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Abstract: In order to detect the oleic acid content of rapeseed quickly and accurately, we propose,
in this paper, an artificial BP neural networks based model for predicting oleic acid content by
using rapeseed’s hyperspectral information. Four types of spectral features are selected for our
investigation, namely multifractal index, sensitive band, trilateral parameters, and spectral index.
Both univariate variable and multiple variables are considered as our model input. The result
shows that the combined feature has higher precision and better stability than when using a single
parameter. An interesting finding shows that the combined feature involving multifractal parameters
can significantly improve the model performance. Taking the combined feature {MF-h(0), SB-DR574,
SPI-NDSI(R575, R576)} as the model input, the constructed BP (back propagation) neural networks
model has the highest precision, with the coefficient of determination (R2) 0.8753, root mean square
error (RMSE) 1.0301, and relative error (RE) 1.047%. This result provides some experience for the
rapid detection of rapeseed’s oleic acid content.

Keywords: hyperspectral; multifractal; hurst exponent; oleic acid content; BP neural networks

1. Introduction

With the increase of rapeseed oil production in the world, people pay more and more
attention on how to improve rape quality as well as to cultivate high oleic rapeseed. The
higher the oleic acid content is, the higher the nutritional value and the longer the shelf life
will be expected. The oleic acid is an indispensable nutrient element in animal food. It plays
a pivotal role in the metabolism of humans and animals. In addition, high oleic sauerkraut
oil can effectively prevent human cardiovascular disease. Due to its high economic and
nutritional value, evaluation and predictions of the high oleic acid rapeseed have become a
hot research area in recent years [1].

The traditional determination of oleic acid content relies on the gas chromatography
method, which is time consuming and labor intensive. The prominent disadvantage
is the destruction of seeds, which may disqualify the seed from being used used for
sowing and reproduction. By this token, this method is not suitable for analyzing and
the screening of large quantities of breeding materials of rare and precious quality [2].
Therefore, discovering methods that can quickly and accurately provide diagnosis of the
fatty acid content in rapeseed is a critical job for the improvement of rapeseed fatty acid.

The rapid development of hyperspectral technology has created conditions for solving
this problem. Scientist apply the hyperspectral technology to measure the seed spectrum
information for crop growth diagnosis. The advantages are fast and non-destructive and
therefore, in recent years, it has become the important pattern reform for determining the
content of oleic acid. This has also attracted many scholars to study hyperspectral tech-
nology in crop diagnosis [3–6]. Due to the fact that the hyperspectral imaging technology
combines image technology and spectroscopy technology, which can obtain image infor-
mation and biochemical information of the research object at the same time, it gradually
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replaced the traditional infrared spectroscopy technology and has become the main tool in
the field of crop growth diagnosis.

Hyperspectral remote sensing data provides rich information of the object; however,
it has strong mutuality and redundancy between adjacent bands, which may reduce the
efficiency and even accuracy. Hence, it is necessary to extract and analyze the original
hyperspectral curve. Among the multitudinous methods of hyperspectral feature analysis,
the methods based on mathematical transformation (including statistics, physics, comput-
ing, etc.) will provide more robust results [7]. As a powerful and novel mathematical tool,
fractal theory is always used to explain the nonlinear and complex structure in nature.
In this work, we introduce multifractality into spectral feature analysis due to the fractal
nature of the hyperspectral data [8–10]. Since the spectral reflectance curve is not only
self-similar but also nonstationary, the application of the multifractal detrended fluctuation
analysis (MF-DFA) method into this instance is good choice because this method can deal
well with non-stationary measure in various fields [11–14].

On the other hand, the inversion of oleic acid by using Hyperspectral Information
depends on high performance training models. BP neural network model is a multi-layer
feed forward neural network that is trained based on the error back propagation algorithm.
Owing to the powerful ability of nonlinear mapping and prediction, it is widely used
in hyperspectral inversion [15]. Among them, Wang et al. [16] compared the BP neural
network model and traditional regression model for estimating the accuracy of wheat
biomass based on the hyperspectral vegetation index and found that the BP neural network
was the champion among those methods. By using BP-based artificial neural network,
Yao et al. [17] considered the red-edge parameter as the input variables to estimate the
chlorophyll content of the leaves of French platanus and Populus tomentosa. Chen et al. [18]
used several characteristic bands, green peaks, and red-edge positions to construct a BP
neural network model to invert the pigment content of rice.

In this paper, we propose a spectral inversion model for the forecast of rapeseed’s oleic
acid content. The hyperspectral information of rapeseed is utilized in our considerations. By
using three kinds of traditional hyperspectral characteristics together with its multifractal
feature calculated by MF-DFA as model input, the spectral inversion model is constructed
based on BP neural networks.

The rest of this paper is organized as follows. In Section 2, we firstly provide a brief
account of the experimental materials (Section 2.1), then we review the well-known MF-
DFA method and BP neural networks (Section 2.2). In Section 3, we first present four kinds
of spectral characteristics (Section 3.1), then we select some of them as model input by
using correlation analysis (Section 3.2). Using those selected spectral characteristics as
model input, the prediction of rapeseed’s oleic acid content is constructed based on BP
neural networks (Section 3.3). Finally, we give a brief summary in Section 4.

2. Materials and Methods
2.1. Materials
The Selected Materials

Two rapeseed varieties (Xiangyou 708 and Xiangyou 710) are used as the research
objects. Our field experiment is located in the Yunyuan Base of Hunan Agricultural
University (113◦4′ E, 28◦10′ N) in 2018 and 2019. The field soil is black loam soil with
rice-rapeseed rotation.

2.2. Data Collection

The SOC710 portable hyperspectral imager (wavelength range 400–1000 nm, resolu-
tion 4.6875 nm), produced by Surface Optics Corporation (11555 Rancho Bernardo Road
San Diego, CA 92127, USA) of the United States, is used for spectrum measurement. The
dark box of the optical experiment (task cabin) is placed in dark room conditions. The
bottom area of the box is 50 * 60 cm and the height is 100 cm with a movable base. The
interior of the dark box has a diffuse reflection coating. Four sets of surround-type built
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with 70 W halogen light source with an incident angle 45◦ was used. It has a cooling device
(in accordance with the requirements of the SOC710 hyperspectral imaging spectrometer).
The instrument is placed vertically and directly above the target with the exposure dis-
tance of 300 mm, preheated for 15 min, and then used to measure spectral information.
We put the rape seeds in 16 circular dishes. In every dish, 5 non-overlapping rectangu-
lar areas (see Figure 1) are randomly selected as the region of interest (ROI) and then
80 ROIs can be obtained. In each ROI, we randomly measure the spectral reflectivity five
times and average them as the final spectral reflectivity value of the ROI. In this manner,
80 spectral reflectivity can be obtained that is labelled as 1~80. Table 1 shows the statistical
characteristics of rapeseed oleic acid content.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 12 
 

bottom area of the box is 50*60 cm and the height is 100 cm with a movable base. The 
interior of the dark box has a diffuse reflection coating. Four sets of surround-type built 
with 70 W halogen light source with an incident angle 45° was used. It has a cooling device 
(in accordance with the requirements of the SOC710 hyperspectral imaging spectrometer). 
The instrument is placed vertically and directly above the target with the exposure dis-
tance of 300 mm, preheated for 15 min, and then used to measure spectral information. 
We put the rape seeds in 16 circular dishes. In every dish, 5 non-overlapping rectangular 
areas (see Figure 1) are randomly selected as the region of interest (ROI) and then 80 ROIs 
can be obtained. In each ROI, we randomly measure the spectral reflectivity five times 
and average them as the final spectral reflectivity value of the ROI. In this manner, 80 
spectral reflectivity can be obtained that is labelled as 1~80. Table 1 shows the statistical 
characteristics of rapeseed oleic acid content. 

 
Figure 1. ROI of rapeseed sample. 

Table 1. Statistical characteristic of oleic acid content rapeseed samples. 

Number Min/% Max/% Mean/% Standard Derivation/% Coefficient of Variation 
80 65.827 80.085 75.176 3.753 0.0499 

On the other hand, all of the rapeseeds in every ROI are grinded to measure the fatty 
acid content of rapeseed and to further to obtain rapeseed oleic acid data by using Agilent 
7890 Inductively Coupled Plasma Mass Spectrometer in the Oil Research Institute of Hu-
nan Agricultural University, where the indoor temperature is 16 ℃ and the relative hu-
midity is 40%. The experimental environment is as follows: 
• Chromatography column: DB-5 Chromatography column (30 m × 0.25 mm × 0.25 μm, 

5% Phenyl-95% Polydimethylsiloxane); 
• Temperature programmed condition: The initial temperature is 50°. The temperature 

is then raised to 200 °C at 10 °C/min and held there for 10 min. The temperature is then 
raised to 300 °C at 10 °C/min and held there for 10 min again; 

• Vaporization chamber temperature: 300 °C; 
• Detector temperature: 300 °C; 
• Carrier gas: high-purity nitrogen, gas flow ratio 100:1; 
• Column flow rate: 1 mL/min; 
• Cracking furnace temperature: 350 °C; 
• Interface temperature: 300 °C; 
• Fatty acid methyl esterification: 400 mL potassium hydroxide methanol solution and 

800 mL ether petroleum ether solution. 
From the above process, we obtained 80 samples of spectral reflectivity and oleic acid 

data, out of which 64 were used as the training samples and the leftovers were used as the 
test samples. 

  

Figure 1. ROI of rapeseed sample.

Table 1. Statistical characteristic of oleic acid content rapeseed samples.

Number Min/% Max/% Mean/% Standard Derivation/% Coefficient of Variation

80 65.827 80.085 75.176 3.753 0.0499

On the other hand, all of the rapeseeds in every ROI are grinded to measure the fatty
acid content of rapeseed and to further to obtain rapeseed oleic acid data by using Agilent
7890 Inductively Coupled Plasma Mass Spectrometer in the Oil Research Institute of Hunan
Agricultural University, where the indoor temperature is 16 °C and the relative humidity is
40%. The experimental environment is as follows:

• Chromatography column: DB-5 Chromatography column (30 m × 0.25 mm × 0.25 µm,
5% Phenyl-95% Polydimethylsiloxane);

• Temperature programmed condition: The initial temperature is 50◦. The temperature
is then raised to 200 ◦C at 10 ◦C/min and held there for 10 min. The temperature is
then raised to 300 ◦C at 10 ◦C/min and held there for 10 min again;

• Vaporization chamber temperature: 300 ◦C;
• Detector temperature: 300 ◦C;
• Carrier gas: high-purity nitrogen, gas flow ratio 100:1;
• Column flow rate: 1 mL/min;
• Cracking furnace temperature: 350 ◦C;
• Interface temperature: 300 ◦C;
• Fatty acid methyl esterification: 400 mL potassium hydroxide methanol solution and

800 mL ether petroleum ether solution.

From the above process, we obtained 80 samples of spectral reflectivity and oleic acid
data, out of which 64 were used as the training samples and the leftovers were used as the
test samples.

2.3. Method
2.3.1. Multifractal Detrended Fluctuation Analysis (MF-DFA)

For a given hyperspectral reflectance series {xi}N
i=1, we calculated the profile as

{Xt} = ∑t
i=1(xi − x), where x is the average of {xi}N

i=1 over the band length N. Divide
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the profiles {xt}N
t=1 into Ns ≡ [N/s] non-overlapping segments with equal length s. A

short part of data at the end of profiles could be left, since that the N is not always an
integral multiple of the given scale s. In order to prevent the loss of original information,
the dividing procedure is repeated starting from the opposite end of the profile. Thus, a
total of 2Ns segments is obtained. Accordingly, the v-th segment is denoted as [lv + 1, lv
+ s], where lv = (v − 1)s for v = 1, 2, . . . , Ns and lv = N − (v − Ns)s for v = Ns + 1, Ns + 2,
. . . , 2Ns.

Next, in each segment v, determine the local trend by using polynomial fitting ỹv(k).
Denote ys(k) by the detrended series in v-th segment, as shown in the following.

ys(k) = y(k)− ỹv(k), k = 1, 2, · · · , Ns (1)

In this work, we use a first order polynomial to fit the trend. Following this, we
calculated the variance for every detrended series in segment v.

F2(s, v) =

{
1
s ∑s

i=1 y2
s [(v− 1)s + i], v = 1, 2, . . . , Ns,

1
s ∑s

i=1 y2
s [N − (v− Ns)s + i], v = Ns + 1, Ns + 2, . . . , 2Ns.

(2)

In addition, the averaged q-order fluctuation function (q 6= 0) over the all the segment
can be calculated according to the following:

Fq(s) =

[
1

2Ns

2Ns

∑
v=1

[
F2(s, v)

]q/2
]1/q

(3)

and when q = 0, according to L’ Hospital, the Fq(s) is determined by the following.

F0(s) = exp

[
1

4Ns

2Ns

∑
v=1

ln F2(s, v)

]
(4)

Finally, vary the scale s and repeat Equations (1)–(4) to calculate the corresponding q-th
fluctuation function Fq(s). If the spectrum possesses fractal nature, there exists a power-law
scaling behavior between the Fq(s) and s as described in the following.

Fq(s) ∝ sh(q) (5)

The index h(q) can be obtained by the linear fitting of Fq(s) and s in a double-log
plot. The h(q) is called generalized MF-st exponent and describes the long-term correlation
for the original spectrum. Generally, h(q) > 0.5 expresses persistence of the spectrum
reflectance series {xi}N

i=1 and the h(q) < 0.5 is anti-persistent. The multifractal nature is
present in case of dependence of h(q) on q. In order to measure the degree of multifractality,
the ∆h defined by Equation (6):

∆h = hmax(q)− hmin(q) (6)

where hmax(q) and hmin(q) are the maximum and minimum of the h(q) for the considering
qs, respectively. In this work, we took q ∈ [−3, 3]. The larger ∆h(q) is, the higher the
strength of multifractality is expected to be.

According to the typical multifractal analysis (MFA), the quality index τ(q), which
can also express the multifractal nature, is related with h(q) as the following:

τ(q) = qh(q)− D f (7)

where D f is the topological dimension of the object. For the spectral reflectance series,
the D f = 1. When the τ(q) is the nonlinear function of q, the multifractality of object can
be observed.
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Via the Legendre transformation, the Lipschitz–Hölder index α(q) and multifractal
spectrum f (α) are determined by the following.{

α(q) = τ′(q) = h(q) + qh′(q)
f (α) = qα(q)− τ(q)

(8)

∆α = αmax(q)− αmin(q) (9)

In practice, the ∆α is the span of the multifractal spectrum. The larger ∆α is, the more
uneven the reflectance distribution is and the greater the fluctuation is observed. In this
work, above 12 multifractal parameters are employed as augments for our consideration,
namely h(±3), h(±2), h(±1), h(0), ∆h, αmax, amin, and ∆α.

2.3.2. BP Neural Networks

BP (back propagation) neural network is a concept put forward by Rumelhart
and McClelland in 1986 [19]. It is a multilayer feedforward neural network trained
according to the error back propagation algorithm. The structure of BP neural network
contains input layer, hidden layer, and output layer, out of which, there are one or
more layers in the hidden layer. Each neuron in two adjacent layers is connected to
all neurons, while there is no connection between neurons in the same layer. In this
manner, the BP neural network can deal with more complex computational tasks. Since
the BP neural network has the back-propagation mechanism, the mean square of the
difference between the actual output and the expected output can be regarded as an
error signal to propagate back along the network in supervised learning. During the
propagation process, the weight of each layer will be adjusted. This process ends when
the error is lower than the target value [20]. In this work, we utilize the BP neural
network to construct oleic acid content prediction model.

For the 80 groups of rapeseed samples, the hyperspectral features are regarded as the
input layer, while the oleic acid content of rapeseed is used as the output layer in BP neural
network. The number of hidden layer nodes p is based on the range given by the empirical
Equation (10). By using a trial-and-error method for multiple training (100 training times
for each sample), the optimal number of nodes is 9.

p =
√

k + m + a (10)

k is the number of input layer units; p is the number of hidden layer nodes; m is the
number of output layer units; and a is the constant of 1–10. Set the number of iterations
as 1000 and the learning accuracy as 0.01. The 64 samples are then randomly selected
as the training set and the leftover 16 samples are regarded as the test set. By using the
Trainlm training method [21] with cross-validation, the BP network predication model can
be constructed and optimized to select the best model parameters.

2.4. Evaluate Indicator

In order to evaluate the model performance, three indicators, namely the coefficient of
determination(R2), root mean square error (RMSE), and relative error (RE), are employed
in this work and shown as follows:

R2 =
∑n

i=1
(
Ŷi −Yp

)2

∑n
i=1
(
Yi −Y

)2 (11)

RMSE =

√
1
n

n

∑
i=1

(
Ŷi −Yi

)2 (12)

RE =
1
n

n

∑
i=1

∣∣∣∣∣ Ŷi −Yi
Yi

∣∣∣∣∣× 100% (13)
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where Yi is the observed value, Ŷi is the predicted value, Y is the average observed
value, Yp is the average predicted value, and n is the total number of samples. The
three evaluators describe the model’s interpretation ability, model error, and model relative
error, respectively.

3. Result and Discussion
3.1. Feature Selection

The red-edge parameter is one of the most significant characteristics of the green
plant spectrum. It refers to the spectral position (wavelength) corresponding to the max-
imum value of the first derivative spectrum in the red-light range (680~760 nm). The
red-edge amplitude refers to the maximum value of the first derivative spectrum in the
red-light range. The red-edge area is the integral of the first derivative in the red-light
range. Similarly, the blue-edge (490~530 nm) parameter and the yellow-edge parameter
(560~640 nm) are also regarded as important features of the green plant. They are collec-
tively called trilateral parameter (TriP) [22].

Spectral index is a linear or nonlinear combination of spectral reflectance at some spe-
cific bands, which has a certain meaning for the object. Generally, the Ratio spectral index
(RSI), Normalized difference spectral index (NDSI), and Difference spectral index (DSI) are
the three most significant spectral indexes, which are selected to our consideration and
shown in Equations (14)–(16) (Rλ1 and Rλ2 denote the reflectance of the wavelength λ1 and
λ2, respectively). The hyperspectral parameters mentioned in this paper are summarized
in Table 2.

RSI (λ1, λ2) =
Rλ1

Rλ2

(14)

NDSI (λ1, λ2) =
Rλ1 − Rλ2

Rλ1 + Rλ2

(15)

RSI (λ1, λ2) = Rλ1 − Rλ2 (16)

Table 2. Hyperspectral characteristic parameters.

Parameters Symbol Description Ref

Multifractal feature

MF-h(0) Generalized Hurst exponent [8–10]
MF-h(±1) Generalized Hurst exponent [8–10]
MF-h(±2) Generalized Hurst exponent [8–10]
MF-h(±3) Generalized Hurst exponent [8–10]

MF-∆h Span of h(q) [8–10]
MF-αmax Maximum of H

..
older index [8–10]

MF-αmin Minimum of H
..
older index [8–10]

MF-∆α Span of α(q) [8–10]

Sensitive band
SB-R Sensitive band of reflectance [23]

SB-DR Sensitive band of the first derivative
reflectance [23]

Trilateral Parameter

TriP-rep Red edge position [24]
TriP-Dr Red edge amplitude [24]

TriP-SDr Red edge area [24]
TriP-yep Yellow edge position [25]
TriP-Dy Yellow edge amplitude [25]

TriP-SDy Yellow edge area [22]
TriP-bep Blue edge position [25]
TriP-Db Blue edge amplitude [25]

TriP-SDb Blue edge area [22]

Spectral index
SPI-RSI Ratio spectral index [26]
SPI-DSI Difference spectral index [27]

SPI-NDSI Normalized difference spectral index [28]
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The multifractal feature captures the global singularity and correlation of the hyper-
spectral reflectance, which may reflect the essential characteristics of the spectral reflectance
of rapeseed samples with different oleic acid content. The spectral index expresses the
combined characteristics of the reflectance at different bands. The trilateral parameter
focuses on the hyperspectral characteristics change at special locations. The sensitive band
locates the band where the hyperspectral reflectance has the most significant correlation.
In the following, we use these four types of parameters as features to predict the oleic acid
content of rapeseed.

3.2. Correlation Analysis of Spectral Parameters and Oleic Acid Content

In order to choose the best parameters as the argument model for the four types of
hyperspectral parameters mentioned above, we conducted a correlation analysis for
the oleic acid content of rapeseed with all the parameters and reported the results in
Figure 2. As shown in those subplots, for the multifractal features, h(0) possessed the
best correlation coefficient 0.7898 and is superior to other Hurst exponents. For the
trilateral parameters, the best correlation coefficient 0.7751 comes from the area of the
yellow edge. In subplot Figure 2c, the original reflectance (blue line) and first-order
derivative reflectance (red line) shows different performance. The maximum of the
correlation coefficient is 0.782 and the corresponding wavelength is at 574 nm. The
correlation coefficients between the rapeseed oleic acid content and the three spectral
indexes of RSI, NDSI, and DSI are shown in subplot Figure 2d–f, respectively. By
comparison, NDSI brings the best result with correlation coefficient being 0.7950 and
the corresponding optimal spectral index is NDSI (R575 and R576).
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Figure 2. Correlation analysis between four types of parameters and the oleic acid content. (a–c) are the correlation
coefficient of the oleic acid content with respect to the multifractal feature, trilateral feature, and sensitive band, respectively.
(d–f) represent the correlation coefficient between the oleic acid content and three spectral indexes, namely the ratio spectral
index (RSI), normalized spectral index (NDSI), and difference spectral index (DSI).

According to the above correlation analysis, we select the first two parameters with
the best correlation in each type of hyperspectral feature, as listed in Table 3. The eight
parameters with the higher correlation coefficients are greater than 0.7, which passes the
correlation test under the 0.01 significance level. Table 4 shows the statistics of the eight
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selected spectral feature. In the following, we use the above eight characteristic parameters
to establish an estimation model for oleic acid content with BP neural network.

Table 3. The first two parameters with the best correlation in each hyperspectral feature.

Parameter Correlation Coefficient

MF-h(0) 0.7898 **
MF-h(1) 0.7442 **
TriP-SDy 0.7751 **
TriP-SDr 0.7442 **

SPI-DSI (R572, R574) 0.7862 **
SPI-NDSI (R575, R576) 0.7950 **

SB-R818 0.7022 **
SB-DR574 0.782 **

** 0.01 significance level.

Table 4. The statistics of the eight selected spectral feature.

Min Max Mean STDEV

MF-h(0) 1.1976 1.8628 1.5511 0.1269
MF-h(1) 1.2306 2.0727 1.5900 0.1993
TriP-SDy 0.0176 0.5693 0.2328 0.1490
TriP-SDr 0.3019 1.0011 0.6179 0.1812

SPI-DSI (R572, R574) −0.0068 0.0118 0.0037 0.0037
SPI-NDSI (R575, R576) −0.0012 0.0047 0.0021 0.0017

SB-R818 0.2867 0.8076 0.4937 0.1308
SB-DR574 −0.0002 0.0015 0.0005 0.0004

3.3. Estimation Model of Oleic Acid Content

The above four types of spectral feature MF-♦, SB-♦, TriP-♦, and SPI-♦ are com-
bined as the input layer of BP neural network model, meanwhile the oleic acid content
of rapeseed is combined as the output layer. The symbol ‘♦’ in MF-♦, SB-♦, TriP-♦, and
SPI-♦ denotes h(0) and h(1), R818 and DR574, SDy and SDr, and DSI (R572, R574) and
NDSI (R575, R576), respectively.

According to the number of characteristic parameters in the combination, univariate,
bivariate, ternary, and quaternary models are constructed (At most, only one of each type
of feature is selected for combination feature). In this manner, 8 univariate combinations,
24 bivariate combinations, 32 ternary combination, and 16 quaternary combinations can be
obtained. We then used the R2, RMSE, and RE to evaluate the performance of BP-based
neural network model. Since the result of the BP-based algorithm depends on the random
initial weight, the modelling process is repeated 100 times and averaged for comparison.
Figure 3 shows the average of R2 over all possible combinations for the univariate, bivariate,
ternary, and quaternary models. It clearly shows that the R2 increases (meanwhile the
error-bar is decreasing) with increasing the number of parameters in the combination
feature. Table 5 lists the best model performance of the four corresponding combinations
for the training set and testing set, respectively. An interesting finding uncovers that the
performance obtained from the multivariate combination is significantly better than that of
the univariate.

According to the Table 5, the model performance obtained from the ternary combi-
nation and quaternary combinations is significantly superior to that of the univariate and
slightly better than that of bivariate combination. Figures 4 and 5 show the visual model
results for the training set (left panel) and testing set (right panel) by using the ternary com-
bination {MF-h(0), SB-DR574, SPI-NDSI(R575, R576)} and quaternary combination {MF-h(0),
SB-DR574, TriP-SDr, SPI-NDSI (R575, R576)}, respectively.
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Table 5. The best model of different parameter combinations.

TRAIN (N = 64) TEST (N = 16)

R2 RMSE RE (%) R2 RMSE RE (%)

{SPI-NDSI(R575, R576)} 0.7777 1.3647 1.377 0.6799 1.55 1.728
{MF-h(0), SB-DR574} 0.8635 1.0603 1.128 0.7971 1.3388 1.678
{MF-h(0), SB-DR574,

SPI-NDSI(R575, R576)} 0.8753 1.0301 1.047 0.8169 1.2922 1.497

{MF-h(0), SB-DR574, TriP-SDr,
SPI-NDSI(R575, R576)} 0.8652 1.0486 1.085 0.8012 1.2706 1.526
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In addition, as mentioned in Section 3.1, the multifractal feature depicts the global
characteristic of the hyperspectral reflectance, which may bring better model performance
for predicting rapeseed’s oleic acid content. In order to investigate this, we compared the
model results obtained between the feature combinations including and excluding the
Hurst exponent. Here, we considered the combinations of univariate, bivariate, and ternary
cases. For example, for the bivariate combination, there are 12 combinations including
MF parameters (h(0) and h(1)) and other 12 combinations exclude them. The averaged
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results over the all-possible combinations are listed in Table 6. It can be observed from the
results that the Hurst exponent is not as good as the traditional spectral parameters when
the univariate is considered as the argument. However, the Hurst exponent exhibits its
superiority in the case of the multivariate model because it brings a significantly better
model performance. This finding suggests that the multifractal feature should be an
important supplement to the traditional spectral characteristics when we construct the
rapeseed’s oleic acid content evaluation model.
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Table 6. The influence of MF parameters on model accuracy.

MF-
Features

Training Set (N = 64) Testing Set (N = 16)

R2 RMSE RE (%) R2 RMSE RE (%)

Univariate
with 0.6232 1.748 1.913 0.6043 1.8096 2.154

without 0.6789 1.6399 1.752 0.6201 1.8153 2.086

Bivariate
with 0.7835 1.3451 1.432 0.7152 1.5610 1.816

without 0.7122 1.5326 1.634 0.6421 1.7567 2.274

Ternary with 0.8086 1.2498 1.353 0.7573 1.4679 1.685
without 0.7394 1.4754 1.601 0.6685 1.6988 1.983

As the last important task, the model test will show the model stability. In order to
perform this, we test the model by changing the number of training samples. According
to the parameter combinations listed in Table 5, 48–72 samples are randomly selected as
the training set, the three evaluators of R2, RMSE, and RE are calculated and shown in
Figure 6. It is clearly shown that there is non-significant change of the three indicators
with the increasing training numbers, which implies that the selected feature combination
brings stable model result.
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4. Conclusions

Hyperspectral technology possesses the advantages of being fast, non-destructive,
and highly efficient and, therefore, it can play an important role in crop nutrition diagnosis.
In this paper, we attempt to use the hyperspectral characteristics of seeds to construct the
inversion model of rapeseed’s oleic acid content. The proposed inversion model provides
a helpful experience for estimating the oleic acid non-destructively. In practice, based
on rapeseed hyperspectral data, four types of spectral features are considered, namely
multifractal parameters, trilateral parameters, spectral indices, and sensitive bands. In
order to select optimal characteristic parameters, we first choose two features in each type
of spectral features according to correlation analysis. Then, by using the selected features
as the model input of univariate (one feature) and multivariate combination (at least two
features), the BP neural network model is established for an oleic acid prediction.

The results show that multivariate parameters can greatly improve the model’s ac-
curacy and stability. An interesting finding shows that the combined features including
multifractal parameters will bring about better model performance. The best model perfor-
mance comes from the combined parameters {MF-h(0), SB-DR574, SPI-NDSI(R575, R576)}.
Model test shows that our model has good robustness.
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