.

The above discussion suggests that two different geometrical fractals may have the
same fractal dimension. To further appreciate this point, we have shown in Figure 20d
a different type of regular Cantor set. It is obtained by retaining four equally spaced
segments whose length is 1/9th of the preceding segment. Denote the number of segments
at a certain stage with length scale ε by N(ε). When the scale is reduced by 9, N(ε/9) is
quadrupled. Here, D is again ln 2/ ln 3, since N(ε/9)/N(ε) = 9D = 4.

Based on the above discussions, one can readily realize that fractal curves and surfaces
are more space filling. This property is beneficial in biological evolution. As a result, fractal
forms are abundant in biology. Instead of giving actual examples here, we will refer readers
to reference [122] for a menagerie of fractal forms in living things. This more space-filling
property of fractals has also been exploited to design fractal antennas by maximizing the
effective length or perimeter of the material that receives or transmits electromagnetic
radiation. Fractal antennas are excellent for wideband and multiband applications [123].
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2.4.2. Overview of Random Fractal Theory

Gaussian white noise is the most extensively studied noise in engineering. In complex
systems, however, the temporal or spatial fluctuations often cannot be modeled by Gaussian
white noise. Rather, they are characterized by a power law decaying spectrum in the
frequency domain, denoted as 1/ f α noise [38]. Its dimensionality cannot be reduced by
popular methods such as principle component analysis [124]. Interesting examples of
such processes include genetics [125–129], human cognition [130] and coordination [131],
posture [132], vision [133,134], physiological signals [80,135–143], neuronal firing [144,145],
urban traffic [146], tree rings [147], global terrorism [148], human response to natural
and social phenomena [149], foreign exchange rate [76], and the distribution of prime
numbers [150].

Basic Definitions and Equations

Denote a covariance stationary stochastic process as X = {Xt : t = 0, 1, 2, . . . }. Its
mean is µ, variance is σ2, and autocorrelation function r(k), k ≥ 0 has the following form

r(k) ∼ k2H−2, as k→ ∞, (71)

where H is a parameter called the Hurst exponent. It is in the unit interval, 0 < H < 1. The
exponent α for the spectra of the process, 1/ f α, is related to H by a simple equation,

α = 2H − 1. (72)

When 0 < H < 1/2, the process is said to have anti-persistent correlations; when
H = 1/2, the process is memoryless or only has short memory, when 1/2 < H < 1, the
process is said to have persistent long-range correlations. In this case, it is easy to prove
∑k r(k) = ∞. This is why the process is said to have long-range correlation [38].

Let us now smooth the process X to obtain a time series X(m) = {X(m)
t : t = 1, 2, 3, . . . },

m = 1, 2, 3, . . . , where

X(m)
t = (Xtm−m+1 + · · ·+ Xtm)/m, t ≥ 1 . (73)

The smoothing is carried out in a non-overlapping fashion; therefore, the length of
{X(m)

t } is the largest integer that is not larger than N/m, where N is the length of {Xt}. Is

there a relation between the variance of X(m)
t , which is denoted by Vm = var(X(m)), and

that of the original process, which is denoted by σ2? It is given by

var(X(m)) = σ2m2H−2 (74)

Equation (74) is often called the variance–time relation. It is fundamental and can help
us understand the “little smoothing” phenomenon: when H = 0.5, var(X(m)) = 10−2σ2

when m = 100. When H = 0.75, for var(X(m)) to drop as much, m has to be 10,000.
However, if H = 0.25, then var(X(m)) ≈ 10−2σ2 when m ≈ 23. Therefore, when H
increases to 1, smoothing has little effect in reducing the variance of the process.

As we have mentioned, the power spectral density (PSD) for X is

SX( f ) ∼ f−α = f−(2H−1). (75)

The integration of the X process, called the random walk process,

yk =
k

∑
i=1

(Xi − X), (76)
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where X is the mean of X, has a PSD

SY( f ) ∼ f−α−2 = f−(2H+1). (77)

It is easy to see that the following relation is equivalent to Equation (74)〈
|y(i + m)− y(i)|2

〉
∼ m2H , (78)

where the angle brackets denote averaging over i. Equation (78) is often called fluctuation
analysis (FA). The superiority of Equation (78) over Equation (74) is that it can be readily
generalized to a multifractal formulation.

The Fractional Brownian Motion (fBm) Process

The fBm process is the prototypical random walk model for 1/ f α process [121]. It is a
zero-mean Gaussian process, with stationary increments and variance

E[(BH(t))2] = t2H (79)

and covariance:
E[BH(s)BH(t)] =

1
2
{s2H + t2H − |s− t|2H} (80)

where H is the Hurst parameter. The increment process of the fBm, Xi = BH((i + 1)∆t)−
BH(i∆t), i ≥ 1, where ∆t amounts to a sampling time, is called the fractional Gaussian
noise (fGn). It is a zero-mean stationary Gaussian time series, with autocorrelation function:

γ(k) = E(XiXi+k)/E(X2
i ) =

1
2

{
(k + 1)2H − 2k2H + |k− 1|2H

}
, k ≥ 0 (81)

Note γ(k) is independent of ∆t. In particular, γ(1) = 1
2

(
22H − 2

)
. It is positive when

1/2 < H < 1, and negative when 0 < H < 1/2. When k → ∞, γ(k) ∼ k2H−2, and we
reproduce Equation (71).

Structure Function Based Multifractal Analysis

Since the Hurst parameter H is the defining parameter of random fractals, it is certainly
of critical importance to estimate H. To facilitate estimation of H, it is most convenient
to use the random walk process y, defined by Equation (76), and consider the following
multifractal formulation:

F(q)(m) = 〈|y(i + m)− y(i)|q〉1/q ∼ mH(q), (82)

where q is real-valued. The average is taken over all possible pairs of (y(i + m), y(i)). Note
that q > 0 highlights large absolute value of |y(i + m)− y(i)|, while q < 0 highlights small
absolute value of |y(i + m)− y(i)| (to understand better, it is beneficial to take q = 10 and
maxi|y(i + m)− y(i)| = 100, and q = −10 and mini|y(i + m)− y(i)| = 1/100). H(q) is a
non-decreasing function of q. When H(q) is a constant, the process is called a monofractal;
otherwise, it is a multifractal.

Note that when q = 2, Equation (82) reduces to Equation (78), the FA, and H(2) = H.
It can be readily proven that FA is equivalent to many other methods for estimating H,
including the variance–time relation, the Fano factor analysis, and a few others [38,151]
(the H value estimated by the R/S statistic is equivalent to H(1)). While all these methods
are important, they have a limitation in that the largest H estimated by them is 1. Many pro-
cesses, including auto-regressive processes, ON/OFF models, Levy walks, and processes
with trends, have H > 1 on some time scale range. To accurately estimate those exponents,
one has to use other methods, such as detrended fluctuation analysis (DFA) [152] and



Appl. Sci. 2021, 11, 5736 36 of 62

wavelet multi-resolution analysis [153]. In Section 3, we will present an improvement of
DFA, adaptive fractal analysis (AFA) [149,154–157].

Singular Measure Based Multifractal Analysis

There is an alternative multifractal formalism to the structure-function based tech-
nique. It is based on probabilities and the thermodynamic formulation. The basic idea is to
consider the scaling behaviors for the qth moments of the measure µ [38,153]:

Z(q, ε) =
N(ε)

∑
i=1

µ
q
i (ε) ∼ ετ(q), ε→ 0 (83)

where N(ε) is the minimal number of boxes of linear size ε that are used to cover the
support of the measure µ. The spectrum of the generalized dimensions Dq is defined by

Dq =
τ(q)
q− 1

, (84)

Comparing with our discussions on the Dq spectrum for chaotic systems, we readily see
that D0 is the capacity (or box-counting) dimension, and D1 is the information dimension.
Just as the H(q) spectrum, D(q) is a non-decreasing function of q. When D(q) is constant
in q, the measure is called monofractal; otherwise, it is called multifractal.

There is another interesting way to characterize the properties of the measure. It is by
the singular spectrum f (α), where α is called the pointwise dimension. The basic equation
connecting the two characterizations is the Legendre transform,

q = d f (α)/dα, τ(q) = qα− f (α). (85)

Combining Equations (84) and (85), we have

Dq =
1

q− 1
[qα(q)− f (α(q))]. (86)

We thus see that Dq and f (α) provide the same amount of information.

The Random Cascade Model

In the study of multifractals, it is important to have a constructive model. This
is provided by the random cascade model. It is among the most powerful models to
understand the intermittency phenomenon of turbulence [158–162]. Here, we will use the
notations developed for modeling Internet traffic and geophysical data [38,163–165] to
present the model.

Consider a unit mass unevenly distributed on a unit interval. Let us divide the unit
interval into two parts: call them the left and the right segments. By doing so, we have also
partitioned the mass into two fractions, r and 1− r, which are on the left and right segments
correspondingly. In general, the multiplier r is a random variable, having a probability
density function (PDF) P(r), 0 ≤ r ≤ 1. Always with this rule we can further partition each
new subinterval and the weight attached to it into two parts, ad infinitum. Figure 21 shows
the procedure schematically. To facilitate mathematical analysis, the multiplier r has been
rewritten as rij, where i indicates the stage number and j indicates the positions of a weight
on that stage (we only use odd numbers, leaving even numbers for 1− rij). For many types
of data analysis, it is important to explicitly introduce the notion of scale. This is provided
by the interval length, which is 2−i at stage i. Assuming bilateral symmetry, then we
have to require that P(r) is symmetric about r = 1/2. Let P(r) have successive moments
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µ1, µ2, · · · . Hence, rij and 1− rij both have marginal distribution P(r). The weights at the
stage N, {wn, n = 1, ..., 2N}, can be expressed as

wn = u1u2 · · · uN , (87)

where ul , l = 1, · · · , N, are either rij or 1− rij. Thus, {ui, i ≥ 1} are IID random variables all
having PDF P(r).

Figure 21. Schematic showing how a multiplicative multifractal is constructed.

The cascade model has many interesting properties. We list a few here:

• The weights at stage N are log-normally distributed. To see this, one can take loga-
rithm on both sides of Equation (87), then the multiplication becomes summation, and
one can use the central limit theorem.

• We can readily derive that

τ(q) = − ln(2µq)/ ln 2. (88)

• We can also derive that

H(q) ∼ −1
q

ln µq/ ln 2, (89)

and
τ(q) = qH(q)− 1. (90)

We now illustrate Equations (88) and (89) using an example, the random binomial
model, whose P(r) is

P(r) = [δ(r− p) + δ(r− (1− p))]/2 (91)

where δ denotes the Dirac function. Therefore, P(r = p) = P(r = 1− p) = 1/2. Here, the
qth moment µq = [pq + (1− p)q]/2. We thus find

τ(q) = − ln[pq + (1− p)q]/ ln 2 (92)

and
H(q) =

1
q
{1− ln[pq + (1− p)q]/ ln 2} (93)

Clearly, H(q) is a non-decreasing function of q. Without loss of generality, we may
take p ≤ 1//2. When q→ −∞, H converges to its tight upper bound of − ln p/ ln 2 > 1.
When q→ ∞, H converges to its tight lower bound of − ln(1− p)/ ln 2 < 1.
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In the cascade model, many different functional shapes for P(r) can be used [163,164],
and the model can simulate a random function with very high accuracy. Two examples are
shown in Figure 22 for sea-clutter amplitude data [38,166]. The model can also be readily
generalized to the high-dimensional case. The case for 2D is shown in Figure 23.
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Figure 22. Sea clutter amplitude data: (a) is the original data without target, (b) is the original data
with a primary target, and (c,d) are the modeled data.
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Figure 22: Sea clutter amplitude data: (a) is the original data without target, (b) is the original data with a
primary target. (c,d) are the modeled data.
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Figure 23: Construction of 2-D multiplicative multifractal: (a) schematic rule, (b) an example.
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2.5. Going from Distinguishing Chaos from Noise to Fully Understanding the System Dynamics

A long-standing problem in time series analysis, which is still of interest today, is to
distinguish chaos from noise. This problem naturally arises when one wishes to understand
whether certain complex behaviors in physics, finance, life sciences, ecology, and other
fields, are of deterministic origin, or genuinely random. An unambiguous answer to the
question can greatly help one to choose a proper model to study the behavior one wishes to
understand. For a long time, however, when one computes a nonintegral fractal dimension,
or a positive largest Lyapunov exponent, or a finite Kolmogorov entropy from a time series,
one would think the time series is chaotic. In many applications, many researchers are
still assuming so! Is this a sound assumption? Unfortunately, it is not. As one can expect,
the most convincing counter-example would be the one that a genuinely random time
series is interpreted as deterministic chaos by this assumption. It turns out that all 1/ f α

random processes can be proven to have non-integral fractal dimensions of 1/H [38], and
finite Kolmogorov entropies [167,168], and thus may be misclassified as chaos. Because
of this problem, it is desirable that whenever one studies chaos in observational data,
one explicitly tests whether the data truly have the signature of chaos, the exponential
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divergence. In Section 4, we will discuss the scale-dependent Lyapunov exponent (SDLE),
which generalizes the notion of the Lyapunov exponent. We will see there that SDLE can
readily solve the problem.

Nowadays, efforts are still being made to develop innovative methods to distinguish
chaos from noise. In our view, it is more important to find the defining parameters of
the complex time series that one studies. In particular, one has to ask: If the time series
is truly chaotic, what is the exponential growth rate? If the time series is random, what
type of randomness is it? Only if we can unambiguously answer these fundamental
questions can we truly understand the system under study. Clearly, this is more than
simply trying to distinguish chaos from noise. In doing so, one will find that chaos and
random fractals may both play significant roles in one’s problem: chaos and random
fractal may be manifested on different scales. This is the essence of multiscale phenomena:
signals may exhibit different quantifiable features on different scales. Therefore, to best
characterize a complex system, we need to use a number of tools synergistically. With this
rationale, another fundamental question arises: what are the relations among the different
complexity measures?

We have already introduced a number of different complexity measures, including the
largest positive Lyapunov exponent, fractal dimension, generalized dimension spectrum,
Kolmogorov–Sinai entropy, correlation dimension, correlation entropy, sample entropy, and
multiscale entropy. Before discussing the connections among these complexity measures,
we explain a few more measures, including the Lempel-Ziv (LZ) and the Kolmogorov–
Chaitin complexity.

The LZ complexity is asymptotically equivalent to the Shannon entropy. The algorithm
for computing the LZ complexity can be efficiently implemented and executed, and thus
the LZ complexity and its many derivatives have found wide applications—the value of
the LZ complexity of a numerical, text, or image file may be equated to the size of their
compressed files using the commonly used compression schemes. To compute the LZ
complexity for a time series, it is important to consider the effect of the finite length of the
data. For more details, we refer to [169].

The Kolmogorov–Chaitin complexity is also called descriptive complexity, Kolmogorov
complexity, algorithmic complexity, algorithmic entropy, and program-size complexity. It
is a key measure in algorithmic information theory. The Kolmogorov–Chaitin complexity
of a string of numbers or a text file is the length of the shortest computer program that
generates the the string of numbers or the text file. Therefore, it measures the computational
resources needed for specifying an object. To make the above discussions concrete, one can
think of a completely random string. It is impossible to compress the string into a program
with length shorter than the length of the string itself; the simplest program is to just read
out the string. Although the lower bound for the Kolmogorov–Chaitin complexity of an
object is difficult to obtain [20], the upper bound is easy to get, which are just the Shannon
entropy or the LZ complexity. For dynamical systems and Markov information sources,
this upper bound can almost surely be achieved [170].

Next, we explain a widely used entropy measure, the approximate entropy. The
approximate entropy amounts to taking q = 1 in Equation (55) at a fixed scale ε and two
small embedding dimensions (say m0 and m0 + 1) instead of taking the limits of limε→0
and limm→∞. While it is closely related to the sample entropy, it is not as effective as the
sample entropy in resolving the scaling behavior. This is part of the reason that multiscale
entropy is built op top of the sample entropy. For more details, we refer to [171].

Finally, we explain the permutation entropy (PE) [172]. Due to its simplicity, it has
found numerous applications in time series analysis. Here, we describe PE following the
notations of [173].

We start from an m-dimensional embedding vector, Xi = [x(i), x(i + L), · · · ,
x(i + (m− 1)L)]. Let us sort the elements of the vector in ascending order, [x(i + (j1 −
1)L) ≤ x(i + (j2 − 1)L) ≤ · · · ≤ x(i + (jm − 1)L]. When an equality occurs, e.g.,
x(i + (ji1 − 1)L) = x(i + (ji2 − 1)L), we choose their natural order, i.e., if ji1 < ji2, then
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x(i + (ji1 − 1)L) ≤ x(i + (ji2 − 1)L). This way, the vector Xi is mapped onto a sequence
of numbers, (j1, j2, · · · , jm). Permutating it, we see that there are a total of m! distinct
combinations of (j1, j2, · · · , jm). Each permutation can be considered as an m-dimensional
symbol. Therefore, the reconstructed trajectory in the m-dimensional space is mapped to
a m-dimensional symbol sequence. Let P1, P2, · · · , PK be the probability for the K ≤ m!
distinct symbols. The PE, denoted by Ep, for the time series {x(i), i = 1, 2, · · · } is defined as

Ep(m) = −
K

∑
j=1

Pj ln Pj. (94)

The maximum of EP(m) is ln(m!) when Pj = 1/(m!). It is convenient to normalize it
to obtain

0 ≤ Ep = Ep(m)/ ln(m!) ≤ 1. (95)

Ep essentially measures the randomness of the time series under study: with the
passing of time, if data measured from a system become more regular, then Ep of the
corresponding data becomes smaller. This statement suggests that if one wishes to detect
dynamical changes in a system, one can partition a time series into short windows, compute
PE for each window, and examine how PE changes with the window [173].

The construction of PE may be considered a generalization of symbolic dynamics of
dynamical systems for finite data, recalling that the essence of symbolic dynamics is to
map a trajectory in certain space to a few subspaces, such as a trajectory defined in the
unit interval [0 1] to two sub-intervals, [0 1/2) and [1/2 1]. The usefulness of symbolic
dynamics is a strong hint that PE is often very useful for analyzing complex time series.

While the connections among some of the complexity measures discussed here are
obvious, a more comprehensive answer also exists. This, however, has to wait until we
introduce a new complexity measure, SDLE, in Section 4.

3. Adaptive Detrending, Denoising, Multiscale Decomposition, and Fractal Analysis

Observational data may manifest both ordered and disordered behavior. To fully
characterize a complex signal, it is desirable to synergistically use chaos and random
fractal theory [38]. However, this goal is not easy to achieve, since a measured data set
often contains noise and may also be nonstationary. This makes detecting chaos very
difficult. On the other hand, many phenomena contain a rhythmic activity, such as diurnal
cycle. This makes fractal analysis difficult since the essence of a fractal is scale-free. To
tackle these problems, frequency-domain filtering and wavelet analysis have been widely
used to filter away the undesired features in the data. With the rapid accumulation of
complex data in all branches of science and engineering, it is important to have better
approaches to solve these problems. In this section, we discuss an adaptive algorithm,
which has a number of interesting properties: (1) it can accurately determine a trend
in the signal; depending on the purpose of applications, one may treat the trend and
associated nonstationarities as noise, and remove them, or retain them, as the signals
one wishes to further study (such as the global warming trend); (2) it is more superior
in reducing noise in the signals than linear filters, wavelet methods, and chaos-based
methods; (3) it can conveniently decompose a complex signal into many functions of
different frequency; (4) it is excellent in obtaining fractal properties from the data, especially
when the data contain a strong and nonlinear trend. The method has been successfully
applied to study traffic flow [146,174], various kinds of geophysical data including soil
temperature, soil moisture, air temperature, and wind speed [175–178], tree rings [147],
variation of electricity consumption with time [179], single neuron firing [145], clinical scalp
EEG [180], ngram usage [149], quantum modeling of exciton diffusion in light harvesting
systems [181], sentiments in novels [182,183], newspaper advertisements [184], textual
cultural heritage [185], and global terrorism [148]. The method will be very useful for
analyzing various kinds of geophysical time series that have been rapidly accumulating
in recent years. Here, we will only present the key elements of the method; a concrete



Appl. Sci. 2021, 11, 5736 41 of 62

example of combining this method with a machine-learning method (random forest) for
distinguishing epileptiform discharges from normal electroencephalograms can be found
in Li et al. [180].

3.1. Adaptive Detrending, Denoising, and Multiscale Decomposition

The method is based on adaptive filtering [149,155,156,186]. It works this way: first we
partition a time series into many segments. Let the length of each segment be w = 2n + 1
points, and neighboring segments overlap by n + 1 points. As we will see later, using
segments with length containing odd number of sample points ensures symmetry. This
operation also introduces a time scale w+1

2 τ = (n + 1)τ, where τ is the sampling time. For
each segment, whose sample points represent a small portion of the curve we are studying,
we assume the curve can be approximated by its Taylor series expansion very well. This
suggests us to fit the segment by a polynomial of order M. Minimizing the error, the
obtained polynomial fitting becomes the best local fitting. Here, an important parameter is
the polynomial order M. When M = 0, the fitting is piece-wise constant. When M = 1,
the fitting is locally linear (not necessarily also globally linear). Let y(i)(l1), y(i+1)(l2),
l1, l2 = 1, · · · , 2n + 1 be the fitted polynomial for the i-th and (i + 1)-th segments. The
fitting for the overlapped part of the two adjacent segments can be obtained by properly
combining these two polynomials:

y(c)(l) = w1y(i)(l + n) + w2y(i+1)(l), l = 1, 2, · · · , n + 1 (96)

The two weights, w1 =
(
1− l−1

n
)
, w2 = l−1

n , can be written as (1− dj/n), j = 1, 2,
where dj are the distances of the point from the centers of the two fitted polynomials.
Therefore, the weights decrease linearly with the distance from the center of the segment.
The weighting ensures symmetry. The scheme ensures that the overall fitted curve is con-
tinuous everywhere, has the right- or left-derivatives at the boundary, and is differentiable
at non-boundary points.

The adaptive filter can readily determine any kind of trend from the data. An example
for determining the trend from the global annual sea surface temperature (SST) data is
shown in Figure 24a, where the blue straight line is the global linear fit, the black curve
is the global second-order polynomial fit, and the red curve is the adaptive trend with a
window size about the half of the total data length. It is amazing that with such a large
window size, not only the global warming trend but also the local brief cooling periods
are clearly shown. In fact, the residual noise (i.e., the difference between the fitting and
the original data) shown in Figure 24b with these fits is comparable to that obtained by
empirical mode decomposition (EMD) [187]. Since EMD involves dyadic decomposition,
while the window size used by the adaptive method is continuous, the adaptive filtering is
more flexible and can be accurate.
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Figure 24. Analysis of the annual sea surface temperature (SST) data: (a) the original data and trend signals of different
resolutions, (b) the residual signals.
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Note that whether the trend is considered noise or the desired signal depends on one’s
purpose. When the trend is considered noise, the approach is a high-pass filter. When the
trend signal is considered the desired signal, then the approach is a low-pass filter. We
can also take two window sizes and determine two trend signals. If we take the difference
between them, then the approach becomes a band-pass filter. More generally, if we use
a series of window sizes, w1 = 2n1 + 1 < w2 = 2n2 + 1 < w3 = 2n3 + 1 < · · · and get
the corresponding trend signals. The difference between the two trend signals of window
sizes wi = 2ni + 1 and wj = 2nj + 1 is called a band-limited signal, with cutoff frequencies
1/(niτ) and 1/(njτ), where τ is the sampling time. These signals are called intrinsically
band limited functions (IBFs) [154]. For an interesting application of the scheme (removing
an ECG component from an EEG measurement for the study of apnea), we refer to [156].

The adaptive filter discussed here is more effective than linear filters, the wavelet
method, and chaos-based approaches in reducing noise [155,156]. To see this, we have
shown a comparison of these methods in Figure 25 for reducing measurement noise in the
chaotic Lorenz system. The residual noise, characterized by the root-mean-square error
(RMSE), is the smallest for the adaptive filter [154].
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(b) Chaos: projective filtering
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Figure 25. Denoising of the chaotic Lorenz signal: (a) phase diagrams constructed from the the clean and the noisy signal,
which are marked as green and red, respectively; (b) the filtered signal obtained by a chaos-based approach; (c) the filtered
signal obtained by the adaptive algorithm; and (d) the filtered signal obtained by a wavelet method.

To better appreciate the above discussed properties of the filter, let us consider a
power load time series measured at a power plant in Guilin during a long time period
(from 1 January 2005 to 29 April 2010). Guilin is a very well-known tourism city, with the
saying “Guilin’s landscape is the most uniquely beautiful in the world”. Power load time
series may be equated to electricity consumption in a city. Interesting questions one can
ask include whether electricity consumption may be correlated with climate variations.
The raw load time series from Guilin is shown in Figure 26a as the blue curve. Here, the
sampling time is 15 min. We observe that the data are very irregular and non-stationary,
reflecting that the city’s businesses and population must have been changing a lot during
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the period the data were collected. The trend signal for the raw data is shown in Figure 26a
as the red curve; it is obtained by using a window size of 699 sample points. The order
of the polynomial used for fitting is 2 (if the raw signal is very spiky, then higher-order
polynomials are recommended).

To facilitate further discussion, we denote the raw data by x(t), and the trend signal
by trend(t). Then we have

xdetrended = x(t)− trend(t) (97)

In order to see the details of xdetrended, Figure 26b shows a small segment of it as the
blue curve. We observe a diurnal cycle in the data. This is reasonable since electricity
consumption in daytime and during night has to be quite different. The signal does not
have a fixed amplitude though, as it is still quite noisy. This noise, which is high frequency,
can also be removed by applying the adaptive filter again, with a small window size. The
trend thus determined will better represent the diurnal cycle. It is a band-pass signal. An
example of this signal is shown in Figure 26b as the red curve, where we used a window size
of 9 and a polynomial of order 2. From this signal, we can construct a phase diagram with
delayed coordinates. This is shown in Figure 26c. A limit cycle-like structure does emerge.

We can further analyze the oscillatory feature of the trend signal by computing power-
spectral density (PSD) from the data. The result is shown Figure 26d, where the blue, red,
and green curves are for the raw, detrended, and the band-passed signals, respectively.
The PSD curves show very sharp spectral peaks at frequency of 1 day−1 and its harmonics.
Note the blue curves are basically covered by the other two colors, except at the very low
frequency (i.e., close to 0 Hz). This is due to the red trend signal shown in Figure 26a.
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Figure 26. Electricity consumption analysis: (a) raw data (blue) and the trend signal (red);
(b) enlargement of the high-frequency load data showing the diurnal cycle (blue) and its filtered
band-pass data (red); (c) 2D phase diagrams constructed from the data shown in (b); (d) PSD for the
raw, detrended, and denoised data, which are marked by blue, red, and green, respectively.
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3.2. Adaptive Fractal Analysis (AFA)

In the past three decades, many efforts have been made to estimate H, the most im-
portant parameter for random fractals. As a result, many excellent methods for estimating
H have been proposed. Among them is the celebrated detrended fluctuation analysis
(DFA) [151,152]. It works as follows: To analyze a time series, x1, x2, x3, · · · , one first
determines its mean x, then constructs a random walk process using Equation (76). By
doing so, one has assumed that the data are like a noise process. One then partitions the
random walk into non-overlapping segments of length l (therefore, the number of distinct
segments is not larger than N/l, where N is the length of the time series). One furthers
determines the local trend in each segment by using the best linear or polynomial fitting.
This procedure is schematically shown in Figure 27, where a short EEG signal is used as
an example. Finally, one obtains the difference between the original “walk” and the local
trend. Denote it by u(n). H is then estimated by

Fd(l) =
〈 l

∑
i=1

ul(i)2
〉1/2

∼ lH (98)

where the angle brackets is a short-hand notation for averages over all the segments.
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Figure 27. Schematic of DFA.

Although DFA is very good in many applications, when a signal has a strong nonlinear
trend, such as an oscillatory component or a rhythmic activity, there may exist large
discontinuities in adjacent segments of DFA (see Figure 27). These discontinuities can
cause big problems. This problem can be readily solved by the adaptive fractal analysis
(AFA) [149,154,157]. The difference with DFA is that we now have a globally, not only
continuous but also almost everywhere, differentiable trend [155,156]. Denote it by v(i).
The difference between the original random walk process u(i) and v(i) can be used to
accurately estimate H. The formula is given by [154]

F(w) =
[ 1

N

N

∑
i=1

(u(i)− v(i))2
]1/2
∼ wH . (99)

Generalizing to a multifractal analysis, we obtain:

F(q)(w) =
[ 1

N

N

∑
i=1
|u(i)− v(i)|q

]1/q
∼ wH(q) (100)
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where q is a real number. Just as we have discussed earlier, positive q values highlight large
values in |u(i)− v(i)|, and negative q values highlight small values in |u(i)− v(i)|.

Equation (99) can readily be extended to long-range cross-correlation analysis [188]
between two series: x(i), i = 1 · · · , n and y(i), i = 1 · · · , n. Denote their trend sig-
nals corresponding to window size w by trend_x(w)(i), i = 1 · · · , n and trend_y(w)(i),
i = 1 · · · , n, respectively. Then we have

Fxy(w) =
[ 1

N

N

∑
i=1

(x(i)− trend_x(w)(i))× (y(i)− trend_y(w)(i))
]1/2
∼ wHxy . (101)

Following the generalization from Equations (99)–(100), Equation (101) can also be
readily extended to multifractal analysis.

Let us now examine the fractal behavior of the power load data of Figure 26a using
AFA. To cope with the nonstationary of the data, we partition the data into short windows,
then we estimate H for each window. Recalling that the data are sampled 96 times a day,
we choose the window size to be one month, containing 96× 30 = 2880 sample points.
To improve the resolution of the variation of H, the adjacent windows overlap by half of
the window length. Figure 28a shows an example of the scaling analysis using AFA, for
an arbitrarily window. The curve is linear for scale up to w = 27 sample points. It is a
little longer than a day. H can be estimated as the slope of the linear portion of the curve.
The temporal variation of H is plotted in Figure 28b as the red curve. Interestingly, it has
a seasonal variation. To check whether this variation may be correlated with the yearly
temperature variation, we have also shown in Figure 28b a curve in black reflecting the
temperature variation. To facilitate comparison of the two variables, H and the temperature
T, in the same plot, T is transformed to T′ according to the following equation,

T′ = T/100 + 0.5. (102)

Interestingly, the local maxima of the H(t) curve correspond to the seasonal minima
of the curve for the temperature. This suggests that the power load data are characterized
by stronger, persistent, long-range correlations during winter.
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Figure 28. AFA of power load data: (a) an example of log2 F(w) vs. log2 w for the load data of
an arbitrarily chosen day, (b) temporal variation of the Hurst parameter (red) and the rescaled
temperature (black).

4. Multiscale Analysis with the Scale-Dependent Lyapunov Exponent (SDLE)

SDLE is developed for better distinguishing chaos from noise and for better char-
acterizing complex data, especially through obtaining the defining parameters of the
data [38,189]. SDLE is closely related to two other methods, the time-dependent exponent
curves [73,74,79,81] and the finite size Lyapunov exponent [190–192]. SDLE was first intro-
duced in [38,189], and has been further developed in [193,194] and applied to characterize
EEG [143], HRV [195,196], financial time series [76], Earth’s geodynamo [197], precipitation
dynamics [198], sea clutter [199], THz imagery [200], and evaluate randomness [99]. As
with the presentation of AFA, here, we will only present the key elements of the method; a
concrete example of combining this method with a machine-learning approach (random
forest) for distinguishing epileptiform discharges from normal electroencephalograms can
be found in Li et al. [201].

SDLE is based on the evolution of vectors in a high-dimensional phase space. If
initially the data are a time series, then one needs to obtain a suitable phase space using
delay coordinates, as explained before. If the original data are a scalar random process,
then the main advantage of the embedding procedure is to obtain a self-similar vector
process from the original self-affine process. This is because x and t have different units and
therefore have to be scaled differently in order for them to look “alike”. All the components
of a vector are of the same nature, and therefore can be stretched or shrunk with the same
fashion. Consequentially, whenever a truly random time series is analyzed, the specific
value of the embedding dimension m is not important. Often ensuring m > 1 is sufficient.
After a phase space is obtained, one can examine the evolution of an ensemble of trajectories.
Denote the initial distance between two nearby trajectories by ε0. We further denote their
average distance at time t by εt, and that at t + ∆t by εt+∆t. A schematic showing how a
small distance between two nearby trajectories grows with time is shown in Figure 29.
With this setting, we can examine the relation between εt and εt+∆t, where ∆t is assumed
to be small. When ∆t→ 0, we have,

εt+∆t = εteλ(εt)∆t, (103)

where λ(εt) is the SDLE given by

λ(εt) =
ln εt+∆t − ln εt

∆t
. (104)
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Equivalently, we can write,
dεt

dt
= λ(εt)εt. (105)

ε
0

ε
t

ε
t + δ t

Figure 29. A schematic showing how a small distance between two nearby trajectories grows
with time.

Now that we have introduced SDLE, we can better understand the classic algorithm
for computing the largest Lyapunov exponent λ1 discussed earlier [75]. That algorithm
assumes εt ∼ ε0eλ1t and then through averaging estimates λ1 by (ln εt − ln ε0)/t. This
assumption may not even hold for true chaotic signals. This is reminded in the detail of the
schematic plot shown in Figure 29 —εt+δt may be smaller than εt. As already mentioned, a
fundamental difficulty with this assumption is that for any type of noise, when ε0 is small
(which is the case when nearest neighbors are used), λ1 can always be positive, leading to
misinterpreting noise as chaos. The reason is simple: εt will rapidly converge to the most
probable distance between the constructed vectors, and thus will almost be surely larger
than ε0. However, when we define SDLE using Equation (103), we have not made any
assumptions, except ∆t being small (usually taken to be the sampling time interval). As we
will see, chaos is characterized by a constant λ(ε) over a range of ε.

In the computation of SDLE, we first examine which embedding vectors defined by
Equation (32) fall within the series of shells defined by Equation (40). Then, the evolution of
those vector pairs (Vi, Vj) can be monitored, and their average behavior of divergence (not
necessarily exponential) can be computed. So far as exponential or power law divergence
are concerned, we can exchange the order of taking the logarithm and averaging. Then,
Equation (104) becomes

λ(εt) =

〈
ln ‖Vi+t+∆t −Vj+t+∆t‖ − ln ‖Vi+t −Vj+t‖

〉
∆t

(106)

where t and ∆t are measured in terms of the sampling time, and the average, denoted
by the angle brackets, is over all indices i, j with their corresponding vectors satisfying
Equation (40).

The program for computing SDLE is explained in detail in [202], and can be obtained
from the authors. The major scaling laws of SDLE that are most relevant for analyzing
complex data are summarized below [189]:

• For deterministic chaos,
λ(ε) ∼ constant, (107)

Amazingly, this property can even be observed in finite high-dimensional data, includ-
ing the Lorenz’96 system, which has dimensions close to 30 [193], and in turbulent
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isotropic fluid with an integral scale Reynolds number reaching 6200 [203]. In such
systems, estimation of dimensions is infeasible.

• As observational data are always contaminated by noise, it is important to have a
scaling law for noisy chaos and noise-induced chaos [82,118]. The law reads

λ(ε) ∼ −γ ln ε, (108)

The law pertains to small scales, and γ > 0 controls the speed of information loss.
• For 1/ f 2H+1 processes,

λ(ε) ∼ Hε−1/H . (109)

• For α-stable Levy processes,

λ(ε) ∼ 1
α

ε−α. (110)

• For stochastic oscillations, both scaling laws λ(ε) ∼ −γ ln ε and λ(ε) ∼ Hε−1/H can
be observed when different embedding parameters are used.

• When the dynamics of a system are very complicated, one or more of the above scaling
laws may manifest themselves on different ε ranges.

It is now clear that with the help of these scaling laws, distinguishing chaos from noise
can be readily solved. More importantly, we can now understand very well the nature of
each type of behavior of the data by obtaining the defining parameters for that behavior.

To illustrate how SDLE characterizes chaotic features and the effect of noise, let
us briefly discuss Boolean chaos in a ring oscillator. Boolean chaos normally refers to
the continuous time dynamics of a system of interconnected digital gates whose output
updates are not regulated by an external clock. Recently, an alternative Boolean architecture
for generating chaotic oscillations was proposed by Blakely et al. [204]. See Figure 30.
Three typical kinds of waveforms for the variable v3 are shown in Figure 31. The chaotic
behaviors of the oscillations can be aptly characterized by SDLE, as shown in Figure 32—the
Figure actually has shown more than chaos: the chaotic behavior is best defined for the
variable v1, and the effect of noise is most clearly visible for the variable v3. The reason is
straightforward: in this series circuit, the noise at the third gate is the largest.

Among the many properties of SDLE, two make it unique. One is its skill of dealing
with nonstationarity, including detecting intermittent chaos from models as well as obser-
vational data [155,195]. To understand intermittency, it is useful to consider the evolution
of river flow dynamics over 1 year. With some thinking, one can readily realize that the
time period may be divided into two periods, wet and dry, where the wet season may be
associated with frequent rain and snow melting, and the dry sea may be largely associated
with no or little rain, and constant evaporation. The river flow dynamics must be very
different in these two periods. Since standard methods for detecting chaos assume the
existence of a single chaotic attractor, those methods are ill positioned to unambiguously
determine whether river flow dynamics are chaotic or not. To illustrate how intermittent
chaos can be detected by SDLE, Figure 33 shows an example of the Umpgua river in
Oregon. The exponential divergence is evidently shown by the linear ln ε(t) vs. t curve for
t going from about 20 days to about 100–150 days. Consequentially, there are well-defined
plateaus of SDLE, i.e., a constant SDLE, shown in Figure 33a2 (the blue curves). It is also
interesting to note the scaling law of Equation (108) on small scales. This is caused by the
faster-than-exponential growth of small distances in the initial period (less than 20 days),
and it is mainly due to stochasticity, i.e., randomly driven by snow melting, rain, etc.,
besides measurement noise. The chaotic and the noisy dynamics depicted in Figure 33
can be improved by using the adaptive algorithm discussed earlier. The results using the
filtered data are shown in Figure 33 as the red curves.
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Figure 30. (a) A three inverter ring oscillator. (b) A ring oscillator driven by an external periodic
signal. The resistor-capacitor stages may represent either discrete components or the finite bandwidth
of non-ideal inverters.

Figure 30. (a) A three inverter ring oscillator. (b) A ring oscillator driven by an external periodic
signal. The resistor-capacitor stages may represent either discrete components or the finite bandwidth
of non-ideal inverters.

Figure 31. Typical oscillations displayed by an experimentally implemented ring oscillator. (a) Self
oscillations occur with the input held constant above the threshold. (b) Slow driving produces
periodic bursts of self oscillation. (c) Faster driving produces an irregular oscillation.
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Figure 32. SDLE calculated from the experimental time series of v1 (blue), v2 (green), and v3 (red).
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Figure 33. Intermittent chaos in the Umpqua river. Shown in (a1,a2) are the error growth curves and SDLE curves,
respectively. The blue curves are for the original data, while the red curves are for the filtered data. The embedding
parameters used in the computation are m = 6, L = 3. Three different shells specified by Equation (40) are used. These
curves collapse on each other, except when t is small. This highlights that the computational results are essentially
independent of the initial shells chosen.

The other unique property of SDLE is that it provides a unified framework to under-
stand other complexity measures. Concretely, the values of other complexity measures can
be inferred from the values of SDLE at specific scales. This statement is best appreciated
by using signals with phase-transition-like changes (or regime changes). Because of this,
let us use electroencephalography (EEG) data with epileptic seizures. A typical result is
illustrated in Figure 34, where we observe that the temporal variations of the Lyapunov
exponent, the correlation dimension, the correlation entropy, and the Hurst parameter
are similar to the values of SDLE either on smaller or on larger scales. In fact, the list of
the complexity measures can be expanded to include the permutation entropy, the LZ
complexity, and the energy of the EEG waves such as α, β, δ, θ. For the details, we refer
to [38]. While here these connections are illustrated using EEG data, the issue is relevant to
many other situations, including paleoclimatological data and fMRI data analysis. This
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property highly suggests that SDLE can serve as a basis for unifying commonly used
complexity measures.
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Figure 34. Epileptic seizure detection from continuous EEG data of a patient, illustrating that SDLE
can serve as a basis to unify commonly used complexity measures. Shown in the figure are the
temporal variations of (a) λsmall−ε, (b) λlarge−ε, (c) the LE, (d) the K2 entropy, (e) the D2, and (f) the
Hurst parameter. Seizure occurrence times were determined by clinical experts and were indicated
here as the vertical dashed lines.

5. Toward a Theory of Social Complexity

World civilization continues to progress. Yet, difficulties and suffering befall the world
from time to time. While many difficulties and sufferings are from nature, some are inflicted
by mankind itself. The major problems facing humanity are constantly changing over time.
Modern problems that confound humans include: How can we avoid the chain collapse
of the stock markets? How soon will the American politics, which was so divided during
Trump’s presidency, be back to “normal”? Will the COVID-19 virus completely disappear?
Why do some terrorist organizations use suicide bombers, and others do not? While there
are many more similarly important current issues, there are also fundamental problems of
a different nature that span the long river of time: How have the major problems of each
era evolved into these problems today? Are there similarities in major issues in different
eras? Is there a unified theory to understand the evolution of history? With the Internet
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and social media generating unprecedented amounts of data related to individual and
group behaviors, these and many other major issues can finally be hoped to be addressed
by computational means.

Computational social science was born out of the big data of the Internet and social
media [205] and will continue to be the biggest beneficiary of big data. Indeed, many
fascinating studies on the detailed behaviors of individuals and their interactions have been
published. Now it is time to seriously ponder how to develop a theory of social complexity
with lasting value. Natural science has been making every effort to pushing its frontiers to
the largest and the smallest scales. In social science, the smallest scale is individuals, and the
largest are countries and regions consisting of a number of countries. To make social science
truly a science, the country-wide scale has to be focused on. Therefore, a significant portion
of the theory of social complexity has to be centered on the quantification of evolution of
political processes of countries and international relations. Realizing this, one can be sure
that complexity science will definitely play a fundamental role in social science that is not
rivaled by black-box machine-learning based approaches, since machine-learning cannot
be 100% correct, and the cost inflicted by any mistake in forming important policies could
be enormous. This is completely different from e-commerce, as errors or mistakes there,
although still costly, could be remedied. Here, we focus on the scaling law governing the
complexity of world-wide political evolution.

Major data for demographic research include data from the web, social media, cell
phone and credit card usage, digitized historical data, and massive media reports data,
including printed newspapers. While all of them are useful for studying individual
behavior and human interactions, the last, the massive media reports data, are most
appropriate for the purpose of studying the complexity of world-wide political evolution
since every aspect of social interactions has been more or less covered by news reports.
Fortunately, such data are available now. It is called the Global Database of Events,
Language, and Tone (GDELT). It is a new initiative based on terabytes of information to
construct a catalog of all major human societal activity across all countries of the world,
containing more than 650 million unique events across all countries, during the period from
1979 to the present. GDELT events are drawn from a wide array of news media, both in
English and non-English, from across the world, ranging from international to local sources
in nearly every country. Each event has a number of attributes, including two actors, such
as USA and China, coordinates of geolocation, time of the event, average tone of the report,
and most importantly, a value called Goldstein-scale intensity [206], which measures the
degree of cooperation or conflicts between the two actors. Altogether, there are 20 classes
of events, where each class also consists of a few to a few dozen independent events,
yielding a total of 290 independent events. This strategy separates GDELT from all other
keyword-based analyses, and mathematically speaking is more desirable, as working with
independent events is fully consistent with the probability axiom system of Kolmogorov.

GDELT was produced by the TABARI automated coding software (http://eventdata.
psu.edu/software.dir/tabari.html) using the CAMEO event and actor coding system [207].
TABARI works with dictionaries of a very large set of verb phrases (>15,000 phrases) and
noun phrases (>40,000 phrases) in combination with shallow parsing of English language
sentences to identify grammatical structures such as subject-verb-object, compound subjects
and objects, and compound sentences. CAMEO is an update of earlier (1960s) event coding
taxonomies, with changes introduced by automated coding and new behaviors, such
as suicide bombings. CAMEO provides a detailed and systematic taxonomy for coding
contemporary political actors, including international, supranational, transnational, and
internal actors. An earlier version of this system recently was successfully employed in the
DARPA ICEWS project [208] to code 25 gigabytes of Asian news reports involving more
than 6.7 million stories, which provided the key input for forecasting models with accuracy,
sensitivity, and specificity all exceeding DARPA’s pre-set criteria. The data are updated
every 15 min and are open access at http://gdelt.utdallas.edu; tools for working with the
data are discussed both on that web site and at http://gdeltblog.wordpress.com.

http://eventdata.psu.edu/software.dir/tabari.html
http://eventdata.psu.edu/software.dir/tabari.html
http://gdelt.utdallas.edu
http://gdeltblog.wordpress.com
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Political processes have a number of important attributes, such as large momen-
tum, lack of predictability, and apparently similar patterns across history. While the
last attribute may entice one to model historical processes using periodic models (e.g.,
cliodynamics [209,210]), to accommodate all the attributes of political/historical processes,
one has to go way beyond modeling by cyclic processes. We surmise that random fractal
theory [38] may offer an interesting means to quantify political processes. Our finding
based on Googlebook’s Ngram data that social phenomena and human response to natural
phenomena possess different kinds of long-range correlations [149] further motivates us
to employ the key concept from random fractal theory [38], the Hurst parameter H, to
determine whether political processes may possess long-range correlations and, if yes, to
understand their consequences.

As we have mentioned, one of the most important attributes of the political events
data is the Goldstein scale [206], which characterizes the degree of conflict or cooperation
between the two actors of the event. As on each single day, for each country, there are many
events. Therefore, one can readily compute the daily average of the Goldstein scale for the
country. This daily average changes with time, i.e., it is a time series. Therefore, we can
analyze this time series by computing the Hurst parameter using the most robust method,
the adaptive fractal analysis introduced earlier. More concretely, we can partition the daily
average Goldstein scale time series into small segments, compute H for each segment, and
examine the variation of H with time. By overlapping adjacent segments by 1 month, the
temporal resolution of the H curve is 1 month. Four examples of the variation of H with
time are shown in Figure 35, for USA, China, Turkey, and Indonesia. In fact, in each subplot,
two curves are plotted. The blue curve has a temporal resolution of 1 month, while the
red one has a temporal resolution of 1 year. To better understand these curves, we focus
on the red curves. First, we observe that all curves lie between 0.5 and 1, meaning that all
political processes are characterized by long-range correlations. Second, we observe that
the variation of H(t) is different for different countries. In fact, this variation is dictated by
the major political events that occurred in the respective countries. In the case of USA, for
example, there are three large decreases in H(t). The last two can be easily associated with
the two Iraq wars. The most interesting is the first sharp drop in H(t) that occurred around
1987. This suggests that the cold war between the USA and former Soviet Union also had
greatly strained the US. In the case of China, local maxima and minima of the H(t) curve
correspond to changes of national leaders very well (concretely, one local maximum is at
1997, when DENG Xiaoping died, and JIANG Zemin took over the leadership; two local
mimina are at 2002 and 2012, when HU Jintao took over the power from JIANG, and when
XI Jinping took over the power from HU, respectively). This is also observed for many
other countries. In general, H(t) will increase when policies in a country are enhanced
and will decrease when internal/external conditions change such that many policies of a
country have to be modified or replaced by new ones. Therefore, the temporal variation of
H(t) parsimoniously and accurately summarizes the evolution of the political processes
(and hence history) of a country.

There is an important implication of the above understanding to the overseas infras-
tructure investment. This is a key issue that has to be seriously considered by China in
the implementation of the Belt and Road Initiative, and by any other countries who wish
to make infrastructure investments overseas. The necessary condition for the smooth
implementation of a project is that the duration of the construction of the project is shorter
than half of the average cycle of policy changes in a targeted country. To understand this,
consider construction of high-speed rail as an example. We can now understand why
the Ankara-Istanbul line, even though constructed for 11 years, from 2003 to 2014, was
successfully completed. It was in an increasing H(t) episode. Such long episodes are rare
among all the countries in the world though. In contrast, the H(t) curve for Indonesia
varies with a much higher frequency. Indeed, there is a strong anti-China sentiment in
Indonesia partly induced by the construction of a high-speed rail there.
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Figure 35. Long-range correlations (or inertia) of political processes in four countries: (a) USA, (b)
China, (c) Turkey, and (d) Indonesia. The blue curve has a temporal resolution of 1 month, while the
red one has a temporal resolution of 1 year.

6. Concluding Remarks and Future Directions

With the rapidly approaching 5G era, and 6G also on the horizon, the rapidly accumu-
lating big data in science, engineering, and society will soon become enormously bigger.
No one can afford not to grasp such an unprecedented opportunity. While computer
scientists are diligently developing more powerful database management and machine-
learning approaches, it is time to go to the next phase. This next phase has to start from
deeply studying the dynamics of all the dynamical processes that have been captured by
the big data and the mechanisms of how the human brain works. So far as data analysis
is concerned, we can easily envision that mainstream machine-learning and complexity
science based approaches will not only complement but also interact with each other in-
creasingly tightly in future. To help accelerate this marriage, we advocate to synergistically
use mainstream machine learning based approaches and multiscale approaches from com-
plexity science. Concretely, we have discussed two multiscale approaches. One is based on
adaptive filtering. It can accurately determine arbitrary trends from any kind of complex
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data, reduce noise from data, and estimate the Hurst parameter and multifractal spectrum
for complex time series. The other originates from chaos theory and can unify the major
complexity measures that have been used today. They are especially useful in obtaining
key parameters characterizing a dynamical system and thus can be used to help design
better unsupervised machine learning schemes. To help readers better understand these
techniques, the article is written both as a tutorial and a survey. It can be used as a course
material, including summer extensive training course—in fact, the material presented here
has been shaped by a few summer extensive training courses conducted by one of the
authors (J. Gao). When the material is used for teaching purposes, it will be beneficial
to motivate students to have hands-on experiences with the many methods discussed in
the paper. Instructors as well as readers interested in the computer programs (mostly in
matlab) for the analysis are welcome to contact the corresponding author.

While various applications of the concepts and methods presented in the paper are
discussed, to further stimulate readers to think and apply the methodology, we formulate
a number of theoretically or practically important questions to end the paper:

• In Section 2.3.5, we find that citations to the original works on chaos synchronization
decay exponentially. We also know that the general citation of scientific works decay
as a power law. Can a model be developed that not only reconciles this marked
difference but also finds a causal connection between them?

• We have observed in Figure 3 that the distribution of forest fires in USA and China is
very different. It is known that casualties in fire fighting are much bigger in China
than in the USA. Can the information in the distribution of forest fires be used to
design better fire fighting strategies so that casualty and property loss can be both
minimized?

• What is the fundamental difference between nation states with and without negative
feedbacks?

• Which kinds of data are better in modeling the fundamental dynamics of cultural
changes, the sparse data from poll/survey or massive real-time data streams acquired
through sensors, mobile platforms, and the Internet?

• Will chaos theory in the strict mathematical sense be relevant to social emergent
behaviors such as popular uprising? For this purpose, reading some fascinating
descriptions from Victor Hugo’s Les Miserables (Penguin Classics, Translated and with
an introduction by Norman Denny) could be stimulating:
“Nothing is more remarkable than the first stir of a popular uprising. Everything,
everywhere happens at once. It was foreseen but is unprepared for; it springs up from
pavements, falls from the clouds, looks in one place like an ordered campaign and in
another like a spontaneous outburst. A chance-comer may place himself at the head
of a section of a crowd and lead it where he chooses. This first phase is filled with
terror mingled with a sort of terrible gaiety ...”
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