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Abstract: In this paper, we develop a modified adaptive combination strategy for the distributed
estimation problem over diffusion networks. We still consider the online adaptive combiners estima-
tion problem from the perspective of minimum variance unbiased estimation. In contrast with the
classic adaptive combination strategy which exploits orthogonal projection technology, we formulate
a non-constrained mean-square deviation (MSD) cost function by introducing Lagrange multipliers.
Based on the Karush–Kuhn–Tucker (KKT) conditions, we derive the fixed-point iteration scheme
of adaptive combiners. Illustrative simulations validate the improved transient and steady-state
performance of the diffusion least-mean-square LMS algorithm incorporated with the proposed
adaptive combination strategy.

Keywords: distributed estimation; diffusion strategy; adaptive combination strategy; KKT conditions

1. Introduction

It is generally beneficial to exploit diffusion strategies for distributed parameter
estimation issues over adaptive networks [1–6]. Specifically, the diffusion least-mean-
square (LMS)-based methods have already been used in many contexts, such as biological
behavior modeling [7,8], distributed detection [9], distributed localization [10] and target
tracking and escaping from predators [11], where scalability, robustness, and low power
consumption are the desirable features [1]. For the diffusion strategy, each node of the
network is allowed to receive the intermediate estimates from its neighboring nodes to
improve the accuracy of its local estimate. Such cooperation enables each node to leverage
the spatial diversity of noise profile over the entire network. From this point of view, the
performance of distributed diffusion methods can be further enhanced by using suitable
combination weights (combiners).

There have been several static combination rules [1,12], e.g., Metropolis rule, Laplacian
rule, Uniform rule and Relative-degree rule. However, these static combiners are designed
based solely on the topology of network, so they would generally be unadjustable to adapt
to the spatial variation of signal and noise statistics. To address this problem, many studies
resort to the adaptive combination (AC) strategies [12–18], most of which are developed
for the adapt-then-combine (ATC) diffusion LMS algorithm [1].

Based on the minimum variance unbiased estimation (MVUE), the classic AC strat-
egy [12] outperforms existing static combiners when applying onto the diffusion LMS
algorithms. An optimal adaptive combination scheme is derived by estimating the vari-
ances of the measurement noises adaptively [13]. Simulation results validate the superior
steady-state performance of the diffusion LMS algorithm regarding the optimal combiners
in [13], as compared to previous static and adaptive combiners. Based on the adaptive
combination rule in [13], an optimal combination rule regarding the channel distortion is
also proposed [16]. To achieve both the accelerated convergence rate and good steady-state
network performance, the combination switching mechanisms [14,15] are proposed, i.e.,
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static combination scheme in the converging stage and AC scheme when approaching the
steady state.

In addition, a decoupled adapt-then-combine (D-ATC) algorithm is proposed, for, the
least-squares (LS)-based AC scheme is developed [17,18], which could achieve rather approxi-
mate performance as the ATC algorithm with the classic AC in homogeneous networks.

Motivation and Contribution

As mentioned above, the classic AC strategy is derived based on MVUE, which is
validated to be a feasible criterion [12]. In fact, one of the key techniques in the classic AC
strategy [12] is orthogonal projection which is exploited to guarantee the combiners adding
up to 1. However, the orthogonal projection technique actually limits the update direction
of combiners at each iteration, which can be relaxed to further improve the performance of
diffusion LMS algorithm further ahead in Section 3.2.

In this paper, we still formulate the online adaptive combiners estimation of the ATC
algorithm from the perspective of MVUE. Instead of directly exploiting the orthogonal pro-
jection technology in [12], we present a non-constrained mean-square deviation (MSD) cost
function based on Lagrange multipliers. According to the fixed-point iteration methodol-
ogy and KKT necessary conditions, we develop an effective adaptive combination strategy,
which solely relies on the previous instantaneous intermediate weight estimates without
resorting to the knowledge of measurement data and noises. The proposed AC strategy
can be seen as the modified and extended version of the classic AC in [12]. Simulations
validate the superior performance of the diffusion LMS algorithm when using the proposed
AC strategy.

Notation: R and C denote the fields of real and complex numbers, respectively. Scalars
are denoted by lower-case letters, and vectors and matrices respectively by lower- and
upper-case boldface letters. The transpose and conjugate transpose are denoted by (·)T

and (·)H, respectively. E{·} represents expectation. <(·) means the real part. col{·} stands
for the vector obtained by stacking its arguments on top of one another. diag{·} generates
a diagonal matrix using the given diagonal arguments. [·]i stands for the ith element of a
vector. The min{·} denotes the minimum element of a vector. We define the eigenvalue set
of the square matrix F as {λ(F)}, with λmax(F) denoting the maximum eigenvalue. The
spectral radius of the square matrix F is denoted by $(F) , max{|λ(F)|}.

2. The ATC Diffusion LMS Algorithm
2.1. Model Assumption

Consider a network containing N nodes, which are used to estimate an M-dimensional
unknown parameter wo ∈ CM collectively. Nk denotes the set of neighbors of node k,
including k itself. The cardinality of Nk is nk. For each node k, at the time instant t, the
regressor uk(t) ∈ CM and the measurement signal dk(t) ∈ C are available. The signal
model is given by

dk(t) , wH
o uk(t) + vk(t), (1)

where vk(t) denotes the additive zero-mean white Gaussian measurement noise at node
k, with variance σ2

v,k. For any k and t, vk(t) is independent from uk(t), and for all k 6= l or
i 6= j, vk(i) is independent from vl(j).

2.2. ATC Algorithm

The main target of distributed estimation algorithm is to generate an estimate wk(t) of
wo at each node k and time t in a distributed manner. For the diffusion strategy, generally,
each node k executes a local adaptation step to obtain an intermediate estimate ψk(t), then
all the nodes share their intermediate estimates to their neighbors, and finally, each node k



Appl. Sci. 2021, 11, 5723 3 of 13

linearly combines all the intermediate estimates received from its neighbors under some
combination weights. The detailed steps of ATC diffusion LMS algorithm are

ψk(t) = wk(t− 1) + µkuk(t)e∗k (t), (2)

wk(t) = ∑l∈Nk
al,kψl(t), (3)

where ek(t) , dk(t)−wH
k (t− 1)uk(t) is the prior estimate error and µk > 0 is the step size

for k ∈ {1, 2, . . . , N}. The combiner al,k is the weight of intermediate estimation from node
l during the combination step of node k. Moreover, the non-negative combination matrix
A = [al,k] satisfies [1,12]

al,k ≥ 0 if l ∈ Nk, al,k = 0 if l /∈ Nk, aT
k 1 = 1, (4)

with ak denoting the kth column of A. Notice that A is left-stochastic since the entries of
each column are non-negative and sum to 1 [19,20].

3. Adaptive Combination Scheme
3.1. Minimum Variance Unbiased Estimation

Consider the signal model and the ATC diffusion LMS algorithm in Section 2. Assume
that for each node k ∈ {1, . . . , N}, the intermediate estimate ψk(t) in the diffusion LMS
algorithm satisfies

E{ψk(t)} = wo, for all k ∈ {1, . . . , N}, (5)

We define
Ψ(t) , [ψ1(t), . . . , ψN(t)], k = 1, · · · , N.

Following [12], we have the minimum variance unbiased estimation problem for each
k ∈ {1, . . . , N},

min
ak∈RN

aT
k <(QΨ)ak

st. 1T
N ak = 1; al,k = 0, for all l 6∈ Nk,

(6)

where QΨ , E{(Ψ(t)− E{Ψ(t)})H(Ψ(t)− E{Ψ(t)})} and 1N denotes the N × 1 vector
with unit entries. Applying the convex combination strategy for all k ∈ {1, . . . , N}, we also
require al,k > 0.

3.2. Fixed-Point Iteration Solution

First, we introduce a transform matrix Pk, defined as Pk , [lth column of IN ]l∈Nk
.

Then, ak in (6) can be expressed by ak = Pkbk, with bk ∈ Rnk . Therefore, the minimization
problem (6) can be transformed into

min
bk

J(bk) , bT
k <(QΨk )bk

st. 1T
nk

bk = 1; bk,i ≥ 0, for i = 1, . . . , nk,
(7)

where QΨk , PT
k QΨPk = E{(Ψk(t) − E{Ψk(t)})H(Ψk(t) − E{Ψk(t)})} with Ψk(t) ,

Ψ(t)Pk, and bk,i is the ith element of vector bk. By introducing the Lagrange multipli-
ers α and ω, we obtain the cost function

L(bk, ω, α) , J(bk)−ωTbk + α(1T
nk

bk − 1). (8)

Taking the gradient of (8) with respect to bk yields

∇bk
L(bk, ω, α) = ∇bk

J(bk)−ω + 1nk α

= <(QΨk )bk −ω + 1nk α. (9)
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According to the Karush–Kuhn–Tucker (KKT) condition [21], the optimal value of the
tuple (bk, ω, α) should obey {

<(QΨk )bk −ω + 1nk α = 0
[ω]ibk,i = 0

. (10)

or equivalently,
[<(QΨk )bk + 1nk α]ibk,i = 0. (11)

We introduce a positive definite diagonal matrix Dk(t− 1), whose ith diagonal element
is an arbitrary positive function with respect to bk(t− 1), denoted as fi(bk(t− 1)). Obvi-
ously, Dk(t− 1)

(
−∇bk

L(bk, ω, α)
)

is still the descent direction of the cost function (8) [21].
Therefore, we have the adaptive solution of problem (7) through the fixed-point itera-
tion method

bk,i(t) = bk,i(t− 1)− ηk,i(t) fi(bk(t− 1))bk,i(t− 1)

[<(QΨk )bk(t− 1) + 1nk α]i,
(12)

where bk,i(t) is the estimate of bk,i at time instant t and ηk,i is the learning factor of bk,i(t).
To simplify the problem, we choose the same learning factor ηk,i for all i at any time t.

Hence, we can rewrite (12) as a vector,

bk(t) =bk(t− 1)− ηk(t)Γk(t− 1)[<(QΨk )bk(t− 1) + 1nk α]. (13)

where Γk(t− 1) , diag{Dk(t− 1)bk(t− 1)}.
Applying the constraint 1T

nk
bk(t) = 1 and pre-multiplying both sides of (13) by 1T

nk
yields the Lagrange multiplier α

α =
1T

nk
(bk(t− 1)− ηk(t)Γk(t− 1)<(QΨk )bk(t− 1))− 1

ηk(t)1T
nk

Γk(t− 1)1nk

. (14)

Substituting α into (13), and using the constraint 1T
nk

bk(t− 1) = 1 again, we can obtain
the update of combiners bk(t),

bk(t) = bk(t− 1)− ηk(t)Gk(t− 1)Γk(t− 1)<(QΨk )bk(t− 1). (15)

where Gk(t− 1) , Ink −
Dk(t−1)bk(t−1)1T

nk
1T

nk
Dk(t−1)bk(t−1)

with Ink denoting the nk × nk identity matrix.

The adaptive combiners (15) can be updated by two incremental steps

gk(t) = ζk(t− 1)<(QΨk )bk(t− 1) (16)

bk(t) = bk(t− 1)− ηk(t)gk(t) (17)

where
ζk(t− 1) = Gk(t− 1)Γk(t− 1). (18)

Then, we can obtain the combiner ak(t)

ak(t) = Pkbk(t) (19)

which can be used in (3) to update the local weight estimate adaptively. We also define the
adaptive combination matrix A(t) ∈ RN×N where ak(t) is the kth column vector of it.

Please note that −gk(t) in (16) can be seen as the product of ζk(t− 1) and the gradient
∇bk

J(bk(t− 1)) = <(QΨk )bk(t− 1), which means ζk(t− 1) can be seen an auxiliary matrix
to adjust the update direction∇bk

J(bk(t− 1)). On the one hand, note that Gk(t− 1) in (18)
is a projection matrix [22], which enables the update direction −gk(t) orthogonal to the
vector 1nk , i.e., 1T

nk
gk(t) = 0. Then we have 1T

nk
bk(t) = 1T

nk
bk(t− 1) = · · · = 1T

nk
bk(0) = 1 if

the initial combiners satisfy 1T
nk

bk(0) = 1. On the other hand, since as a whole, ζk(t− 1) is
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a positive semi-definite symmetric matrix, the update direction −gk(t) is still the descent
direction of the cost function (7) [21]. Instead of using the positive semi-definite symmetric
matrix ζk(t− 1) = Gk(t− 1)Γk(t− 1), the classic AC [12] consider ζk(t− 1) being replaced

by the orthogonal projection matrix characterized by 1nk , i.e., Ink −
1nk 1T

nk
nk

, which actually
limits the update direction of the adaptive combiners to be lie in the hyperplane spanned
by 1nk and ∇bk

J(bk(t− 1)). In fact, we find that (16) and (17) could reduce to the classic
AC [12] when Dk(t) = diag{bk(t)}−1.

We now consider optimizing the learning factor ηk(t). Substituting (16) and (17)
into (7) yields a cost function regarding the learning factor ηk(t),

h(ηk(t)) = gT
k (t)<(QΨk )gk(t)η2

k (t)

− 2gT
k (t)<(QΨk )bk(t− 1)ηk(t)

+ bT
k (t− 1)<(QΨk )bk(t− 1). (20)

Obviously, h(ηk(t)) is a quadratic (convex) function with respect to ηk(t). Thus, its
minimum value can be readily obtained if and only if

ηo
k(t) =

gT
k (t)<(QΨk )bk(t− 1)
gT

k (t)<(QΨk )gk(t)

=
bT

k (t− 1)<(QΨk )ζk(t− 1)<(QΨk )bk(t− 1)
gT

k (t)<(QΨk )gk(t)
. (21)

Note that the optimal learning factor ηo
k(t) is non-negative since ζk(t− 1) is a positive

semi-definite matrix.
To guarantee that the combiners are non-negative, we set the upper bound of ηk(t)

as [12],

ηmax
k (t) =

min(bk(t))
‖gk(t)‖∞ + ε

, (22)

where ε > 0 is a small constant. Please note that ‖ · ‖∞ represents the maximum norm.
Thus, we choose the learning factor in (17) at time instant t,

ηk(t) = min{ηmax
k (t), ηo

k(t)}. (23)

Please note that the QΨk is usually unavailable in practical applications. As what done
in [12], QΨk can be replaced by its approximation

Q̂Ψk (t) ≈
1
2

∆ΨH
k (t)∆Ψk(t). (24)

where ∆Ψk(t) = Ψk(t)−Ψk(t− 1). To make it smoother, we consider a forgetting factor λ.
Then, the iterative expression of Q̂Ψk can be written as

Q̂Ψk (t) = λQ̂Ψk (t− 1) +
1
2

∆ΨH
k (t)∆Ψk(t). (25)

In practical applications, we use Q̂Ψk (t) in (25) to replace the aforementioned statistical
quantity QΨk for each node k at time instant t.

Finally, the implementation of the ATC algorithm with the proposed AC strategy is
summarized in Algorithm 1.
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Algorithm 1 ATC with the proposed AC strategy

For each node k, set ψk(0) = wk(0) = 0M and choose bk(0) ∈ Rnk so that 1T
nk

bk(0) = 1.
Given a small positive constant ε and step size µk, at each time instant t > 0, compute at
each node k:
1. Update the intermediate weight estimate ψk(t) through (2).
2. Update combiner ak(t) consecutively through (25), (16), (23), (17) and (19).
3. Update the local weight estimate wk(t) through (3).

4. Mean Convergence

We now analyze the mean convergence of the diffusion LMS algorithm with the
proposed adaptive combiners.

We now introduce the following independence assumptions:

Assumption 1 (Independence). All regressors uk(t) are spatially and temporally indepen-
dent ([1], Assumption 1).

Assumption 2. The combination matrix A(t) is independent of all regressors uk(t) and all local
weight estimates wk(t− 1) at time t− 1 ([12], Assumption 4.3).

Theorem 1. Under Assumptions 1 and 2, a sufficient condition to guarantee the convergence of
the diffusion LMS algorithm is given by,

0 < µk <
2

$(R)
, (26)

where $(R) denotes the spectrum radius of the matrix R.

The proof is referred to Appendix A. Please note that the sufficient condition (26) is
consistent with ([1], Equation (37)) and ([12], Equation (25))

5. Simulation Results

We evaluate herein the MSD of the proposed algorithm. Without loss of generality,
the unknown weight vector wo is set to be 1M/M with M = 5. The initial weight vector
estimations are wk(0) = 0M for each node k. The constant ε used in (22) is set to be
0.5× 10−4 and the forgetting factor λ = 0 or λ = 0.95. We consider Dk(t) = diag{bk(t)}γ

in terms of the proposed AC, where γ can be 0, −1 or −2.
We use the empirical MSDs as the performance metrics. Both the transient and steady-

state empirical network MSDs hereinafter are obtained by averaging L = 500 independent
trials over all nodes of the network,

MSD(t) , 1
LN ∑N

k=1 ∑L
`=1 ‖w̃

(`)
k (t)‖2

2, (27)

MSD ,
1
LN ∑N

k=1 ∑L
`=1 ‖w̃

(`)
k (∞)‖2

2, (28)

where w̃(`)
k (t) , wo −w(`)

k (t) with w(`)
k (t) denoting the transient weight estimate of the `th

trial and ‖w̃(`)
k (∞)‖2

2 is obtained by averaging ‖w̃(`)
k (t)‖2

2 of 100 iterations after convergence.

Example 1. We consider the same topology of the network with N = 15 nodes as ([12], Figure 5) ([17],
Figure 6a), illustrated in Figure 1a. The measurement noise is real Gaussian white noise with its
variance σ2

v,k at each node k presented in Figure 1b. According to the mean convergence condition,
we set the step size to µk = 0.01 for each node k. We herein consider γ = 0. Each regressor uk(t) at
each node k is real Gaussian white noise sequence with their covariance matrices Ru,k = σ2

u,kIM
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with σ2
u,k = 1 for all k. The noise power of node 5, 12, 13 at the 1500th iteration suddenly goes

up to 5.

As demonstrated in Figure 2, the proposed AC strategy outperforms the classic
AC [12] and the uniform combination [1] in terms of superior steady-state performance
and similar convergence rates, and outperforms LS-based AC [17] and the optimal AC [13]
in terms of accelerated convergence rate. We also observe that the forgetting factor can
further enhance the performance of the proposed AC. After the sudden change of the noise
power of some nodes, the proposed AC exhibits rather high reconvergence rate and good
steady-state performance.
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Topology
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5 10 15

Index of nodes
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v
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(b)

Figure 1. Network topology and noise profile: (a) network topology; (b) noise profile.
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=0, =0
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Figure 2. The MSD learning curves.

Example 2. The initial measurement noise variance σ2
v,k at each node k is presented in Figure 1b.

In this simulation, we compare the proposed AC scheme with the uniform combination and the
classic AC in terms of the steady-state MSD at different noise variances τσ2

v,k at each node k. The
other simulation conditions are same as Example 1. The steady-state MSDs with respect to the noise
variances are illustrated in Table 1.

The fairness of this experiment is endorsed by the relatively approximate convergence
behavior of the transient MSD curves plotted in Figure 3. As shown in Table 1, with the
noise variances increasing, the ATC algorithm incorporated with the proposed AC exhibits
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superior performance compared to the ATC algorithm with the uniform combination or
the classic AC strategy. Additionally, we can also find that the performance gain brought
by the forgetting factor is limited when the noise variances increase to some certain limit.

Example 3. We now consider target tracking model ([17], Equation (52)), namely

wo(t) = wo + θ(t) (29)

θ(t) = 0.99θ(t− 1) + ξ(t) (30)

where ξ(t) is a sequence of independent identically distributed perturbations with zero mean and
covariance matrix Ξ, independent of the input regressors and measurement noise at every iteration.
We herein consider ξ(t) is Gaussian white with Ξ = σ2

ξ IM and σ2
ξ = 1× 10−7, i.e., the unknown

weight vector is varying slowly. The other simulation conditions are same as Example 1.

Table 1. The steady-state MSD with respect to the variation of the noise power.

Noise τ
Combiners Uniform Classic AC λ = 0 λ = 0.95

τ = 0.5 −49.0 −50.2 −51.2 −53.0
τ = 1 −46.0 −48.0 −49.1 −50.0
τ = 1.5 −44.3 −46.6 −47.7 −48.3
τ = 2 −43.3 −45.9 −46.9 −47.1
τ = 2.5 −42.1 −45.1 −46.1 −46.1
τ = 3 −41.2 −44.3 −45.2 −45.3
τ = 3.5 −40.6 −43.7 −44.4 −44.4
τ = 4 −40.2 −43.5 −44.1 −44.0
τ = 4.5 −39.6 −42.9 −43.5 −43.3
τ = 5 −39.2 −42.7 −43.3 −43.2

0 500 1000 1500

Iterations

-60

-50

-40

-30

-20

-10

0

M
S

D
(d

B
)

uniform, =1

classic AC, =1

=0, =1

=0.95, =1

uniform, =4

classic AC, =4

=0, =4

=0.95, =4

Figure 3. The MSD learning curves under different noise levels.

As illustrated in Figure 4, similar to Example 1, the proposed AC strategy outperforms
the uniform combination rule, the classic AC and LS-based AC in terms of superior steady-
state performance, and outperforms the optimal AC in terms of accelerated convergence
rate, under tracking scenarios. We could also observe that the forgetting factor can further
enhance the performance of the proposed AC in the tracking scenario.
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0 500 1000 1500

Iterations

-50
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-30

-20
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0

M
S

D
(d

B
)

uniform

classic AC

LS based

optimal AC

=0, =0

=0, =0.95

1200 1300 1400

-46

-44

Figure 4. The MSD learning curves under tracking scenarios.

Example 4. We now consider the impact of the factors λ and γ in the performance of the proposed
AC strategy. Without loos of generality, we consider the step sizes µk = 0.02 for each node k. The
simulation result is shown in Figure 5.

It can be seen from Figure 5 that with specific γ, the larger λ brings the higher
performance gain for the proposed AC. We could also observe that choosing γ = −2 brings
better steady-state performance than the other two choices, especially for small forgetting
factor λ. In particular, as compared to Example 1, for the two scenarios γ = 0, λ = 0
and γ = 0, λ = 0.95, we find that larger step sizes in this example lead to accelerated
convergence rate at the cost of degraded steady-state performance.
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-46

-44

Figure 5. The MSD learning curves
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Example 5. We consider the sparse network with N = 15 nodes with its topology same as ([12],
Figure 8), depicted in Figure 6a. The measurement noise is real Gaussian white noise with its
variance σ2

v,k at each node presented in Figure 6c. We consider the heterogenous network with the
step sizes µk = 0.004 for orange shaded nodes and µn = 0.02 for the rest. Each regressor uk(t) at
each node k is real Gaussian white noise sequence with their covariance matrices Ru,k = σ2

u,kIM

with σ2
u,k presented in Figure 6b for all k.
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Figure 6. The topology, regressor power and noise profile: (a) network topology; (b) regressor power; (c) noise profile.

As illustrated in Figure 7, for the sparse network, the proposed AC scheme outper-
forms the classic AC and LS-based AC in terms of superior steady-state performance while
keeping rather approximate convergence rate. It also outperforms the optimal AC scheme
in terms of the accelerated convergence rate. Moreover, the introduction of forgetting factor
can further enhance the performance of the proposed AC scheme.
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Figure 7. The MSD learning curves for the sparse network.

6. Conclusions

In this paper, we present a modified adaptive combination strategy for the distributed
estimation problem over diffusion networks to improve robustness against the spatial vari-
ation of signal and noise statistics over the network. Considering the Karush–Kuhn–Tucker
conditions and fixed-point iteration methodology, we derive an effective adaptive combina-
tion strategy for the ATC diffusion LMS algorithm. We also invoke the forgetting factor and
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optimize the learning factor to further enhance the performance of the proposed adaptive
combination strategy. Illustrative simulations validate the improved performance of the
diffusion LMS algorithm with the proposed adaptive combination strategy.
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Appendix A. Mean Convergence Analysis

We define the network weight error

w̃(t) , col{w̃1(t), · · · , w̃N(t)} ∈ CMN , (A1)

where w̃k(t) , wo −wk(t), k = 1, 2, · · · , N. We define the global regressor,

u(t) , col{u1(t), · · · , uN(t)}, (A2)

and the global covariance matrix,

R , diag{R1, · · · , RN}, (A3)

where the covariance matrix Rk , E
{

uk(t)uH
k (t)

}
, k = 1, 2, · · · , N.

We also introduce the following diagonal matrices,

V(t) , diag{v1(t), · · · , vN(t)} ⊗ IM, (A4)

D , diag{µ1, · · · , µN} ⊗ IM, (A5)

and the extended combination matrix

A(t) , A(t)⊗ IM. (A6)

Following [1,12], we can obtain the iteration of the network weight error

w̃(t) = F̂(t)w̃(t− 1)−AT(t)Dz(t), (A7)

where F̂(t) , AT(t)
(
IMN −DR̂(t)

)
with R̂(t) , diag

{
R̂1(t), · · · , R̂N(t)

}
denoting the

instantaneous estimate of the global covariance matrix R and R̂k(t) , uk(t)uH
k (t), and

z(t) , V∗(t)u(t).
Obviously, we have E{z(t)} = 0. According to Assumption 1 and Assumption 2,

taking mathematical expectation of (A7) yields

E{w̃(t)} = F(t)E{w̃(t− 1)}, (A8)
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where

F(t) , E
{

F̂(t)
}
= E

{
AT(t)

}
(IMN −DR). (A9)

(A8) can be further expressed as

E{w̃(t)} = F (t)E{w̃(0)}, (A10)

where F (t) , ∏1
i=t F(i) , F(t) · · · F(1). To facilitate our analysis, we herein introduce

the submultiplicative matrix norm (A submultiplicative matrix norm satisfies ‖AB‖ ≤
‖A‖‖B‖ [23]). For any square matrix X, and any ε > 0, there exists a submultiplicative
matrix norm ‖ · ‖$ such that $(X) ≤ ‖X‖$ ≤ $(X) + ε, where $(X) denotes the spectrum
radius of X [23,24]. Accordingly, we have ‖F (t)‖$ ≤ ∏1

i=t ‖F(i)‖$. Notice that the dif-
fusion LMS algorithm converges if and only if limt→∞ ‖F (t)‖$ = 0. Hence, a sufficient
condition for the diffusion LMS algorithm to converge is ‖F(t)‖$ ≤ $(F(t)) + ε < 1. There-
fore, the diffusion LMS algorithm converges if $(F(t)) < 1 for all t with a sufficiently small
ε chosen. Thus, the diffusion LMS algorithm converges if F(t) in (A8) is stable at each t.

E
{
AT(t)

}
in (A9) is left-stochastic since each column of it sums to 1. Thus, accord-

ing to ([1], Appexdix I), F(t) is stable if, and only if IMN −DR is stable, i.e., max{|1−
λ(DR)|} < 1. Notice that DR is positive semi-definite Hermitian since R is block
diagonal and D is positive definite diagonal. In light of [25], we have λmax(DR) ≤
λmax(D)λmax(R) = µmaxλmax(R), where µmax is the maximum step size used in the
network. Thus, max{|1 − λ(DR)|} < 1 holds if, and only if µmaxλmax(R) < 2, i.e.,
0 < µ < 2/λmax(R).
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