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Abstract: Artificial intelligence chips (AICs) are the intersection of integrated circuits and artificial
intelligence (AI), involving structure design, algorithm analysis, chip fabrication and application
scenarios. Due to their excellent ability in data processing, AICs show a long-term industrial prospect
in big data services, cloud centers, etc. However, with the conceivable exhaustion of Moore’s Law,
the size of traditional electronic AICs (EAICs) is gradually approaching the limit, and an architectural
update is highly required. Photonic artificial intelligence chips (PAIC) utilize light beam propagation
in the silicon waveguide, contributing to a high parallelism configuration, fast calculation speed and
low latency. Due to light manipulation, PAICs perform well in anti-electromagnetic interference and
energy conservation. This invited paper summarized the recent research on PAICs. The characteristics
of different hardware structures are discussed. The current widely used training algorithm is given
and the Photonic Design Automatic (PDA) simulation platform is introduced. In addition, the
authors’ related work on PAICs is presented and we believe that PAICs may play a critical role in the
deployment of data processing technology.
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1. Introduction

The capacity of computing systems is in an arms race with the massively growing
amount of data. The AIC is considered to be an effective way to embrace the data explosion
era and provides excellent ability in data computing. However, the traditional EAIC is
based on electronic computing, which is gradually entering the bottleneck period with the
upcoming limit of Moore’s law [1,2]. Integration size and large power consumption bring
big challenges in calculation ability and data processing capacity for EAIC. Unlike electrical
interconnects in EAICs, the PAIC is constructed by optical waveguide interconnects, form-
ing optical neural networks (ONN) or optical elemental devices to realize optical linear
or nonlinear computing. It offers great potential for orders of magnitude improvement in
energy conservation and computing capacity due to its natural parallel processing, being
less susceptible to interference, free superposition, etc. [3]. In addition, with the growth
of nanophotonics technology, the PAIC has been applied in various practical scenarios,
assisted by the prospect of an algorithm and material [4-6].

PAICs include the hardware’s structural design and the matched optimization algo-
rithm. The hardware’s structure refers to accomplishing the computing by changing the
phase and intensity of the light signal through optical devices. The matching algorithm
refers to data training and module control. In PAIC design, the compatibility of the struc-
ture and algorithm is also significant. Before fabrication, in order to obtain a workable
PAIC, a system-level simulation platform is necessary to simulate the whole performance.
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The hardware structure of PAIC is also called ONN. The ONN in PAIC is constructed
with optical waveguides or devices, such as Mach-Zehnder interferometers (MZI), semi-
conductor optical amplifiers (SOAs), micro-ring resonators (MRRs) or some 3D waveguides.
Based on the hardware ONN structure or specialized devices, PAIC can easily implement
linear or nonlinear operation [7]. Assisted by the weight training algorithm, PAIC highly
benefits big data services and high-capacity communication networking.

Specifically, the main advantages of PAICs are as follows: (1) PAICs utilizing optical
signal propagation show a high clock frequency and, according to the waveguide intercon-
nects, the data can be labeled from one dimension to multi-dimension [3]. These contribute
to fast data processing and low latency [8]. (2) The data propagation and calculation take
place simultaneously. Thus, it reduces the data’s repeated handling and eliminates the
“memory wall” issue. (3) The flexible multiple waveguide channel design represents a
truly parallel implementation of PAICs, expanding the data capacity and also accelerating
the processing speed. (4) The calculation in PAICs is achieved by a passive optical waveg-
uide. There is no need for an extra energy supply and PAICs are cost-effective in energy
consumption [6].

In this invited paper, firstly, three linear ONNs are listed and we made a comparison
concerning their advantages and disadvantages. Next, two nonlinear operation hardware
structures are presented. Then, the current widely used training algorithm (gradient
descent algorithm) is introduced. After that, the simulation platform of the PAIC system
is described. Finally, the research work of our group in the related field is presented. An
ONN structure is designed and an algorithm is optimized to form PAICs. It can complete
artificial intelligence computing, such as image recognition and classification. The test
results show that it runs well.

2. Hardware Structures for Linear Operation

ONN is formed by passive optical waveguide interconnects and has natural advan-
tages for the linear operation. Due to the different computing tasks, the ONN is mainly
classified into three types: feedforward neural network (FNN), convolutional neural net-
work (CNN), and recurrent neural network (RNN). The networks can be implemented by
optical waveguides. Among them, the response function of a single MZI can be expressed
as a Jones matrix [9] and thus, the MZI array is an excellent candidate for linear matrix
multiplication [10-12]. In the case of SOA, modulation and amplification are used to control
the intensity or phase of the input signal and complete the matrix multiplication [13,14].
MRR can also be operated according to different wavelengths. In MRR, optical signals of
different wavelengths are modulated, and the calculation is completed [15-17]. Further-
more, complex 3D-routed waveguides are created by two photon polymerization [18,19],
which efficiently connects many IO channels. When the channels are added by a combiner,
the 3D waveguide works as a summator. Above all, these waveguides are deployed for
ONN, intending to realize linear operation. For the three types of ONN, the scheme is
shown in Table 1.

Table 1. The scheme of main neural network.

Scheme
Network MZI Array SOA MRR 3D Waveguide

PFNN v v v v
PCNN v v
PRNN v v v

2.1. Photonic Feedforward Neural Network (PFNN)

The feedforward neural network (FNN) is the simplest one-way neural network, in-
cluding an input layer, hidden layer and output layer. The signal transmits unidirectionally
from the input layer to the output layer. The essence of realizing the matrix multiplication
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function is to complete the multiplication and accumulation (MAC). PENN can be realized
by the MZI array, SOA, MRR and 3D waveguide.

A. MZI array.

In the case of PENN, the MZI is cascaded without reflection. The light stays in forward
propagation. In PAICs, linear computing is implemented in the MZI array as shown in
Figure 1 [20]. The input optical signal with multiple channels propagates in the paralleled
MZI waveguide. The phase changes when passing through the MZI array. In this way, the
output matrix can be obtained by completing the linear operation. In 2017, Shen proposed
and demonstrated the first photonic interference computing unit chip based on the MZI
array [21]. The whole network uses an array of 56 MZIs and 213 phase shifters to complete
the matrix operation through abundant phase changes.
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Figure 1. MZI array [20]. A universal 8 x 4 optical linear multiplier with two unitary multipliers
marked red. It consists of MZIs in a grid-like layout and a diagonal layer marked yellow.

B.  Semiconductor optical amplifier (SOA).

In the basic idea of SOA, the MAC operation is realized by a single amplifier. Once
the amplifier is cascaded, it enables a large-scale MAC operation. Generally, weighting is
expressed by the attenuation or gain. At the output, the light of the different channels with
multiple weighting is summed through the wavelength division multiplexer. Thus, SOA
can complete the N x M matrix multiplication. The FNN based on SOA is illustrated in
Figure 2. By adjusting the drive current of the SOA, the gain coefficient changes. It can
be considered that the variation of the gain coefficient corresponds to the change in the
transmission matrix coefficient. Then, through the arrayed waveguide grating (AWG) or
multimode interference optical coupler (MMI), the weighted results of multiple SOAs are
summed. In this way, the weighted summation of each row in the matrix is obtained. This
realizes the matrix’s multiplication operation [22].

Input Vector Selection Stage Weight Matrix Multiplication Stage

Figure 2. SOA wavelength division multiplexer [22]. The chip integrates 8 weighted addition circuits,
which are used for 8 WDM input vectors and provide 8 WDM outputs. SOA is used to assist the
weight sum of each layer. Highlight the block in use in gray.

C.  the micro-ring resonator (MRR).

The implementation scheme based on MRR is similar to that of SOA. MRR works
at different wavelength when the MRR’s length or the radius are adjusted. The MRR is
featured in wavelength selection. The light after different MRRs forms different channels
with forward propagation. Then, through the arrayed waveguide grating (AWG) or multi-
mode interference optical coupler (MMI), the light is summated with multiple channels.
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A matrix operation is completed. The transmittance of MRR can be adjusted by thermal
adjustment [23,24], ESC [25], phase adjustable materials, etc.

The PENN based on MRR is illustrated in Figure 3 [26]. The input signals are ported
into different MRRs, and then, each channel carries a signal with a specific wavelength.
After nonlinear modulation, the output matrix is obtained. In this structure, photonic
neurons’ output signals are fixed to certain wavelengths. With the WDM signal porting in
the network, each connection between a pair of neurons is independently configured by an
MRR weight, and each channel has a signal monitor. After that, the operation is completed.
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Figure 3. MRR wavelength division multiplexer [26]. MRR is mainly responsible for the weight
configuration of neural network, and the red part indicates that the weight can be changed through
the external environment. The whole network is integrated except for bit pumped lasers.

D. 3D waveguide.

In addition, Yu et al. [27] and Moughames et al. [28] construct a feedforward neural
network through a 3D waveguide written directly by a laser, as shown in Figure 4. At
present, there are only two layers of network, so the signal is a one-way transmission.
The multiple IO channels are finally combined into one output port. Three-dimensional
waveguide achieves the goal of dimension expansion, but the signal is still a one-way
transmission. The input signal is summed by the N x 1 beam combiner. This completes
the interconnection between different layers and the waveguides works as a summator.

Figure 4. 3D waveguide feedforward neural network [28]. A small network hosting simple coupler.
Chirality of the connections avoids the intersection of individual waveguides between the input and
output ports.

2.2. Photonic Convolutional Neural Network (PCNN)

The main task of the convolution neural network is to complete convolution operations.
The schemes in convolutional neural networks are MZI array [29] and MRR array [30-33].

A. MZI array.

The basic principle is similar to the corresponding photonic feedforward neural
network. The essence of convolution is matrix operation. The MZI array is used to
implement matrix multiplication operations. The signal after matrix decomposition is
input into the MZI array by segments. The front and back operations are implemented by
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using cascaded MZI. This completes a convolution operation. In 2018, Bagherian utilized
chips to extend the original simple fully connected neural network to high-dimensional
image recognition. It uses time division multiplexing to complete convolution computing.
The main steps are as follows: matrix multiplication based on the MZI array, image
convolution by time division multiplexing, and construction of the convolutional neural
network layers (five convolutional layers and one fully connected layer). This realizes the
recognition of colored numbers 0-9 [29].

B. MRR

In the CNN [34], MRR completes matrix operation by the weight of the micro-ring.
The multiplexed wavelengths enter the MRR array. The amplitude of each wavelength is
multiplied by its corresponding micro-ring weight, and then, output. The multiplication
is realized by adjusting the resonant peaks of the micro-rings to their respective laser
wavelengths [31]. Figure 5 shows the convolution operation with input feature mapping.
This greatly facilitates the calculation.

Input Feature Map b 9 »}emhmq '|11‘g§ pe} ke‘rne\
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of kernel over the input feature map

128 input wavelengths

Total of 5x9 = 45 rings

Figure 5. MRR structure is for an input feature map of size 16 x 16. After filtering the map with
input feature mapping, the convolution is completed [33].

2.3. Photonic Recurrent Neural Network (PRNN)

The recurrent neural network is also known as the reservoir calculation. The infor-
mation transmits forward and backward to form a loop structure. The reservoir is mainly
composed of an input layer, middle layer and output layer. Only the output weights are
trained in the RNN. For photonic storage pool network, there are two structures: one is the
parallel scheme, and the other is the serial scheme, as shown in Figure 6 Different from
the previous two neural networks, the reservoir network is mainly used for dimension
transformation of data.

A. Parallel scheme

The nodes in the parallel structure’s reservoir can be implemented by SOA [35], silicon-
based micro-ring resonators [36], silicon-based waveguide delay lines [37], etc. Optical
reservoirs based on SOA and MRR, respectively, utilize the gain saturation of SOA and the
nonlinear effects of MRR (free carrier dispersion and thermo-optical effects). No matter
what kind of device, the simplest way to realize interconnection is to return the output
signal to the input node. In this way, feedback can be achieved within the network. When
there are multiple inputs, parallel operation is realized by inputting different signals.

B. Serial scheme

The nodes of the serial structure’s reservoir operation can be implemented using
modulators, SOA, etc. In recent years, the delay of serial loop RNN based on MRR
or MMI has made great progress. At the same time, this type of photonic RNN also
tries to use multi-stage or more complex time division multiplexing to further accelerate
computing speed.
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Figure 6. Optical reservoir plan (a) MRR structure [36]. The data matrix is input into the reservoir

readout

network composed of MRR, and after network circulation, the data matrix is output. (b) Silicon-based
delay line [37]. The data are input into a network composed of delay lines, which make the front
and back input signals interact with each other. PD is used to detect and convert optical signal into
electrical signal, which is processed by a micro-processor.

2.4. Comparison of three Linear ONNs

The above is the analysis of the structural characteristics of the three neural networks.

From the analysis, it can be seen that PENN is the simplest of the three networks.
It is the easiest structure to implement. However, because of its simple structure, the
computation of the matrix is limited.

The PCNN can complete convolution operation on account of its complex hidden
layers, which is the core of convolution. However, it also causes the complexity of the struc-
ture. Furthermore, because the hidden layers participate in the operation, the operation
time will be longer than PFNN.

PENN and PCNN mostly use MZI and MRR to realize matrix operation. For an MZI,
its system is relatively simple and has stronger versatility. However, due to excessive loss
during cascading, it is not suitable for large-scale integration. For MRR, its size is relatively
small and large-scale integration is easier. However, it is more sensitive to temperature.
There are great challenges in achieving precise control.

Different from PFNN and PCNN, PRNN has the structural characteristics of a recur-
rent network. Its application is to enrich or compress data dimensions. It can also be used
to deal with tasks related to time series. Its structure uses a reservoir. For the reservoir,
the internal principle utilizes random projection to transform the dimensionality of the
data. Therefore, there is no need for complicated control, and it has strong fault tolerance
for integrated technology. However, due to this special principle, it is difficult to apply to
most occasions.

3. Hardware Structures for Nonlinear Operation

The linear operation of a neural network can solve relatively simple problems. The
nonlinear activation function is the root of the artificial neural network’s powerful expres-
sion ability. This affects the speed of network convergence and the accuracy of recognition.
As shown in Figure 7, the position of nonlinearity in the system is behind the linear
neural network.

-l Modulator -

) - Modulator - el
sl - Modulator - network
Modulator

Figure 7. Ideal PAIC system implementation diagram. The dotted line is nonlinear structure.

There are a lack of practical photonic devices that express nonlinear functions. Cur-
rently, photon calculation is an optoelectronic hybrid computing architecture. The nonlinear



Appl. Sci. 2021, 11,5719

7 of 13

O

calculation part is all performed in the electrical domain. In this way, multiple photoelec-
tric and electro-optical conversions are involved in the network. This not only limits the
speed of the photonic neural network, but also brings additional energy consumption.
Ideally, some optical nonlinear devices can realize the nonlinear calculation, and they
have the features of low threshold, reconfigurability, easy integration, and fast response.
The current ideas are divided into two types: special materials (saturated absorbers and
two-dimensional graphene materials) and the combined structure of the optical modulator
(MZI, MRR and SOA).

3.1. Nonlinear Operation Based on Special Material

The main special materials used to realize nonlinear operation are a saturated absorber
and two-dimensional graphene materials. Nonlinearity can be realized by placing the
special material in the dotted line of Figure 7.

The saturated absorber mainly uses its transmission characteristics. The absorption
coefficient has a reverse relationship with the intensity of the incident light. The transmis-
sion coefficient increases with the growth of the optical power. Thus, the Relu function can
be realized [21]. Two-dimensional graphene materials work analogous to the saturated
absorber. However, compared with the saturated absorber, graphene has the advantages of
low threshold and that it is easy to be excited in nonlinear effects.

3.2. Nonlinear Operation Based on Optical Modulator

Another way to realize nonlinear structure is to use the optical modulator. The optical
modulators that can realize nonlinearity are placed in the dotted line of Figure 7. The basic
principle is that the light signal of the weighted sum is converted into a voltage by the
photodetector, and then, applied to the optical modulator. This affects the transmission
spectrum. The realization of the optical nonlinear function is by changing the transmittance
of the optical signal through the modulator. The structures of optical modulators can be
implemented by MZI modulators [38], electro-absorption modulators [39], and micro-ring
resonator modulators [40], as shown in Figure 8. Different nonlinear functions can be
realized by changing the bias voltage of the modulator.

CW Laser Bank
ptical-to-electrica
ptical-to-electrical Ay Mo

LAWG S

vazi i

C

x MRR Weight Bank o p,l MBR
\/_ 1 Ny || J’ Modulator
H from previ- 1 Q00 1
/ \ ) ous layer s [
e " : Balanced . L (e
Vi—az | i Photodiode D[ taver
directional i shifter { Pow| £ |
Jelay i : Efl-
Mach-Zehnder interferometer " —— optical Nro
—— electrical ]
(a) (b)
IN % % Microring weight bank 7p,649n
@@/ i
D1 DZ D3 D4
Drop
— Electronic
Optical
(0)

Figure 8. Optical modulator implementation diagram. (a) MZI modulator [38], (b) electro-absorption modulator [39],
(c) micro-ring cavity modulator [40].
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In 2019, Alexandris et al. realized the sigmoid nonlinear function based on the serial
structure of MZI composed of two SOAs and a single SOA [41]. The schematic diagram
is shown in Figure 9. This structure is mainly based on the cross-phase modulation effect
and cross-gain modulation effect of SOA. When the input pulse width is very small, within
the integration window, the arrangement of the input light pulse signal and the number of
pulses will affect the pulse width of the output signal. SOA has a high nonlinear coefficient,
and at the same time, has a gain effect on optical signals.

SOA-MZI

input 1

output

input2

Figure 9. SOA-based implementation of the nonlinear function. SOA is placed in the two arms
of MZI, which mainly performs phase modulation. The input signal and the reference signal go
through the 3dB coupler, then are input into the two SOA for phase modulation. Cross-modulation is
completed in SOA3.

3.3. Comparison of Two Nonlinear Types

From the above analysis, we can see that the two types of nonlinear structures have
their own advantages and disadvantages.

The nonlinear structure based on the special materials is easier to be integrated into
the chip. However, it is difficult to obtain, and it also has higher requirements for the
integrated environment.

The nonlinear structure based on the optical modulator is easier to be adjusted and
obtain nonlinearity. However, the structure is larger and it is harder to integrate.

4. Training Algorithm

Currently, in terms of algorithm training, the simulation model of the photonic com-
puting network is trained on the electronic computer. Then, the trained model parameters
are loaded onto the photonic chip. However, even if it is trained in the electrical domain, its
effect is still restricted by two aspects: the accuracy of the simulation model’s description
and the computing speed. The training algorithm includes forward propagation [42],
finite difference calculation gradient (MIT), in situ back propagation [43] and gradient
measurement (Stanford). These attempts have essentially been completed at the level of
computer simulation, and have not been used for training on actual physical chips.

The training algorithm problem of the photonic network is a restrictive factor for
expanding the application of the PAIC. Photons cannot be stored like electrons. We cannot
directly record the state of photons. Therefore, backward propagation algorithms that
are widely used in electrical neural network training are difficult to directly transplant to
photonic artificial intelligence network training. In order to solve this problem, Hughes
et al. proposed an on-chip training algorithm in 2018 [43]. By recording the light field
distribution and the phase distribution of the phase shifter, we can obtain the gradient
value that decreases toward the convergence direction. Then, we calculate the phase
configuration of the chip phase shifter in the next iteration to gradually converge to a better
result. Hughes et al. trained a specific two-optical interference unit (OIU) neural network
on the chip through simulation. It implements exclusive OR logic to verify the effectiveness
of the algorithm.

Zhang et al. proposed an effective training algorithm based on neuro-evolution
strategy in 2019 [44]. It uses genetic algorithms (GA) and particle swarm optimization
(PSO) to train the hyperparameters in ONNs and optimize the connection weights. The
trained ONNSs are used to complete the classification task for performance evaluation.
The calculation results show that its accuracy and stability are sufficient to compete with
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traditional learning algorithms. The system also uses the photonic artificial intelligence
network to realize the classification of the modulation format of the communication signal.
In the future, this algorithm can be further expanded and transplanted to larger-scale
PAICs. It can gradually obtain the best configuration of the chip through on-chip training
to complete specific functions. Figure 10 shows the results of autonomous learning using a
gradient descent algorithm. It can be seen that with iterative learning, signal recovery is
improving [42].
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Figure 10. Results of algorithm training [42]. Three different training times are selected with
50 times,100 times and 200 times.

5. Software Simulation Platform

Efficient algorithms and a variety of network models are important cornerstones to
support the continued development of photonic chips. At present, photonic computing
networks are mainly simulated and trained through electronic computers. Then, the trained
model parameters are loaded onto the photonic chip. By far, there are two main software
simulation platforms in use: one is IPKISS [45], and the other is INTERCONNECT. In
addition to the above two commonly used simulation tools, the Institute of Microelectronics
of the Chinese Academy of Sciences has designed a system-level simulation and verification
tool, named PDA.

PDA designers use Python to package various models of optical devices. Users can
modify the parameters and interface of the devices, and connect the device by a simple
function statement. It can realize the extremely complex network structure at the link level,
or the simulation task of the framework. After the completion of the system, each optical
path can be monitored and the simulation diagram in the time domain can be output. This
greatly facilitates the observation and analysis of the experimental results. Because of
the flexibility of Python, PDA can also interact with MATLAB to complete the simulation
according to the operators’ different needs. PDA also has the advantage that it can be
used in conjunction with the open-source layout tool Klayout to realize the complete chip
design process of the layout driver and schematic driver. This provides great convenience
for the overall development and design of the chip. It is worth mentioning that it is easy
to operate.

6. Our Work in Lab

Although the PAIC has great potential, there is still no mature system technology for
it. In order to seek a new breakthrough, we have performed a considerable amount of
research work on the system-level function of PAIC.

First, we have designed and optimized the aspect of hardware structure. It is com-
posed of MZI and a reservoir to complete the calculation and transform the dimension
of data. This is the important part for the preprocessing of input data. According to the
design structure, an integrated optical operation module is built, as shown in Figure 11a.
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Control module

Algorithm

Operation module

Figure 11. (a) The optical operation module. (b) The integrated module. It is a two-layer module
with a separate control and calculation. The top is the control module, and the bottom is the optical
operation module. (c) The work principle.

Second, we have written a training algorithm to realize the cooperation of software
and hardware. In the aspect of the algorithm, a gradient descent algorithm is designed
to train the output data. This training algorithm functions on both the control module
and the operation module, which is shown in Figure 11b. The work’s principle is shown
in Figure 11c.

Lastly, based on the comprehensive analysis of devices, circuits and algorithms, a
PAIC is formed, as shown in Figure 12a. It is mainly composed of a control module and
optical operation module, and the data preprocessing of the reservoir network is included.

Figure 12. (a) Self-developed PAIC. (b) Application of this system to complete the data monitoring of the construction site.

The self-developed PAIC is applied to intelligent computing. The results show that it
can complete image segmentation, image recognition and other functions effectively. The
processed image is shown in Figure 12b. It mainly monitors whether workers are wearing
safety helmets. In a specific example test, the marked 6057 image data are divided into five
groups and input into the algorithm model. The average test accuracy is 89.7%, and the
energy efficiency ratio of algorithm deployment is 1.23 Tops/W.

7. Conclusions

In conclusion, PAICs have great advantages due to their power consumption and
small size. They have aroused considerable attention from scholars. This paper mainly
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summarizes the structural design, algorithm matching of PAICs and the software platforms
that can be used in large-scale simulation. Additionally, we put forward the related work
of our laboratory, an integrated information processing system (Self-developed PAIC),
which provides one useful solution for the in-depth research of PAICs. They contain much
significance and unlimited possibilities. We believe that with the help of PAICs, the optical
computer is in sight.
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